1
|
Sohail N, Farhat H, Qureshi SA, Ullah I, Ali MS. The brown algae: Sargassum binderi sonder shows a potential nephroprotective activity in in-vivo experimental model. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:1046-1061. [PMID: 38871117 DOI: 10.1016/j.pharma.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES This study aimed to investigate the protective activity of brown seaweed, the ethanolic and water extracts of Sargassum binderi (S. binderi) were examined. Anticancer drug, cisplatin is normally used for the treatment of solid tumors that cause acute kidney damage after assemblage in the renal tubules. MATERIAL AND METHODS It was an acute nephrotoxicity study, animals were divided into several groups randomly, cisplatin (7mg/kg i.p.) and normal saline were used as positive and negative control respectively. The S. bindari ethanolic and water extract were given orally in a dose of 200mg/kg for 5days. Various biomarkers were assessed to observe the nephroprotective potential, while antioxidant activities were investigated using reduced glutathione, catalase and malondialdehyde as oxidative stress. GCMS was performed to validate the presence of important therapeutic moieties. RESULTS The current result justified that pretreatment with S. binderi inhibited the elevation of antioxidant parameters and also showed protection against lipid peroxidation, induced by cisplatin challenge. The overall impact was the nephroprotection, which has been revealed from the results. GCMS evaluation of hexanes fraction revealed the presence of therapeutically important compounds including heptasiloxane, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, hexadecamethyl, cyclooctasiloxane, and hexadecamethyl. These compounds have been reported for their antioxidant, antibacterial, anticancer, and antifungal activities. CONCLUSION S. binderi showed reno-protective effect by checking their well-known biochemical parameters probably due to the antioxidant activity as confirmed by the presence of compounds.
Collapse
Affiliation(s)
- Nida Sohail
- Department of Biochemistry, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan.
| | - Hafiza Farhat
- Institute of Biological Sciences, Gomal University, D.I Khan, D.I Khan 29050, Pakistan
| | - Shamim Akhtar Qureshi
- Department of Biochemistry, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan
| | - Irfan Ullah
- Department of Neuroscience, The University of Minnesota, Minneapolis, MN 55455, United States
| | - Muhammad Shaiq Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Main University Road, Karachi City, Sindh 75270, Pakistan
| |
Collapse
|
2
|
Sun XH, Zhang XD, Zhang XR, Wang XF, Zhang XY, Zhang YZ, Zhang YQ, Xu F. Direct Preparation of Alginate Oligosaccharides from Brown Algae by an Algae-Decomposing Alginate Lyase AlyP18 from the Marine Bacterium Pseudoalteromonas agarivorans A3. Mar Drugs 2024; 22:483. [PMID: 39590763 PMCID: PMC11595925 DOI: 10.3390/md22110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Alginate oligosaccharides (AOs), derived from alginate degradation, exhibit diverse biological activities and hold significant promise in various fields. The enzymatic preparation of AOs relies on alginate lyases, which offers distinct advantages. In contrast to the conventional use of sodium alginate derived from brown algae as the substrate for the enzymatic preparation of AOs, AO preparation directly from brown algae is more appealing due to its time and energy efficiency. Thus, the identification of potent alginate lyases and cost-effective brown algae substrates is crucial for optimizing AO production. Herein, we identified and characterized an alginate lyase, AlyP18, capable of efficiently decomposing algae, from a marine bacterium Pseudoalteromonas agarivorans A3 based on secretome analysis. AlyP18 is a mesothermal, endo-type and bifunctional alginate lyase with high enzymatic activity. Two brown algae substrates, Laminaria japonica roots and Macrocystis pyrifera, were used for the AO preparation by AlyP18. Upon optimization of AlyP18 hydrolysis parameters, the substrate degradation efficiency and AO production reached 53% and ~32% for L. japonica roots, respectively, and 77% and ~46.5% for M. pyrifera. The generated AOs primarily consisted of dimers to pentamers, with trimers and tetramers being dominant. This study provides an efficient alginate lyase and alternative brown algal feedstock for the bioconversion of high-value AOs from brown algae.
Collapse
Affiliation(s)
- Xiao-Hui Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266237, China
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250199, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xin-Ru Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xiao-Fei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266237, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| |
Collapse
|
3
|
Wang H, Wen J, Ablimit N, Deng K, Wang W, Jiang W. Degradation of Natural Undaria pinnatifida into Unsaturated Guluronic Acid Oligosaccharides by a Single Alginate Lyase. Mar Drugs 2024; 22:453. [PMID: 39452861 PMCID: PMC11509462 DOI: 10.3390/md22100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Here, we report on a bifunctional alginate lyase (Vnalg7) expressed in Pichia pastoris, which can degrade natural Undaria pinnatifida into unsaturated guluronic acid di- and trisaccharide without pretreatment. The enzyme activity of Vnalg7 (3620.00 U/mL-culture) was 15.81-fold higher than that of the original alg (228.90 U/mL-culture), following engineering modification. The degradation rate reached 52.75%, and reducing sugar reached 30.30 mg/mL after combining Vnalg7 (200.00 U/mL-culture) and 14% (w/v) U. pinnatifida for 6 h. Analysis of the action mode indicated that Vnalg7 could degrade many substrates to produce a variety of unsaturated alginate oligosaccharides (AOSs), and the minimal substrate was tetrasaccharide. Site-directed mutagenesis showed that Glu238, Glu241, Glu312, Arg236, His307, Lys414, and Tyr418 are essential catalytic sites, while Glu334, Glu344, and Asp311 play auxiliary roles. Mechanism analysis revealed the enzymatic degradation pattern of Vnalg7, which mainly recognizes and attacks the third glycosidic linkage from the reducing end of oligosaccharide substrate. Our findings provide a novel alginate lyase tool and a sustainable and commercial production strategy for value-added biomolecules using seaweeds.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; (H.W.); (J.W.); (N.A.); (K.D.); (W.W.)
| |
Collapse
|
4
|
Jiang J, Wang Y, Jiang Z, Yan Q, Yang S. High-level production of a novel alginate lyase (FsAly7) from Flammeovirga sp. for efficient production of low viscosity soluble dietary fiber from sodium alginate. Carbohydr Polym 2024; 326:121605. [PMID: 38142093 DOI: 10.1016/j.carbpol.2023.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Sodium alginate is one of the most abundant sustainable gum source for dietary fiber production. However, the preparation efficiencies of low viscosity soluble dietary fiber from sodium alginate remain low. Here, a novel alginate lyase gene (FsAly7) from Flammeovirga sp. was identified and high-level expressed in Pichia pastoris for low viscosity soluble dietary fiber production. The highest enzyme production of 3050 U mL-1 was achieved, which is by far the highest yield ever reported. FsAly7 was used for low viscosity soluble dietary fiber production from sodium alginate, and the highest degradation rate of 85.5 % was achieved under a high substrate content of 20 % (w/v). The molecular weight of obtained soluble dietary fiber converged to 10.75 kDa. FsAly7 catalyzed the cleavage of glycosidic bonds in alginate chains with formation of unsaturated non-reducing ends simultaneously in the degradation process, thus altered the chemical structures of hydrolysates. The soluble dietary fiber exhibited excellent properties, including low viscosity, high oil adsorption capacity activity (2.20 ± 0.03 g g-1) and high emulsifying activity (60.05 ± 2.96 mL/100 mL). This investigation may provide a novel alginate lyase catalyst as well as a solution for the efficient production of low viscosity soluble dietary fiber from sodium alginate.
Collapse
Affiliation(s)
- Jun Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yue Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|