1
|
Magnusdottir U, Thormodsson FR, Kjalarsdottir L, Filippusson H, Gislason J, Oskarsson KR, Hjorleifsson JG, Einarsson JM. Heparin-binding of the human chitinase-like protein YKL-40 is allosterically modified by chitin oligosaccharides. Biochem Biophys Rep 2025; 41:101908. [PMID: 39811191 PMCID: PMC11732221 DOI: 10.1016/j.bbrep.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
The chitinase-like protein YKL-40 (CHI3L1) has been implicated in the pathophysiology of inflammation and cancer. Recent studies highlight the growing interest in targeting and blocking the activity of YKL-40 to treat cancer. Some of those targeting-strategies have been developed to directly block the heparin-affinity of YKL-40 with promising results. This study explores how short chain chitooligosaccharides (ChOS) affect the heparin-binding affinity of YKL-40. Our findings reveal that ChOS act as allosteric effectors, decreasing the heparin-binding affinity of YKL-40 in a size- and dose-dependent manner. Our results provide insights into the heparin affinity of YKL-40 and how ChOS can be used to target the heparin activity of YKL-40 in diseases. Since ChOS has many beneficial properties, such as being non-toxic and biodegradable, these results provide intriguing opportunities for applying them as allosteric effectors of the heparin-binding affinity of YKL-40.
Collapse
Affiliation(s)
- Unnur Magnusdottir
- Genis hf, Reykjavik, Iceland
- University of Akureyri, School of Health, Business, and Natural Sciences, Akureyri, Iceland
| | | | | | - Hordur Filippusson
- School of Engineering and Natural Sciences, Science Institute, Department of Biochemistry, University of Iceland, Reykjavik, Iceland
| | | | - Kristinn Ragnar Oskarsson
- School of Engineering and Natural Sciences, Science Institute, Department of Biochemistry, University of Iceland, Reykjavik, Iceland
| | - Jens G. Hjorleifsson
- School of Engineering and Natural Sciences, Science Institute, Department of Biochemistry, University of Iceland, Reykjavik, Iceland
| | | |
Collapse
|
2
|
Lee WS, Kim Y, Bae MK, Yoo KH, Park HR, Kim YII. Fucosterol and Fucoxanthin Enhance Dentin Collagen Stability and Erosion Resistance Through Crosslinking and MMP Inhibition. Int J Nanomedicine 2024; 19:13253-13265. [PMID: 39679254 PMCID: PMC11639964 DOI: 10.2147/ijn.s490667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose To evaluate the effects of fucosterol and fucoxanthin on ultimate microtensile strength (µUTS), dentin collagen cross-linking, erosion resistance, and matrix metalloproteinase (MMP) inhibition. Methods Dentin beams and slices were prepared from extracted human teeth and treated with concentrations of 50 µg/mL, 100 µg/mL, and 200 µg/mL of fucosterol and fucoxanthin. Fourier-transform infrared spectroscopy (FTIR) was used to analyze collagen cross-linking. In situ zymography was used to quantify MMP activity inhibition. Molecular docking simulations were used to gain insights into the binding interactions between the compounds and dentin collagen/MMPs. In vitro erosion tests and 3D non-contact profilometry were used to evaluate erosion resistance. µUTS was measured to assess mechanical enhancement. Results FTIR analysis showed increased collagen cross-linking in fucosterol and fucoxanthin treated groups, with notable shifts in amide II bands in a concentration-dependent manner. In situ zymography revealed effective MMP inhibition in fucosterol and fucoxanthin treated samples, with inhibition increasing at higher concentrations, supporting the stabilization of the dentin matrix. Molecular docking confirmed favorable binding interactions between the compounds and both collagen and MMPs. Erosion tests demonstrated significantly reduced dentin structure loss and surface roughness in the experimental samples. Treatment with fucosterol and fucoxanthin significantly increased µUTS values, compared to controls, indicating enhanced dentin strength. Conclusion Fucosterol and fucoxanthin from marine algae effectively enhance dentin mechanical properties and resistance to acid-induced erosion through collagen cross-linking and MMP inhibition. These findings suggest that these compounds could serve as promising natural treatments for dentin preservation against acid attacks, potentially improving oral health outcomes.
Collapse
Affiliation(s)
- Won Sek Lee
- Department of Orthodontics, Dental Research Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Moon-Kyoung Bae
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kyung-Hyeon Yoo
- Department of Oral Pathology, Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, Periodontal Disease Signaling Network Research Center (MRC), School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, South Korea
| | - Yong-I I Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Yangsan, 50612, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, South Korea
| |
Collapse
|
3
|
Costa JP, Custódio L, Reis CP. Exploring the Potential of Using Marine-Derived Ingredients: From the Extraction to Cutting-Edge Cosmetics. Mar Drugs 2023; 21:620. [PMID: 38132941 PMCID: PMC10744737 DOI: 10.3390/md21120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The growing understanding and knowledge of the potential of marine species, as well as the application of "blue biotechnology" have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological activities that are yet to be discovered. This review explores various biological properties of marine-derived molecules and briefly outlines the main extraction methods. Alongside these, it is well known the legislative and normative framework of cosmetics is increasingly being developed. In this research segment, there is a growing concern with sustainability. In this sense, "blue biotechnology", together with the use of invasive species or marine waste products to obtain new active ingredients, haven been emerging as innovative and sustainable solutions for the future's cosmetics industry. This review also examines the regulatory framework and focus on the recent advancements in "blue biotechnology" and its relevance to the sustainable development of innovative cosmetics.
Collapse
Affiliation(s)
- João Pedro Costa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, Ed. 7, 8005-139 Faro, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Thomas NV, Monica Diyya AS, Kim SK, Faraj KA, Ghafoor DD, Qian ZJ, Tigabu BM. Bioactives from Marine Organisms and their Potential Role as Matrix Metalloproteinase Inhibitors. Curr Pharm Des 2022; 28:3351-3362. [PMID: 36411577 DOI: 10.2174/1381612829666221121145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Recent research has revealed the role of metalloproteinases in a number of severe pathological illnesses, including cardiac, cartilage, neurological, and cancer-related diseases that are fatal to humans. Metalloproteinases are a subclass of endopeptidases that comprise structurally identical enzymes known as Matrix Metalloproteinases (MMPs) that are solely involved in extracellular matrix degradation and play a significant regulatory function in tissue remodeling. Improper regulation and expression of MMPs have been linked to several life-threatening pathological conditions in humans. Hence there is an ever-growing interest in various research communities to identify and report the Matrix Metalloproteinase Inhibitors (MMPIs). In spite of several chemically synthesized MMPIs being available currently, several unpleasant side effects, un-successful clinical trials have made use of synthetic MMPIs as a risky strategy. Several natural product researchers have strongly recommended and reported many natural resources like plants, microorganisms, and animals as greater resources to screen for bioactives that can function as potential natural MMPIs. Marine environment is one of the vast and promising resources that harbor diverse forms of life known to synthesize biologically active compounds. These bioactive compounds from marine organisms have been reported for their unparalleled biological effects and have profound applications in cosmeceutical, nutraceutical, and pharmaceutical research. Several research groups have reported an umpteen number of medicinally unmatched compounds from marine flora and fauna, thus driving researchers to screen marine organisms for natural MMPIs. In this review, our group has reported the potential MMPIs from marine organisms.
Collapse
Affiliation(s)
- Noel Vinay Thomas
- Department of Biomedical Science, College of Science, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Apoorva Salomy Monica Diyya
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do, 11558, Korea
| | - Kaeuis Aziz Faraj
- Department of Nursing, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Dlzar Dlshad Ghafoor
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq.,Department of Chemistry, College of Science, University of Sulaymaniyah, Sulaymaniyah 46001, Kurdistan Region, Iraq
| | - Zhong Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bereket Molla Tigabu
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah 46001, Kurdistan Region, Iraq
| |
Collapse
|
5
|
Liu Y, Liu Y, Deng J, Wu X, He W, Mu X, Nie X. Molecular mechanisms of Marine-Derived Natural Compounds as photoprotective strategies. Int Immunopharmacol 2022; 111:109174. [PMID: 35998505 DOI: 10.1016/j.intimp.2022.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Excessive exposure of the skin to ultraviolet radiation (UVR) causes oxidative stress, inflammation, immunosuppression, apoptosis, and changes in the extracellular matrix, which lead to the development of photoaging and photodamage of skin. At the molecular level, these pathological changes are mainly caused by the activation of related protein kinases and downstream transcription pathways, the increase of matrix metalloproteinase, the formation of reactive oxygen species, and the combined action of cytokines and inflammatory mediators. At present, the photostability, toxicity, and damage to marine ecosystems of most sun protection products in the market have affected their efficacy and safety. Another way is to use natural products produced by various marine species. Marine organisms have evolved a variety of molecular strategies to protect themselves from the harmful effects of ultraviolet radiation, and their unique chemicals have attracted more and more attention in the research of photoprotection and photoaging resistance. This article provides an extensive description of the recent literature on the potential of Marine-Derived Natural Compounds (MDNCs) as photoprotective and photoprotective agents. It reviews the positive effects of MDNCs in counteracting UV-induced oxidative stress, inflammation, DNA damage, apoptosis, immunosuppression, and extracellular matrix degradation. Some MDNCs have the potential to develop feasible solutions for related phenomena, such as photoaging and photodamage caused by UVR.
Collapse
Affiliation(s)
- Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
6
|
Mustafa S, Koran S, AlOmair L. Insights Into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Front Mol Biosci 2022; 9:896099. [PMID: 36250005 PMCID: PMC9557123 DOI: 10.3389/fmolb.2022.896099] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate the turnover of extracellular matrix (ECM) components. Gross and La Piere discovered MMPs in 1962 during an experiment on tissue samples from a tadpole’s tail. Several subtypes of MMPs have been identified, depending on their substrate specificity and localization. MMPs are involved as essential molecules in multiple and diverse physiological processes, such as reproduction, embryonic development, bone remodeling, tissue repair, and regulation of inflammatory processes. Its activity is controlled at various levels such as at transcription level, pro-peptide activation level and by the activity of a family of tissue inhibitors of metalloproteinase, endogenous inhibitors of MMPs. Cancer metastasis, which is the spread of a tumor to a distant site, is a complex process that is responsible for the majority of cancer-related death It is considered to be an indicator of cancer metastasis. During metastasis, the tumor cells have to invade the blood vessel and degrade the ECM to make a path to new loci in distant places. The degradation of blood vessels and ECM is mediated through the activity of MMPs. Hence, the MMP activity is critical to determining the metastatic potential of a cancer cell. Evasion of apoptosis is one of the hallmarks of cancer that are found to be correlated with the expression of MMPs. As a result, given the importance of MMPs in cancer, we describe the role of these multifunctional enzymes MMPs in various aspects of cancer formation and their rising possibilities as a novel therapeutic target in this review. There is also a brief discussion of various types of therapeutic components and drugs that function against MMPs.
Collapse
Affiliation(s)
- Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- *Correspondence: Sabeena Mustafa,
| | - Sheeja Koran
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (RCC), Medical College, Thiruvanananthapuram, India
| | - Lamya AlOmair
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Wang YC, Lu YB, Huang XL, Lao YF, Zhang L, Yang J, Shi M, Ma HL, Pan YW, Zhang YN. Myeloperoxidase: a new target for the treatment of stroke? Neural Regen Res 2022; 17:1711-1716. [PMID: 35017418 PMCID: PMC8820716 DOI: 10.4103/1673-5374.332130] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myeloperoxidase is an important inflammatory factor in the myeloid system, primarily expressed in neutrophils and microglia. Myeloperoxidase and its active products participate in the occurrence and development of hemorrhagic and ischemic stroke, including damage to the blood-brain barrier and brain. As a specific inflammatory marker, myeloperoxidase can be used in the evaluation of vascular disease occurrence and development in stroke, and a large amount of experimental and clinical data has indicated that the inhibition or lack of myeloperoxidase has positive impacts on stroke prognosis. Many studies have also shown that there is a correlation between the overexpression of myeloperoxidase and the risk of stroke. The occurrence of stroke not only refers to the first occurrence but also includes recurrence. Therefore, myeloperoxidase is significant for the clinical evaluation and prognosis of stroke. This paper reviews the potential role played by myeloperoxidase in the development of vascular injury and secondary brain injury after stroke and explores the effects of inhibiting myeloperoxidase on stroke prognosis. This paper also analyzes the significance of myeloperoxidase etiology in the occurrence and development of stroke and discusses whether myeloperoxidase can be used as a target for the treatment and prediction of stroke.
Collapse
Affiliation(s)
- Yun-Chang Wang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lan Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Feng Lao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lu Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jun Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Mei Shi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hai-Long Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ya-Wen Pan
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yi-Nian Zhang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
8
|
Posidonia oceanica (L.) Delile Dampens Cell Migration of Human Neuroblastoma Cells. Mar Drugs 2021; 19:md19100579. [PMID: 34677478 PMCID: PMC8539885 DOI: 10.3390/md19100579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is a common cancer in childhood, and lethal in its high-risk form, primarily because of its high metastatic potential. Targeting cancer cell migration, and thus preventing metastasis formation, is the rationale for more effective cancer therapy against NB. Previous studies have described the leaf extract from Posidonia oceanica marine plant (POE) as an antioxidant, anti-inflammatory agent and inhibitor of cancer cell migration. This study aims to examine the POE anti-migratory role in human SH-SY5Y neuroblastoma cells and the underlying mechanisms of action. Wound healing and gelatin zymography assays showed that POE at early times inhibits cell migration and reduces pro-MMP-2 release into culture medium. By monitoring expression level of key autophagy markers by Western blot assay, a correlation between POE-induced cell migration inhibition and autophagy activation was demonstrated. Cell morphology and immunofluorescence analyses showed that POE induces neurite formation and neuronal differentiation at later times. These results suggest POE might act against cell migration by triggering early nontoxic autophagy. The POE-induced cellular morphological change toward cell differentiation might contribute to prolonging the phytocomplex anti-migratory effect to later times. Overall, these results encourage future in vivo studies to test POE applicability in neuroblastoma treatment.
Collapse
|
9
|
Diversity, molecular mechanisms and structure-activity relationships of marine protease inhibitors-A review. Pharmacol Res 2021; 166:105521. [PMID: 33662574 DOI: 10.1016/j.phrs.2021.105521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022]
Abstract
Marine habitats are well-known for their diverse life forms that are potential sources of novel bioactive compounds. Evidence from existing studies suggests that these compounds contribute significantly to the field of pharmaceuticals, nutraceuticals, and cosmeceuticals. The isolation of natural compounds from a marine environment with protease inhibitory activity has gained importance due to drug discovery potential. Despite the increasing research endeavours focusing on protease inhibitors' design and characterization, many of these compounds have failed to reach final phases of clinical trials. As a result, the search for new sources for the development of protease inhibitors remains pertinent. This review focuses on the diverse marine protease inhibitors and their structure-activity relationships. Furthermore, the potential of marine protease inhibitors in drug discovery and molecular mechanism inhibitor binding are critically discussed.
Collapse
|
10
|
Javed A, Hussain MB, Tahir A, Waheed M, Anwar A, Shariati MA, Plygun S, Laishevtcev A, Pasalar M. Pharmacological Applications of Phlorotannins: A Comprehensive Review. Curr Drug Discov Technol 2021; 18:282-292. [PMID: 32026778 DOI: 10.2174/1570163817666200206110243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Seaweeds, including marine brown algae, are traditional food sources in Asia. Phlorotannins, as the product of the polyketide pathway, are mainly found in brown algae. Different properties have been attributed to this group of marine products ranging from antiallergic to anticancer activity. Mechanism of action is not obvious for all these properties, but there are some explanations for such effects. OBJECTIVE The current study aimed to review the phlorotannins and to assess the beneficial uses in medicine. METHODS Different databases were explored with the exact terms "Phlorotannin", "Seaweed" and "Brown Algae". Data assembly was finalized by June 2019. The papers showing the effects of phlorotannins in medicine were gathered and evaluated for further assessment. RESULTS General physiological aspects of phlorotannins were firstly evaluated. Different arrays of pharmacological properties ranging from anti-diabetic activity to cancer treatment were found. The mechanism of action for some of these beneficiary properties has been confirmed through rigorous examinations, but there are some features with unknown mechanisms. CONCLUSION Phlorotannins are characterized as a multifunctional group of natural products. Potential antioxidant characteristics could be attributed to preventive and/or their curative role in various diseases.
Collapse
Affiliation(s)
- Ahsan Javed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Tahir
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Marwa Waheed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ahsan Anwar
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russian Federation
| | - Sergey Plygun
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russian Federation
| | - Alexey Laishevtcev
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russian Federation
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Alves A, Sousa E, Kijjoa A, Pinto M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020; 25:molecules25112536. [PMID: 32486036 PMCID: PMC7321322 DOI: 10.3390/molecules25112536] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The cosmetic industry is among the fastest growing industries in the last decade. As the beauty concepts have been revolutionized, many terms have been coined to accompany the innovation of this industry, since the beauty products are not just confined to those that are applied to protect and enhance the appearance of the human body. Consequently, the terms such as cosmeceuticals and nutricosmetics have emerged to give a notion of the health benefits of the products that create the beauty from inside to outside. In the past years, natural products-based cosmeceuticals have gained a huge amount of attention not only from researchers but also from the public due to the general belief that they are harmless. Notably, in recent years, the demand for cosmeceuticals from the marine resources has been exponentially on the rise due to their unique chemical and biological properties that are not found in terrestrial resources. Therefore, the present review addresses the importance of marine-derived compounds, stressing new chemical entities with cosmeceutical potential from the marine natural resources and their mechanisms of action by which these compounds exert on the body functions as well as their related health benefits. Marine environments are the most important reservoir of biodiversity that provide biologically active substances whose potential is still to be discovered for application as pharmaceuticals, nutraceuticals, and cosmeceuticals. Marine organisms are not only an important renewable source of valuable bulk compounds used in cosmetic industry such as agar and carrageenan, which are used as gelling and thickening agents to increase the viscosity of cosmetic formulations, but also of small molecules such as ectoine (to promote skin hydration), trichodin A (to prevent product alteration caused by microbial contamination), and mytiloxanthin (as a coloring agent). Marine-derived molecules can also function as active ingredients, being the main compounds that determine the function of cosmeceuticals such as anti-tyrosinase (kojic acid), antiacne (sargafuran), whitening (chrysophanol), UV protection (scytonemin, mycosporine-like amino acids (MAAs)), antioxidants, and anti-wrinkle (astaxanthin and PUFAs).
Collapse
Affiliation(s)
- Ana Alves
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| |
Collapse
|
12
|
Patra S, Saravanan P, Das B, Subramanian V, Patra S. Scaffold-based Screening and Molecular Dynamics Simulation Study to Identify Two Structurally Related Phenolic Compounds as Potent MMP1 Inhibitors. Comb Chem High Throughput Screen 2020; 23:757-774. [PMID: 32342802 DOI: 10.2174/1386207323666200428114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Matrix metalloproteinase 1 are zinc-dependent endopeptidases responsible for the controlled breakdown of the extracellular matrix resulting in the maintenance of homeostasis. Dysregulation of MMP1 leads to the progression of various pathological conditions like cancer, rheumatoid arthritis, cardiovascular disease, skin damage and fibrotic disorder. Thus, MMP1 inhibition is the potential drug target of many synthetic MMP1 inhibitors but lack of substrate specificity hinders their clinical applicability. Hence, inhibitors from natural products have gained widespread attention. OBJECTIVE The present study attempts screening of novel MMP1 inhibitors from the ZINC database based on experimentally reported natural inhibitors of MMP1 as a scaffold. METHODS Molecular docking study was performed with 19 experimentally reported natural inhibitors spanning across nine different classes followed by virtual screening using the selected compounds. The selected compounds were subjected to molecular dynamics simulation. RESULTS Twenty compounds were screened with a cut-off of -9.0 kcal/mol of predicted free energy of binding, which further converged to 6 hits after docking studies. After comparing the docking result of 6 screened hits, two best compounds were selected. ZINC02436922 had the best interaction with six hydrogen bond formation to a relatively confined region in the S1'site of MMP1 and -10.01 kcal/mol of predicted free energy of binding. ZINC03075557 was the secondbest compound with -9.57 kcal/mol predicted binding free energy. Molecular dynamics simulation of ZINC02436922 and ZINC03075557 corroborates docking study. CONCLUSION This study indicated phenolic compounds ZINC02436922 and ZINC03075557 as potential MMP1 inhibitors.
Collapse
Affiliation(s)
- Swagata Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Parameswaran Saravanan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bhaskar Das
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
13
|
Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem 2020; 194:112260. [PMID: 32224379 DOI: 10.1016/j.ejmech.2020.112260] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc dependent proteolytic metalloenzyme. MMP-9 is one of the most complex forms of matrix metalloproteinases. MMP-9 has the ability to degrade the extracellular matrix (ECM) components and has important role in the pathophysiological functions. Overexpression and dysregulation of MMP-9 is associated with various diseases. Thus, regulation and inhibition of MMP-9 is an important therapeutic approach for combating various diseases including cancer. Inhibitors of MMP-9 can be used as anticancer agents. Till date no selective MMP-9 inhibitors passed the clinical trials. In this review the structure, activation, function and inhibitors of MMP-9 are mainly focused. Some highly active and/or selective MMP-9 inhibitors have been discussed which may be helpful to explore the structural significance of MMP-9 inhibitors. This study may be useful to design new potent and selective MMP-9 inhibitors against cancer in future.
Collapse
Affiliation(s)
- Subha Mondal
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
14
|
Mahalanobish S, Saha S, Dutta S, Sil PC. Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating condition where excess collagen deposition occurs in the extracellular matrix. At first sight, it is expected that the level of different kinds of matrix metalloproteinases might be downregulated in IPF as it is a matrix degrading collagenase. However, the role of some matrix metalloproteinases (MMPs) is profibrotic where others have anti-fibrotic functions. These profibrotic MMPs effectively promote fibrosis development by stimulating the process of epithelial to mesenchymal transition. These profibrotic groups also induce macrophage polarization and fibrocyte migration. All of these events ultimately disrupt the balance between profibrotic and antifibrotic mediators, resulting aberrant repair process. Therefore, inhibition of these matrix metalloproteinases functions in IPF is a potential therapeutic approach. In addition to the use of synthetic inhibitor, various natural compounds, gene silencing act as potential natural MMP inhibitor to recover IPF.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
15
|
Kumar GB, Nair BG, Perry JJP, Martin DBC. Recent insights into natural product inhibitors of matrix metalloproteinases. MEDCHEMCOMM 2019; 10:2024-2037. [PMID: 32904148 PMCID: PMC7451072 DOI: 10.1039/c9md00165d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Members of the matrix metalloproteinase (MMP) family have biological functions that are central to human health and disease, and MMP inhibitors have been investigated for the treatment of cardiovascular disease, cancer and neurodegenerative disorders. The outcomes of initial clinical trials with the first generation of MMP inhibitors proved disappointing. However, our growing understanding of the complexities of the MMP function in disease, and an increased understanding of MMP protein architecture and control of activity now provide new opportunities and avenues to develop MMP-focused therapies. Natural products that affect MMP activities have been of strong interest as templates for drug discovery, and for their use as chemical tools to help delineate the roles of MMPs that still remain to be defined. Herein, we highlight the most recent discoveries of structurally diverse natural product inhibitors to these proteases.
Collapse
Affiliation(s)
- Geetha B Kumar
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - Bipin G Nair
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - J Jefferson P Perry
- School of Biotechnology , Amrita University , Kollam , Kerala , India
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA .
| | - David B C Martin
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of Iowa , Iowa City , IA 52242 , USA .
| |
Collapse
|
16
|
Synthesis and evaluation of a series of caffeic acid derivatives as anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
17
|
Kunte M, Desai K. The Protein Extract of Chlorella minutissima Inhibits The Expression of MMP-1, MMP-2 and MMP-9 in Cancer Cells through Upregulation of TIMP-3 and Down Regulation of c-Jun. CELL JOURNAL 2018; 20:211-219. [PMID: 29633599 PMCID: PMC5893293 DOI: 10.22074/cellj.2018.5277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 02/01/2023]
Abstract
Objective Considering the bioactivities exhibited by microalgae, the effect of protein extract of Chlorella minutissimma (CP
extract) was investigated on the expression of human matrix metalloproteinases-1 (MMP-1) in the breast cancer cell line
MDA-MB231, and that of MMP-2 and -9 in hepatocellular cancer cell line HepG2 at different expression levels. The study
aimed identification and analysis of inhibitory activity of microalgal components extracted from Chlorella minutissima against
human MMPs.
Materials and Methods In this experimental study, we analysed the effect of Chlorella extracts on MMP-1, -2, and -9
expression at various levels. Gelatin zymography was performed to study the inhibitory effect of Chlorella exracts on human
gelatinases at the activity level, followed by western blotting to analyse the expression of all three MMPs at the protein level.
The similar effect at the mRNA level along with the probable mechanism underlying inhibition of MMPs was assessed using
real-time polymerase chain reaction (PCR).
Results The results reveal that the treatment with CP extract decreased the mRNA expression of MMP-1,
MMP-2, and MMP-9 by 0.26-, 0.29-, and 0.40-fold, respectively, at 20 μg/ml concentration as well as inhibited
the activity of MMP-2 and MMP-9 by 37.56 and 42.64%, respectively, at 15 μg/ml concentration. Additionally,
upregulated mRNA expression of tissue inhibitor of metalloproteinases-3 (TIMP-3) by 1.68-fold was seen in
HepG2 cells at 20 μg/ml concentration treatment group. However, CP extract did not induce any change in the
mRNA expression of the TIMP-1, -2 and -4 in HepG2 and TIMP-1, -2, -3 and -4 in MDA-MB231 cells. Activator
protein-1 (AP-1)-dependent c-Jun-mediated transcriptional regulation of MMP-1, -2, and -9 was also studied to
elucidate the appropriate mechanism involved in the inhibition of MMPs.
Conclusion The CP extract successfully inhibited MMP-1, -2, and -9 at different expression levels through TIMP-3
upregulation and c-Jun downregulation.
Collapse
Affiliation(s)
- Mugdha Kunte
- Department of Biological Sciences, NMIMS University, Vile Parle (W), Mumbai, India
| | - Krutika Desai
- Department of Microbiology, Mithibai College, Vile Parle (W), Mumbai, India.
| |
Collapse
|
18
|
Sponges: A Reservoir of Genes Implicated in Human Cancer. Mar Drugs 2018; 16:md16010020. [PMID: 29320389 PMCID: PMC5793068 DOI: 10.3390/md16010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, it was shown that the majority of genes linked to human diseases, such as cancer genes, evolved in two major evolutionary transitions—the emergence of unicellular organisms and the transition to multicellularity. Therefore, it has been widely accepted that the majority of disease-related genes has already been present in species distantly related to humans. An original way of studying human diseases relies on analyzing genes and proteins that cause a certain disease using model organisms that belong to the evolutionary level at which these genes have emerged. This kind of approach is supported by the simplicity of the genome/proteome, body plan, and physiology of such model organisms. It has been established for quite some time that sponges are an ideal model system for such studies, having a vast variety of genes known to be engaged in sophisticated processes and signalling pathways associated with higher animals. Sponges are considered to be the simplest multicellular animals and have changed little during evolution. Therefore, they provide an insight into the metazoan ancestor genome/proteome features. This review compiles current knowledge of cancer-related genes/proteins in marine sponges.
Collapse
|
19
|
Abstract
Marine resources represent an interesting source of active ingredients for the cosmetics industry. Algae (macro and micro) are rich in proteins, amino acids, carbohydrates, vitamins (A, B, and C) and oligo-elements such as copper, iron and zinc. All those active principles play roles in hydration, firming, slimming, shine and protection. Marine organisms inhabit a wide spectrum of habitats. Photo-protective compounds can be obtained from organisms subjected to strong light radiation, such as in tropical systems or in shallow water. In the same way, molecules with antioxidant potential can be obtained from microorganisms inhabiting extreme systems such as hydrothermal vents. For example, marine bacteria collected around deep-sea hydrothermal vents produce complex and innovative polysaccharides in the laboratory which are useful in cosmetics. There are many properties that will be put forward by the cosmetic industries.
Collapse
|
20
|
Sivasubramanian S, Chandrasekar G, Svensson Akusjärvi S, Thangam R, Sathuvan M, Kumar RBS, Hussein H, Vincent S, Madhan B, Gunasekaran P, Kitambi SS. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing. Front Pharmacol 2017; 8:433. [PMID: 28769790 PMCID: PMC5513901 DOI: 10.3389/fphar.2017.00433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety.
Collapse
Affiliation(s)
| | - Gayathri Chandrasekar
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetSolna, Sweden
| | | | - Ramar Thangam
- Department of Virology, King Institute of Preventive Medicine and ResearchChennai, India
- Council of Scientific and Industrial Research – Central Leather Research InstituteChennai, India
| | - Malairaj Sathuvan
- Department of Virology, King Institute of Preventive Medicine and ResearchChennai, India
| | - R. B. S. Kumar
- Department of Virology, King Institute of Preventive Medicine and ResearchChennai, India
| | - Hawraa Hussein
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetSolna, Sweden
| | - Savariar Vincent
- Center for Environmental Research and Development, Loyola Institute of Frontier Energy, Loyola CollegeChennai, India
| | - Balaraman Madhan
- Council of Scientific and Industrial Research – Central Leather Research InstituteChennai, India
| | - Palani Gunasekaran
- Department of Virology, King Institute of Preventive Medicine and ResearchChennai, India
| | - Satish S. Kitambi
- Department of Microbiology, Tumor and Cell Biology, Karolinska InstitutetSolna, Sweden
| |
Collapse
|
21
|
Gentile E, Liuzzi GM. Marine pharmacology: therapeutic targeting of matrix metalloproteinases in neuroinflammation. Drug Discov Today 2016; 22:299-313. [PMID: 27697495 DOI: 10.1016/j.drudis.2016.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/18/2016] [Accepted: 09/26/2016] [Indexed: 01/08/2023]
Abstract
Alterations in matrix metalloproteinase (MMP) expression and activity are recognized as key pathogenetic events in several neurological disorders. This evidence makes MMPs possible therapeutic targets. The search for substances that can inhibit MMPs is moving progressively toward the screening of natural products. In particular, marine bioprospecting could be promising for the discovery of marine natural products with anti-MMP activities. Despite recent advances in this field, the possibility of using marine MMP inhibitors (MMPIs) for the treatment of neuroinflammation is still under-investigated. Here, we review the latest findings in this promising research field and the potential that marine MMPIs can have in the management and treatment of various neurological diseases.
Collapse
Affiliation(s)
- Eugenia Gentile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Grazia M Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
22
|
Bae MJ, Karadeniz F, Ahn BN, Kong CS. Evaluation of Effective MMP Inhibitors from Eight Different Brown Algae in Human Fibrosarcoma HT1080 Cells. Prev Nutr Food Sci 2015; 20:153-61. [PMID: 26451351 PMCID: PMC4596340 DOI: 10.3746/pnf.2015.20.3.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that have important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Marine plants are on the rise for their potential to provide natural products that exhibit remarkable health benefits. In this context, brown algae species have been of much interest in the pharmaceutical field with reported instances of isolation of bioactive compounds against tumor growth and MMP activity. In this study, eight different brown algae species were harvested, and their extracts were compared in regard to their anti-MMP effects. According to gelatin zymography results, Ecklonia cava, Ecklonia bicyclis, and Ishige okamurae showed higher inhibitory effects than the other samples on MMP-2 and -9 activity at the concentrations of 10, 50, and 100 μg/mL. However, only I. okamurae was able to regulate the MMP activity through the expression of MMP and tissue inhibitor of MMP observed by mRNA levels. Overall, brown algae species showed to be good sources for anti-MMP agents, while I. okamurae needs to be further studied for its potential to yield pharmaceutical molecules that can regulate MMP-activity through cellular pathways as well as enzymatic inhibition.
Collapse
Affiliation(s)
- Min Joo Bae
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958,
Korea
| | - Fatih Karadeniz
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958,
Korea
- Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University, Busan 46958,
Korea
| | - Byul-Nim Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241,
Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958,
Korea
| |
Collapse
|
23
|
Hartmann A, Gostner J, Fuchs JE, Chaita E, Aligiannis N, Skaltsounis L, Ganzera M. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources. PLANTA MEDICA 2015; 81:813-820. [PMID: 26039265 PMCID: PMC4515944 DOI: 10.1055/s-0035-1546105] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Matrix metalloproteinases play an important role in extracellular matrix remodeling. Excessive activity of these enzymes can be induced by UV light and leads to skin damage, a process known as photoaging. In this study, we investigated the collagenase inhibition potential of mycosporine-like amino acids, compounds that have been isolated from marine organisms and are known photoprotectants against UV-A and UV-B. For this purpose, the commonly used collagenase assay was optimized and for the first time validated in terms of relationships between enzyme-substrate concentrations, temperature, incubation time, and enzyme stability. Three compounds were isolated from the marine red algae Porphyra sp. and Palmaria palmata, and evaluated for their inhibitory properties against Chlostridium histolyticum collagenase. A dose-dependent, but very moderate, inhibition was observed for all substances and IC50 values of 104.0 µM for shinorine, 105.9 µM for porphyra, and 158.9 µM for palythine were determined. Additionally, computer-aided docking models suggested that the mycosporine-like amino acids binding to the active site of the enzyme is a competitive inhibition.
Collapse
Affiliation(s)
- Anja Hartmann
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, 6020 Innsbruck, Austria
| | - Johanna Gostner
- Medical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Julian E. Fuchs
- Center for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Eliza Chaita
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens 15771, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens 15771, Greece
| | - Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Athens 15771, Greece
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Di Bari G, Gentile E, Latronico T, Corriero G, Fasano A, Nonnis Marzano C, Liuzzi GM. Inhibitory Effect of Aqueous Extracts from Marine Sponges on the Activity and Expression of Gelatinases A (MMP-2) and B (MMP-9) in Rat Astrocyte Cultures. PLoS One 2015; 10:e0129322. [PMID: 26053757 PMCID: PMC4459954 DOI: 10.1371/journal.pone.0129322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/07/2015] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to evaluate whether water soluble compounds present in aqueous extracts from seven Mediterranean demosponges exert biological activity towards matrix metalloproteinases (MMPs), which represent important pathogenic factors of human diseases. Aqueous extracts were tested on LPS-activated cultured rat astrocytes, and levels and expression of MMP-2 and MMP-9 were assessed by zymography and RT-PCR, respectively. Our results demonstrated that the studied extracts contain water soluble compounds able to inhibit MMP-2 and MMP-9 activity and expression. We also compared the anti-MMP activities present in aqueous extracts from wild and reared specimens of Tethya aurantium and T. citrina. The results obtained revealed that the reared sponges maintain the production of bioactive compounds with inhibitory effect on MMP-2 and MMP-9 for all the duration of the rearing period. Taken together, our results indicate that the aqueous extracts from the selected Mediterranean demosponges possess a variety of water-soluble bioactive compounds, which are able to inhibit MMPs at different levels. The presence of biological activity in aqueous extracts from reared specimens of T. aurantium and T. citrina strongly encourage sponge aquaculture as a valid option to supply sponge biomass for drug development on a large scale.
Collapse
Affiliation(s)
- Gaetano Di Bari
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Aldo Moro University, Bari, Italy
| | - Eugenia Gentile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Aldo Moro University, Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Aldo Moro University, Bari, Italy
| | | | - Anna Fasano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Aldo Moro University, Bari, Italy
| | | | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Aldo Moro University, Bari, Italy
- * E-mail:
| |
Collapse
|
25
|
Li L, Li B, Zhang H, Zhao A, Han B, Liu C, Tsao R. Ultrafiltration LC-ESI-MSn screening of MMP-2 inhibitors from selected Chinese medicinal herbs Smilax glabra Roxb., Smilax china L. and Saposhnikovia divaricata (Turcz.) Schischk as potential functional food ingredients. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Thomas NV, Manivasagan P, Kim SK. Potential matrix metalloproteinase inhibitors from edible marine algae: a review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1090-100. [PMID: 24780533 DOI: 10.1016/j.etap.2014.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 04/02/2014] [Accepted: 04/06/2014] [Indexed: 05/27/2023]
Abstract
Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extra-cellular matrix degradation, and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological related diseases. Hence inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings and thus many of them could not make to the final clinical trials. Hence a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible sea-weeds.
Collapse
Affiliation(s)
- Noel Vinay Thomas
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | - Panchanathan Manivasagan
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | - Se-Kwon Kim
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea; Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
27
|
Affiliation(s)
- Se-Kwon Kim
- Marine Biochemistry & Molecular Biology Laboratory; Department of Chemistry; Pukyong National University; Busan South Korea
- Marine Bioprocess Research Center; Pukyong National University; Busan South Korea
| |
Collapse
|
28
|
Stonik VA, Fedorov SN. Marine low molecular weight natural products as potential cancer preventive compounds. Mar Drugs 2014; 12:636-71. [PMID: 24473167 PMCID: PMC3944507 DOI: 10.3390/md12020636] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
Due to taxonomic positions and special living environments, marine organisms produce secondary metabolites that possess unique structures and biological activities. This review is devoted to recently isolated and/or earlier described marine compounds with potential or established cancer preventive activities, their biological sources, molecular mechanisms of their action, and their associations with human health and nutrition. The review covers literature published in 2003–2013 years and focuses on findings of the last 2 years.
Collapse
Affiliation(s)
- Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690950, Russia.
| | - Sergey N Fedorov
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690950, Russia.
| |
Collapse
|
29
|
Thomas NV, Kim SK. Fucoidans from marine algae as potential matrix metalloproteinase inhibitors. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 72:177-193. [PMID: 25081083 DOI: 10.1016/b978-0-12-800269-8.00010-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extracellular matrix degradation and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological-related diseases. Hence, inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings, and thus many of them could not make to the final clinical trials. Hence, a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown a profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible seaweeds.
Collapse
Affiliation(s)
- Noel Vinay Thomas
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan, South Korea
| | - Se-Kwon Kim
- Department of Marine-bio Convergence Science, Specialized Graduate School Science and Technology Convergence, Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea.
| |
Collapse
|
30
|
Jean-Gilles D, Li L, Vaidyanathan VG, King R, Cho B, Worthen DR, Chichester CO, Seeram NP. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chem Biol Interact 2013; 205:90-9. [PMID: 23830812 DOI: 10.1016/j.cbi.2013.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Cartilage destruction is a crucial process in arthritis and is characterized by the degradation of cartilage proteins, proteoglycans, and type II collagen (CII), which are embedded within the extracellular matrix. While proteoglycan loss can be reversed, the degradation of CII is irreversible and has been correlated with an over-expression and over-activation of matrix metalloproteinases (MMPs). Among the various MMPs, the collagenase MMP-13 possesses the greatest catalytic activity for CII degradation. Here we show that the pomegranate-derived polyphenols, punicalagin (PA) and ellagic acid (EA), inhibit MMP-13-mediated degradation of CII in vitro. Surface plasmon resonance studies and molecular docking simulations suggested multiple binding interactions of PA and EA with CII. The effects of PA on bovine cartilage degradation (stimulated with IL-1β) were investigated by assaying proteoglycan and CII release into cartilage culture media. PA inhibited the degradation of both proteins in a concentration-dependent manner. Finally, the anti-inflammatory effects of PA (daily IP delivery at 10 and 50mg/kg for 14days) were tested in an adjuvant-induced arthritis rat model. Disease development was assessed by daily measurements of body weight and paw volume (using the water displacement method). PA had no effect on disease development at the lower dose but inhibited paw volume (P<0.05) at the higher dose.
Collapse
Affiliation(s)
- Dinorah Jean-Gilles
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mao JW, He XM, Tang HY, Wang YD. Protective role of metalloproteinase inhibitor (AE-941) on ulcerative colitis in rats. World J Gastroenterol 2012; 18:7063-9. [PMID: 23323009 PMCID: PMC3531695 DOI: 10.3748/wjg.v18.i47.7063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/12/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the protective role of AE-941, a matrix metalloproteinase (MMP) inhibitor, on ulcerative colitis (UC) in rats.
METHODS: Sprague Dawley (SD) rats were randomly divided into three groups: a control group, an AE-941 treatment group, and an UC model group. Rats were sacrificed on days 7, 21, or 56 following administration of treatment by enema and the disease activity index (DAI), colonic mucosa damage index (CMDI) and colonic expression of MMP-2 and MMP-9 were assessed.
RESULTS: DAI and CDMI scores in the UC model group increased significantly compared to the control group at all timepoints (P < 0.001), and also increased significantly at the 21- and 56-d timepoints compared to the AE-941-treated group (DAI: 21- and 56-d = 2.09 ± 0.25, 1.52 ± 0.30 vs 1.55 ± 0.28, 0.59 ± 0.19, respectively, P = 0.040 and 0.007, CMDI: 21- and 56-d = 3.03 ± 0.42, 1.60 ± 0.35 vs 2.08 ± 0.46, 0.86 ± 0.37, respectively, P = 0.040 and 0.005). Furthermore, the colonic expression of MMP-2 and MMP-9 in the UC model group increased significantly compared to the control group (P < 0.001), and also increased compared to the AE-941-treated group on the 21- and 56-d timepoints (MMP-2: 21- and 56-d = 0.6048 ± 0.0522, 0.4163 ± 0.0330 vs 0.3983 ± 0.0218, 0.1093 ± 0.0072, respectively, P = 0.010; MMP-9: 21- and 56-d = 0.6873 ± 0.0472, 0.4328 ± 0.0257 vs 0.5179 ± 0.0305, 0.2673 ± 0.0210, respectively, P = 0.010 and 0.040).
CONCLUSION: Expression of MMP-2 and MMP-9 increased significantly in rats with UC. AE-941 can reduce colonic mucosal damage by downregulating the expression of MMP-2 and MMP-9.
Collapse
|
32
|
Abdelmohsen UR, Szesny M, Othman EM, Schirmeister T, Grond S, Stopper H, Hentschel U. Antioxidant and anti-protease activities of diazepinomicin from the sponge-associated Micromonospora strain RV115. Mar Drugs 2012; 10:2208-2221. [PMID: 23170078 PMCID: PMC3497017 DOI: 10.3390/md10102208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/17/2022] Open
Abstract
Diazepinomicin is a dibenzodiazepine alkaloid with an unusual structure among the known microbial metabolites discovered so far. Diazepinomicin was isolated from the marine sponge-associated strain Micromonospora sp. RV115 and was identified by spectroscopic analysis and by comparison to literature data. In addition to its interesting preclinical broad-spectrum antitumor potential, we report here new antioxidant and anti-protease activities for this compound. Using the ferric reducing antioxidant power (FRAP) assay, a strong antioxidant potential of diazepinomicin was demonstrated. Moreover, diazepinomicin showed a significant antioxidant and protective capacity from genomic damage induced by the reactive oxygen species hydrogen peroxide in human kidney (HK-2) and human promyelocytic (HL-60) cell lines. Additionally, diazepinomicin inhibited the proteases rhodesain and cathepsin L at an IC50 of 70–90 µM. It also showed antiparasitic activity against trypomastigote forms of Trypanosoma brucei with an IC50 of 13.5 µM. These results showed unprecedented antioxidant and anti-protease activities of diazepinomicin, thus further highlighting its potential as a future drug candidate.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg 97082, Germany;
- Author to whom correspondence should be addressed; ; Tel.: +49-931-318-0297; Fax: +49-931-888-6235
| | - Matthias Szesny
- Institute of Organic Chemistry, Eberhard-Karls-Universität, Auf der Morgenstelle 18, Tübingen 72076, Germany; (M.S.); (S.G.)
| | - Eman Maher Othman
- Department of Toxicology, University of Würzburg, Würzburg 97078, Germany; (E.M.O.); (H.S.)
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, Mainz 55128, Germany;
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard-Karls-Universität, Auf der Morgenstelle 18, Tübingen 72076, Germany; (M.S.); (S.G.)
| | - Helga Stopper
- Department of Toxicology, University of Würzburg, Würzburg 97078, Germany; (E.M.O.); (H.S.)
| | - Ute Hentschel
- Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg 97082, Germany;
| |
Collapse
|
33
|
Abstract
Matrix metalloproteinases (MMPs) were originally identified as matrixin proteases that act in the extracellular matrix. Recent works have uncovered nontraditional roles for MMPs in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized matrixins participate in many physiological and pathological cellular processes, in which they can act as both degradative and regulatory proteases. In this review, we discuss the transcriptional and translational control of matrixin expression, their regulation of intracellular sorting, and the structural basis of activation and inhibition. In particular, we highlight the emerging roles of various matrixin forms in diseases. The activity of matrix metalloproteinases is regulated at several levels, including enzyme activation, inhibition, complex formation and compartmentalization. Most MMPs are secreted and have their function in the extracellular environment. MMPs are also found inside cells, both in the nucleus, cytosol and organelles. The role of intracellular located MMPs is still poorly understood, although recent studies have unraveled some of their functions. The localization, activation and activity of MMPs are regulated by their interactions with other proteins, proteoglycan core proteins and / or their glycosaminoglycan chains, as well as other molecules. Complexes formed between MMPs and various molecules may also include interactions with noncatalytic sites. Such exosites are regions involved in substrate processing, localized outside the active site, and are potential binding sites of specific MMP inhibitors. Knowledge about regulation of MMP activity is essential for understanding various physiological processes and pathogenesis of diseases, as well as for the development of new MMP targeting drugs.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, Unit of Cell Biology, University Carlo Bo of Urbino, Via O. Ubaldini 7, 61029 Urbino (PU), Italy.
| | | |
Collapse
|
34
|
Vidanarachchi JK, Kurukulasuriya MS, Malshani Samaraweera A, Silva KFST. Applications of marine nutraceuticals in dairy products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:457-78. [PMID: 22361206 DOI: 10.1016/b978-0-12-416003-3.00030-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The concept of nutraceutical has been derived by coining the terms "nutrition" and "pharmaceutical". In this context, active substances with pharmaceutical properties are delivered to the humans through food-based approaches to prevent or treat certain disease conditions. Since the natural sources are recognized as safe for human consumption, the active substances produced in the diverse group of marine organisms have a wide role in the nutraceutical industry. These marine-derived active ingredients include certain polysaccharides, polyphenols, bioactive peptides, polyunsaturated fatty acids, and carotenoids which are known to have anticancer, anti-inflammatory, antioxidant, antiobese, hypocholesteroleic, antimicrobial, prebiotic, and probiotic activity enabling them to be applied as nutraceuticals. As the dairy products are widely accepted by the consumers, the delivering of nutraceuticals through dairy products have received a greater attention of the dairy industry. Since the incorporation of marine-derived active ingredients into the dairy products have caused minimal changes in the physico-chemical properties of the final product, marine-derived substances have been widely applied and have the potential to be applied as nutraceuticals in the dairy industry.
Collapse
Affiliation(s)
- Janak K Vidanarachchi
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka.
| | | | | | | |
Collapse
|
35
|
Thomas NV, Kim SK. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 32:325-35. [PMID: 22004951 DOI: 10.1016/j.etap.2011.09.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/24/2011] [Accepted: 09/02/2011] [Indexed: 05/31/2023]
Abstract
Recently, the isolation and characterization of the biologically active components from seaweeds have gained much attention from various research groups across the world. The marine algae have been studied for biologically active components and phlorotannins are one among them. Among marine algae, brown algal species such as Ecklonia cava, Eisenia arborea, Ecklonia stolinifera and Eisenia bicyclis have been studied for their potential biological activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their potentiality as antioxidant, anti-inflammatory, antidiabetic, antitumor, antihypertensive, anti-allergic, hyaluronidase enzyme inhibition and in matrix metalloproteinases (MMPs) inhibition activity. In this review, we have made an attempt to discuss the potential biological activities of phlorotannins from marine brown algae and their possible candidature in the pharmaceutical applications.
Collapse
Affiliation(s)
- Noel Vinay Thomas
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | |
Collapse
|
36
|
Dieckol from Ecklonia cava Regulates Invasion of Human Fibrosarcoma Cells and Modulates MMP-2 and MMP-9 Expression via NF-κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:140462. [PMID: 21826183 PMCID: PMC3151525 DOI: 10.1155/2011/140462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/17/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The matrix metalloproteinase (MMP) family is involved in the breakdown of extracellular matrix in normal physiological processes, as well as in the disease processes such as arthritis and cancer metastasis. In the present study, dieckol was obtained with high yield from marine brown alga Ecklonia cava (EC), and its effect was assessed on the expression of MMP-2 and -9 and morphological changes in human fibrosarcoma cell line (HT1080). Dieckol inhibited the expression of MMP-2 and -9 in a dose-dependent manner and also suppressed the cell invasion and the cytomorphology in 3D culture system on HT1080 cells. Moreover, dieckol may influence nuclear factor kappa B (NF-κB) pathway without obvious influence on activator protein-1 (AP-1) pathway and tissue inhibitor of metalloproteinases (TIMPs). In conclusion, dieckol could significantly suppress MMP-2 and -9 expression and alter cytomorphology of HT1080 cell line via NF-κB pathway.
Collapse
|
37
|
Hwang HJ, Kim IH, Nam TJ. Protective effect of polysaccharide from Hizikia fusiformis against ethanol-induced toxicity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:143-61. [PMID: 22054944 DOI: 10.1016/b978-0-12-387669-0.00011-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polysaccharide extracted from Hizikia fusiformis (Hf-PS-1) exhibited protective effects against ethanol-induced peptic injury. In in vivo assay, the ethanol group exhibited decrease of total glutathione (GSH) and increase of jun N-terminal kinase (JNK) phosphorylation relative to the control group, whereas levels were significantly increased and decreased, respectively, in the Hf-PS-1 group. Hf-PS-1 reduced ethanol-induced gastric injury. In in vitro assay, ethanol induced IEC-6 cells' death in a dose-dependent manner. Ethanol decreased the phosphorylation of Shc and the binding of Grb2 to Shc, and Hf-PS-1 pretreatment increased them. Ethanol also induced the phosphorylation of JNK and extracellular signal-regulated kinase (ERK), whereas Hf-PS-1 pretreatment decreased JNK activation but not ERK. Co-treatment with JNK inhibitor and ethanol decreased GSH levels, indicating that JNK phosphorylation is a critical factor during ethanol-induced injury. Therefore, Hf-PS-1 may be useful to protect against ethanol-induced gastrointestinal injury.
Collapse
Affiliation(s)
- Hye-Jung Hwang
- College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
38
|
Metalloproteinase inhibitors: status and scope from marine organisms. Biochem Res Int 2010; 2010:845975. [PMID: 21197102 PMCID: PMC3004377 DOI: 10.1155/2010/845975] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/01/2010] [Accepted: 10/28/2010] [Indexed: 01/06/2023] Open
Abstract
Marine environment has been the source of diverse life forms that produce different biologically active compounds. Marine organisms are consistently contributing with unparalleled bioactive compounds that have profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals. In this process, screening of natural products from marine organisms that could potentially inhibit the expression of metalloproteinases has gained a huge popularity, which became a hot field of research in life sciences. Metalloproteinases, especially, matrix metalloproteinases (MMPs) are a class of structurally similar enzymes that contribute to the extracellular matrix degradation and play major role in normal and pathological tissue remodeling. Imbalance in the expression of MMPs leads to severe pathological condition that could initiate cardiac, cartilage, and cancer-related diseases. Three decades of endeavor for designing potent matrix metalloproteinase inhibitory substances (MMPIs) with many not making upto final clinical trials seek new resources for devising MMPIs. Umpteen number of medicinally valuable compounds being reported from marine organisms, which encourage current researchers to screen potent MMPIs from marine organisms. In this paper, we have made an attempt to report the metalloproteinase inhibiting substances from various marine organisms.
Collapse
|
39
|
Wijesekara I, Yoon NY, Kim SK. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors 2010; 36:408-14. [PMID: 20803523 DOI: 10.1002/biof.114] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/29/2010] [Indexed: 11/08/2022]
Abstract
The importance of bioactive derivatives as functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and characterization of novel functional ingredients with biological activities from seaweeds have gained much attention. Ecklonia cava Kjellman is an edible seaweed, which has been recognized as a rich source of bioactive derivatives mainly, phlorotannins. These phlorotannins exhibit various beneficial biological activities such as antioxidant, anticancer, antidiabetic, anti-human immunodeficiency virus, antihypertensive, matrix metalloproteinase enzyme inhibition, hyaluronidase enzyme inhibition, radioprotective, and antiallergic activities. This review focuses on biological activities of phlorotannins with potential health beneficial applications in functional foods, pharmaceuticals, and cosmeceuticals.
Collapse
Affiliation(s)
- Isuru Wijesekara
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
40
|
Bhatnagar I, Kim SK. Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 2010; 8:2702-20. [PMID: 21116415 PMCID: PMC2993001 DOI: 10.3390/md8102702] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/17/2010] [Accepted: 10/13/2010] [Indexed: 01/15/2023] Open
Abstract
Cancer is considered as one of the deadliest diseases in the medical field. Apart from the preventive therapies, it is important to find a curative measure which holds no loopholes and acts accurately and precisely to curb cancer. Over the past few decades, there have been advances in this field and there are many antitumor compounds available on the market, which are of natural as well as synthetic origin. Marine chemotherapy is well recognized nowadays and profound development has been achieved by researchers to deal with different molecular pathways of tumors. However, the marine environment has been less explored for the production of safe and novel antitumor compounds. The reason is a number of shortfalls in this field. Though ample reviews cover the importance and applications of various anticancerous compounds from marine natural products, in the present review, we have tried to bring the current status of antitumor research based on marine inhibitors of cancer signaling pathways. In addition, focus has been placed on the shortfalls and probable strategies in the arena of marine antitumor drug discovery.
Collapse
Affiliation(s)
- Ira Bhatnagar
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea
- * Author to whom correspondence should be addressed; E-Mail: ; Tel: +82-51-629-7097, Fax: +82-51-629-7099
| |
Collapse
|
41
|
Yang EJ, Moon JY, Kim MJ, Kim DS, Kim CS, Lee WJ, Lee NH, Hyun CG. Inhibitory effect of Jeju endemic seaweeds on the production of pro-inflammatory mediators in mouse macrophage cell line RAW 264.7. J Zhejiang Univ Sci B 2010; 11:315-22. [PMID: 20443209 DOI: 10.1631/jzus.b0900364] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Seaweed has been used in traditional cosmetics and as a herbal medicine in treatments for cough, boils, goiters, stomach ailments, and urinary diseases, and for reducing the incidence of tumors, ulcers, and headaches. Despite the fact that seaweeds are frequently used in the practice of human health, little is known about the role of seaweed in the context of inflammation. This study aimed to investigate the influence of Jeju endemic seaweed on a mouse macrophage cell line (RAW 264.7) under the stimulation of lipopolysaccharide (LPS). Ethyl acetate extracts obtained from 14 different kinds of Jeju seaweeds were screened for inhibitory effects on pro-inflammatory mediators. Our results revealed that extracts from five seaweeds, Laurencia okamurae, Grateloupia elliptica, Sargassum thunbergii, Gloiopeltis furcata, and Hizikia fusiformis, were potent inhibitors of the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Based on these results, the anti-inflammatory effects and low cell toxicity of these seaweed extracts suggest potential therapeutic applications in the regulation of the inflammatory response.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Jeju Biodiversity Research Institute, Jeju High-Tech Development Institute, Jeju 699-943, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Anti-photoaging and photoprotective compounds derived from marine organisms. Mar Drugs 2010; 8:1189-202. [PMID: 20479974 PMCID: PMC2866482 DOI: 10.3390/md8041189] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/30/2010] [Accepted: 04/07/2010] [Indexed: 01/03/2023] Open
Abstract
Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.
Collapse
|
43
|
Kim K, Ham Y, Moon J, Kim M, Kim D, Lee W, Lee N, Hyun C. In vitro Cytotoxic Activity of Sargassum thunbergii and Dictyopteris divaricata (Jeju Seaweeds) on the HL-60 Tumour Cell Line. INT J PHARMACOL 2009. [DOI: 10.3923/ijp.2009.298.306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|