1
|
Zhuang J, Zhang Y, Wang Y, Han Z, Yang J. Loop Dynamics Mediate Thermal Adaptation of Two Xylanases from Marine Bacteria. Int J Mol Sci 2025; 26:3215. [PMID: 40244048 PMCID: PMC11989904 DOI: 10.3390/ijms26073215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigates the biochemical properties of two xylanases, ZgXyn10A and CaXyn10B, which are members of the glycoside hydrolase family 10 (GH10) and originate from the marine Bacteroidetes species Zobellia galactanivorans and Cellulophaga algicola, respectively. Utilizing an auto-induction expression system in Escherichia coli, high-purity recombinant forms of these enzymes were successfully produced. Biochemical assays revealed that ZgXyn10A and CaXyn10B exhibit optimal activities at 40 °C and 30 °C, respectively, and demonstrate a high sensitivity to temperature fluctuations. Unlike conventional low-temperature enzymes, these xylanases retain only a fraction of their maximal activity at lower temperatures. To gain deeper insights into the structural and functional properties of these marine xylanases, two thermostable GH10 xylanases, TmxB and CoXyn10A, which share comparable amino acid sequence identity with ZgXyn10A and CaXyn10B, were selected for structural comparison. All four marine xylanases share a nearly similar three-dimensional structural topology. Molecular dynamics simulation indicated a striking difference in structural fluctuations between the low-temperature and thermostable xylanases, as evidenced by the distinct root mean square deviation values. Moreover, root mean square fluctuation analysis specifically identified the β3-α3 and β7-α7 loop regions within the substrate-binding cleft as crucial determinants of the temperature characteristics of these GH10 xylanases. Our findings establish loop dynamics as a key evolutionary driver in the thermal adaptation of GH10 xylanases and propose a loop engineering strategy for the development of industrial biocatalysts with tailored temperature responses, particularly for lignocellulosic biomass processing under moderate thermal conditions.
Collapse
Affiliation(s)
| | | | | | - Zhenggang Han
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (J.Z.); (Y.Z.); (Y.W.)
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (J.Z.); (Y.Z.); (Y.W.)
| |
Collapse
|
2
|
Fei F, Su Z, Liu R, Gao R, Sun C. Efficient biodegradation of poly(butylene adipate-co-terephthalate) in mild temperature by cutinases derived from a marine fungus. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136008. [PMID: 39368353 DOI: 10.1016/j.jhazmat.2024.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) waste gradually accumulates in the environment, posing ecological risks. Enzymatic hydrolysis holds great potential in the end-of-life management of PBAT, but reported enzymes require high reaction temperatures, limiting their practical industrial applications. In this study, we discovered that the marine fungus Alternaria alternata FB1 can efficiently degrade PBAT at 28 °C. Two cutinases designated as AaCut4 and AaCut10, were identified and verified as key enzymes responsible for this degradation process. Notably, the recombinant AaCut10 was able to depolymerize 82.14 % PBAT within 24 h and fully decompose it within 48 h at 37 °C. Through protein engineering, the yield of terephthalic acid monomer was increased to 96.01 %, highlighting its potential for facilitating PBAT upcycling. Furthermore, based on the investigation of the distribution patterns of PBAT hydrolases, novel degradative agents have been identified within unique ecological niches, leading to the establishment of a comprehensive screening repository of PBAT hydrolases. Overall, our study provides new candidates for enzymatic PBAT recycling with low energy consumption and offers insights into the PBAT degradation manner in ecosystems.
Collapse
Affiliation(s)
- Fan Fei
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhenjie Su
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | | | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
3
|
Zakaria MR, Vodovnik M, Zorec M, Liew KJ, Tokiman L, Chong CS. A description of Joostella sp. strain CR20 with potential biotechnological applications. Antonie Van Leeuwenhoek 2024; 118:38. [PMID: 39613983 DOI: 10.1007/s10482-024-02045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The underexplored halophilic genus Joostella within the Flavobacteriaceae family consists of only two species, both of which have received little attention for their potential biotechnological applications. In this study, we report the isolation and characterisation of a novel halophilic bacterium, strain CR20, using a genomic approach to investigate its biotechnological potential. Analysis of the 16S rRNA gene revealed that strain CR20 shares 97.5% and 96.2% sequence similarity with Joostella marina DSM 19592 T and Joostella atrarenae M1-2 T, respectively. Strain CR20 exhibited average nucleotide identity and digital DNA-DNA hybridisation values of 76.8-79.1% and 20.8-22.8%, respectively, with Joostella spp., which fall below the species delineation thresholds. Additionally, strain CR20 demonstrated average amino acid identity and percentage of conserved proteins values of 81.3-84.0% and 71.7-75.3%, respectively, with Joostella spp., above the genus delineation thresholds. Meanwhile, the average amino acid identity and percentage of conserved proteins values of strain CR20 against Galbibacter spp. are 73.9-80.0% and 61.3-72.3%, respectively, also above the genus delineation thresholds. These findings indicated strain CR20 has a close relationship with both genera. Chemotaxonomic analysis of strain CR20 identified predominant fatty acids, including iso-C17:0 3OH (25.3%), iso-C15:0 (14%), and C16:1 ω6c/C16:1 ω7c (12.2%). The assembled genome comprises 62 contigs, with a size of approximately 3,168,727 bp and a G + C content of 35.1%. Among 2,804 predicted genes, 2,559 were classified into 25 COG functional groups. A total of 68 genes with potential industrial applications were identified, including 1 β-mannanase, 2 β-xylosidases, 1 polysaccharide deacetylase, 4 other hemicellulases, 6 β-glucosidases, 25 proteases, and 29 phosphate-solubilising enzymes. Hydrolytic assays confirmed that strain CR20 produces these enzymes extracellularly. These findings highlight strain CR20 has potential for industrial applications.
Collapse
Affiliation(s)
- Muhammad Ramziuddin Zakaria
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Maša Vodovnik
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maša Zorec
- Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lili Tokiman
- Johor National Parks Corporation, Kota Iskandar, 79575, Iskandar Puteri, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
4
|
Melo de Queiroz T, Valdes TA, Leitão A, Porto ALM. Bio-oxidation of progesterone by Penicillium oxalicum CBMAI 1185 and evaluation of the cytotoxic activity. Steroids 2024; 205:109392. [PMID: 38452910 DOI: 10.1016/j.steroids.2024.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12β-hydroxyandrostenedione 1b and 1β-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.
Collapse
Affiliation(s)
- Thayane Melo de Queiroz
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental "Edifício Prof. Douglas Wagner Franco", Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Talita A Valdes
- Medicinal & Biological Chemistry Group, Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Andrei Leitão
- Medicinal & Biological Chemistry Group, Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental "Edifício Prof. Douglas Wagner Franco", Santa Angelina, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Lenchours Pezzano J, Rodriguez YE, Fernández-Gimenez AV, Laitano MV. Exploring fishery waste potential as antifouling component. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20159-20171. [PMID: 38372927 DOI: 10.1007/s11356-024-32491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Marine biofouling is a global issue with economic and ecological implications. Existing solutions, such as biocide-based antifouling paints, are toxic for the environment. The search for better antifouling agents remains crucial. Recent research focuses on eco-friendly antifouling paints containing natural compounds like enzymes. This study evaluates enzymatic extracts from fishery residues for antifouling potential. Extracts from Pleoticus muelleri shrimp, Illex argentinus squid, and Lithodes santolla king crab were analyzed. Proteolytic activity and thermal stability were assessed, followed by bioassays on mussel byssus thread formation and barnacle cypris adhesive footprints. All three extracts demonstrated proteolytic activity and 24-h stability at temperate oceanic temperatures, except I. argentinus. P. muelleri extracts hindered cyprid footprint formation and mussel byssus thread generation. Further purification is required for L. santolla extract to assess its antifouling potential activity. This study introduces the use of fishery waste-derived enzyme extracts as a novel antifouling agent, providing a sustainable tool to fight against biofouling formation.
Collapse
Affiliation(s)
- Juliana Lenchours Pezzano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Yamila E Rodriguez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - Analía V Fernández-Gimenez
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina
| | - María V Laitano
- Marine Science Department, Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Argentina.
- Marine and Coastal Research Institute (IIMyC), Natural and Exact Science Faculty (FCEyN), National University of Mar del Plata (UNMdP), Scientific and Technological Research National Council, Mar del Plata, Argentina.
| |
Collapse
|
6
|
Baluchi A, Homaei A. Immobilization of l-asparaginase on chitosan nanoparticles for the purpose of long-term application. Int J Biol Macromol 2024; 257:128655. [PMID: 38065449 DOI: 10.1016/j.ijbiomac.2023.128655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Asparaginase holds significant commercial value as an enzyme in the food and pharmaceutical industries. This study examined the optimum and practical use of the l-asparaginase derived from Pseudomonas aeruginosa HR03. Specifically, the study focused on the effectiveness of the stabilized enzyme when applied to chitosan nanoparticles. The structure, size, and morphology of chitosan nanoparticles were evaluated in relation to the immobilization procedure. This assessment involved the use of several analytical techniques, including FT-IR, DLS, SEM, TEM, and EDS analysis. Subsequently, the durability of the enzyme that has been stabilized was assessed by evaluating its effectiveness under extreme temperatures of 60 and 70 °C, as well as at pH values of 3 and 12. The findings indicate that incorporating chitosan nanoparticles led to enhanced immobilization of the l-asparaginase enzyme. This improvement was observed in terms of long-term stability, stability under crucial temperature and pH conditions, as well as thermal stability. In addition, the optimum temperature increased from 40 to 50 °C, and the optimum pH increased from 8 to 9. Enzyme immobilization led to an increase in Km and a decrease in kcat compared to its free counterpart. Because of its enhanced long-term stability, l-asparaginase immobilization on chitosan nanoparticles may be a potential choice for use in industries that rely on l-asparaginase enzymes, particularly the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ayeshe Baluchi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran.
| |
Collapse
|
7
|
Bangoria P, Patel A, Shah AR. Characterization of a fungal α-galactosidase and its synergistic effect with β-mannanase for hydrolysis of galactomannan. Carbohydr Res 2023; 531:108893. [PMID: 37429228 DOI: 10.1016/j.carres.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
An acid stable α-galactosidase was produced and purified from mannolytic fungal strain, Penicillium aculeatum APS1. Enzyme was produced using wheat bran and copra cake moistened with corn steep liquor by solid state fermentation. APS1αgal having molecular weight of 65.4 kDa was purified to electrophoretic homogeneity by three phase partitioning and gel permeation chromatography with high enzyme recovery. APS1αgal was found to be maximally active at 55 °C and pH 4.5, having high stability at acidic pH. Thermal stability and thermal inactivation kinetics of APS1αgal were also studied. APS1αgal was found to effectively hydrolyse oligosaccharides as well as polysaccharides having α-1,6 linked galactose. Abolishment of enzyme activity in N-brommosuccinimide revealed an important role of tryptophan residue in catalysis. APS1αgal had shown outstanding tolerance to NaCl and proteases. MALDI-TOF MS/MS analysis indicated that enzyme is probably a member of family GH27. Synergistic interaction between APS1αgal and β-mannanase for hydrolysis of galactomannan was very clear and maximum 2.0° of synergy was found under simultaneous mode of action. This study reports a new source of α-galactosidase with biochemical properties suitable for applications in food and feed industries.
Collapse
Affiliation(s)
- Purvi Bangoria
- Post Graduate Department of Biosciences, Satellite Campus, Bakrol, Sardar Patel University, Vallabh Vidhyanagar, 388315, Gujarat, India.
| | - Amisha Patel
- Post Graduate Department of Biosciences, Satellite Campus, Bakrol, Sardar Patel University, Vallabh Vidhyanagar, 388315, Gujarat, India.
| | - Amita R Shah
- Post Graduate Department of Biosciences, Satellite Campus, Bakrol, Sardar Patel University, Vallabh Vidhyanagar, 388315, Gujarat, India.
| |
Collapse
|
8
|
Brott S, Nam KH, Thomas F, Dutschei T, Reisky L, Behrens M, Grimm HC, Michel G, Schweder T, Bornscheuer UT. Unique alcohol dehydrogenases involved in algal sugar utilization by marine bacteria. Appl Microbiol Biotechnol 2023; 107:2363-2384. [PMID: 36881117 PMCID: PMC10033563 DOI: 10.1007/s00253-023-12447-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Marine algae produce complex polysaccharides, which can be degraded by marine heterotrophic bacteria utilizing carbohydrate-active enzymes. The red algal polysaccharide porphyran contains the methoxy sugar 6-O-methyl-D-galactose (G6Me). In the degradation of porphyran, oxidative demethylation of this monosaccharide towards D-galactose and formaldehyde occurs, which is catalyzed by a cytochrome P450 monooxygenase and its redox partners. In direct proximity to the genes encoding for the key enzymes of this oxidative demethylation, genes encoding for zinc-dependent alcohol dehydrogenases (ADHs) were identified, which seem to be conserved in porphyran utilizing marine Flavobacteriia. Considering the fact that dehydrogenases could play an auxiliary role in carbohydrate degradation, we aimed to elucidate the physiological role of these marine ADHs. Although our results reveal that the ADHs are not involved in formaldehyde detoxification, a knockout of the ADH gene causes a dramatic growth defect of Zobellia galactanivorans with G6Me as a substrate. This indicates that the ADH is required for G6Me utilization. Complete biochemical characterizations of the ADHs from Formosa agariphila KMM 3901T (FoADH) and Z. galactanivorans DsijT (ZoADH) were performed, and the substrate screening revealed that these enzymes preferentially convert aromatic aldehydes. Additionally, we elucidated the crystal structures of FoADH and ZoADH in complex with NAD+ and showed that the strict substrate specificity of these new auxiliary enzymes is based on a narrow active site. KEY POINTS: • Knockout of the ADH-encoding gene revealed its role in 6-O-methyl-D-galactose utilization, suggesting a new auxiliary activity in marine carbohydrate degradation. • Complete enzyme characterization indicated no function in a subsequent reaction of the oxidative demethylation, such as formaldehyde detoxification. • These marine ADHs preferentially convert aromatic compounds, and their strict substrate specificity is based on a narrow active site.
Collapse
Affiliation(s)
- Stefan Brott
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - François Thomas
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS 29688, Roscoff, Bretagne, France
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Maike Behrens
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Hanna C Grimm
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Gurvan Michel
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS 29688, Roscoff, Bretagne, France
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany.
| |
Collapse
|
9
|
Dionisi HM, Lozada M, Campos E. Diversity of GH51 α-L-arabinofuranosidase homolog sequences from subantarctic intertidal sediments. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
11
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
12
|
Bioprospecting for Novel Bacterial Sources of Hydrolytic Enzymes and Antimicrobials in the Romanian Littoral Zone of the Black Sea. Microorganisms 2022; 10:microorganisms10122468. [PMID: 36557721 PMCID: PMC9780896 DOI: 10.3390/microorganisms10122468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Marine microorganisms have evolved a large variety of metabolites and biochemical processes, providing great opportunities for biotechnologies. In the search for new hydrolytic enzymes and antimicrobial compounds with enhanced characteristics, the current study explored the diversity of cultured and uncultured marine bacteria in Black Sea water from two locations along the Romanian coastline. Microbial cell density in the investigated samples varied between 65 and 12.7 × 103 CFU·mL-1. The total bacterial community identified by Illumina sequencing of 16S rRNA gene comprised 185 genera belonging to 46 classes, mainly Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, and 24 phyla. The 66 bacterial strains isolated on seawater-based culture media belonged to 33 genera and showed variable growth temperatures, growth rates, and salt tolerance. A great fraction of these strains, including Pseudoalteromonas and Flavobacterium species, produced extracellular proteases, lipases, and carbohydrases, while two strains belonging to the genera Aquimarina and Streptomyces exhibited antimicrobial activity against human pathogenic bacteria. This study led to a broader view on the diversity of microbial communities in the Black Sea, and provided new marine strains with hydrolytic and antimicrobial capabilities that may be exploited in industrial and pharmaceutical applications.
Collapse
|
13
|
Zanin LL, de Queiroz TM, Porto ALM. Microbial transformation of Knoevenagel adducts by whole cells of Brazilian marine-derived fungi: A green approach to remove organic compounds from the aqueous medium. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2145556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Lucas Lima Zanin
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Thayane Melo de Queiroz
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - André Luiz Meleiro Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
14
|
Navvabi A, Homaei A, Pletschke BI, Navvabi N, Kim SK. Marine Cellulases and their Biotechnological Significance from Industrial Perspectives. Curr Pharm Des 2022; 28:3325-3336. [PMID: 35388747 DOI: 10.2174/1381612828666220406125132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 01/28/2023]
Abstract
Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via β-1,4-glycosidic bonds, which are broken down by cellulase. A great deal of biodiversity resides in the ocean, and marine systems produce a wide range of distinct, new bioactive compounds that remain available but dormant for many years. The marine environment is filled with biomass from known and unknown vertebrates and invertebrate microorganisms, with much potential for use in medicine and biotechnology. Hence, complex polysaccharides derived from marine sources are a rich resource of microorganisms equipped with enzymes for polysaccharides degradation. Marine cellulases' extracts from the isolates are tested for their functional role in degrading seaweed and modifying wastes to low molecular fragments. They purify and renew environments by eliminating possible feedstocks of pollution. This review aims to examine the various types of marine cellulase producers and assess the ability of these microorganisms to produce these enzymes and their subsequent biotechnological applications.
Collapse
Affiliation(s)
- Azita Navvabi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Brett I Pletschke
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Nazila Navvabi
- Department of Tumor Biology and Immunotherapy, Molecular Biology of Cancer, Institute of Experimental Medicine, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul 426-791, Republic of Korea
| |
Collapse
|
15
|
Rodrigues CJC, de Carvalho CCCR. Marine Bioprospecting, Biocatalysis and Process Development. Microorganisms 2022; 10:1965. [PMID: 36296241 PMCID: PMC9610463 DOI: 10.3390/microorganisms10101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Oceans possess tremendous diversity in microbial life. The enzymatic machinery that marine bacteria present is the result of extensive evolution to assist cell survival under the harsh and continuously changing conditions found in the marine environment. Several bacterial cells and enzymes are already used at an industrial scale, but novel biocatalysts are still needed for sustainable industrial applications, with benefits for both public health and the environment. Metagenomic techniques have enabled the discovery of novel biocatalysts, biosynthetic pathways, and microbial identification without their cultivation. However, a key stage for application of novel biocatalysts is the need for rapid evaluation of the feasibility of the bioprocess. Cultivation of not-yet-cultured bacteria is challenging and requires new methodologies to enable growth of the bacteria present in collected environmental samples, but, once a bacterium is isolated, its enzyme activities are easily measured. High-throughput screening techniques have also been used successfully, and innovative in vitro screening platforms to rapidly identify relevant enzymatic activities continue to improve. Small-scale approaches and process integration could improve the study and development of new bioprocesses to produce commercially interesting products. In this work, the latest studies related to (i) the growth of marine bacteria under laboratorial conditions, (ii) screening techniques for bioprospecting, and (iii) bioprocess development using microreactors and miniaturized systems are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
16
|
Cold-Active Enzymes and Their Potential Industrial Applications-A Review. Molecules 2022; 27:molecules27185885. [PMID: 36144621 PMCID: PMC9501442 DOI: 10.3390/molecules27185885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
More than 70% of our planet is covered by extremely cold environments, nourishing a broad diversity of microbial life. Temperature is the most significant parameter that plays a key role in the distribution of microorganisms on our planet. Psychrophilic microorganisms are the most prominent inhabitants of the cold ecosystems, and they possess potential cold-active enzymes with diverse uses in the research and commercial sectors. Psychrophiles are modified to nurture, replicate, and retain their active metabolic activities in low temperatures. Their enzymes possess characteristics of maximal activity at low to adequate temperatures; this feature makes them more appealing and attractive in biotechnology. The high enzymatic activity of psychrozymes at low temperatures implies an important feature for energy saving. These enzymes have proven more advantageous than their mesophilic and thermophilic counterparts. Therefore, it is very important to explore the efficiency and utility of different psychrozymes in food processing, pharmaceuticals, brewing, bioremediation, and molecular biology. In this review, we focused on the properties of cold-active enzymes and their diverse uses in different industries and research areas. This review will provide insight into the areas and characteristics to be improved in cold-active enzymes so that potential and desired enzymes can be made available for commercial purposes.
Collapse
|
17
|
Carr CM, de Oliveira BFR, Jackson SA, Laport MS, Clarke DJ, Dobson ADW. Identification of BgP, a Cutinase-Like Polyesterase From a Deep-Sea Sponge-Derived Actinobacterium. Front Microbiol 2022; 13:888343. [PMID: 35495686 PMCID: PMC9039725 DOI: 10.3389/fmicb.2022.888343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many marine bacteria produce extracellular enzymes that degrade complex molecules to facilitate their growth in environmental conditions that are often harsh and low in nutrients. Marine bacteria, including those inhabiting sea sponges, have previously been reported to be a promising source of polyesterase enzymes, which have received recent attention due to their potential ability to degrade polyethylene terephthalate (PET) plastic. During the screening of 51 marine bacterial isolates for hydrolytic activities targeting ester and polyester substrates, a Brachybacterium ginsengisoli B129SM11 isolate from the deep-sea sponge Pheronema sp. was identified as a polyesterase producer. Sequence analysis of genomic DNA from strain B129SM11, coupled with a genome "mining" strategy, allowed the identification of potential polyesterases, using a custom database of enzymes that had previously been reported to hydrolyze PET or other synthetic polyesters. This resulted in the identification of a putative PET hydrolase gene, encoding a polyesterase-type enzyme which we named BgP that shared high overall similarity with three well-characterized PET hydrolases-LCC, TfCut2, and Cut190, all of which are key enzymes currently under investigation for the biological recycling of PET. In silico protein analyses and homology protein modeling offered structural and functional insights into BgP, and a detailed comparison with Cut190 revealed highly conserved features with implications for both catalysis and substrate binding. Polyesterase activity was confirmed using an agar-based polycaprolactone (PCL) clearing assay, following heterologous expression of BgP in Escherichia coli. This is the first report of a polyesterase being identified from a deep-sea sponge bacterium such as Brachybacterium ginsengisoli and provides further insights into marine-derived polyesterases, an important family of enzymes for PET plastic hydrolysis. Microorganisms living in association with sponges are likely to have increased exposure to plastics and microplastics given the wide-scale contamination of marine ecosystems with these plastics, and thus they may represent a worthwhile source of enzymes for use in new plastic waste management systems. This study adds to the growing knowledge of microbial polyesterases and endorses further exploration of marine host-associated microorganisms as a potentially valuable source of this family of enzymes for PET plastic hydrolysis.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| | - Bruno Francesco Rodrigues de Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Iraninasab S, Sharifian S, Homaei A, Homaee MB, Sharma T, Nadda AK, Kennedy JF, Bilal M, Iqbal HMN. Emerging trends in environmental and industrial applications of marine carbonic anhydrase: a review. Bioprocess Biosyst Eng 2022; 45:431-451. [PMID: 34821989 DOI: 10.1007/s00449-021-02667-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Biocatalytic conversion of greenhouse gases such as carbon dioxide into commercial products is one of the promising key approaches to solve the problem of climate change. Microbial enzymes, including carbonic anhydrase, NAD-dependent formate dehydrogenase, ribulose bisphosphate carboxylase, and methane monooxygenase, have been exploited to convert atmospheric gases into industrial products. Carbonic anhydrases are Zn2+-dependent metalloenzymes that catalyze the reversible conversion of CO2 into bicarbonate. They are widespread in bacteria, algae, plants, and higher organisms. In higher organisms, they regulate the physiological pH and contribute to CO2 transport in the blood. In plants, algae, and photosynthetic bacteria carbonic anhydrases are involved in photosynthesis. Converting CO2 into bicarbonate by carbonic anhydrases can solidify gaseous CO2, thereby reducing global warming due to the burning of fossil fuels. This review discusses the three-dimensional structures of carbonic anhydrases, their physiological role in marine life, their catalytic mechanism, the types of inhibitors, and their medicine and industry applications.
Collapse
Affiliation(s)
- Sudabeh Iraninasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | | | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, The Kyrewood Centre, Tenbury Wells, Worcs, WR15 8FF, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| |
Collapse
|
19
|
Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030688. [PMID: 35163952 PMCID: PMC8838608 DOI: 10.3390/molecules27030688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The investigation for novel unique extremozymes is a valuable business for which the marine environment has been overlooked. The marine fungus Clonostachys rosea IG119 was tested for growth and chitinolytic enzyme production at different combinations of salinity and pH using response surface methodology. RSM modelling predicted best growth in-between pH 3.0 and 9.0 and at salinity of 0-40‱, and maximum enzyme activity (411.137 IU/L) at pH 6.4 and salinity 0‱; however, quite high production (>390 IU/L) was still predicted at pH 4.5-8.5. The highest growth and activity were obtained, respectively, at pH 4.0 and 8.0, in absence of salt. The crude enzyme was tested at different salinities (0-120‱) and pHs (2.0-13.0). The best activity was achieved at pH 4.0, but it was still high (in-between 3.0 and 12.0) at pH 2.0 and 13.0. Salinity did not affect the activity in all tested conditions. Overall, C. rosea IG119 was able to grow and produce chitinolytic enzymes under polyextremophilic conditions, and its crude enzyme solution showed more evident polyextremophilic features. The promising chitinolytic activity of IG119 and the peculiar characteristics of its chitinolytic enzymes could be suitable for several biotechnological applications (i.e., degradation of salty chitin-rich materials and biocontrol of spoiling organisms, possibly solving some relevant environmental issues).
Collapse
|
20
|
Donzella S, Capusoni C, Pellegrino L, Compagno C. Bioprocesses with Reduced Ecological Footprint by Marine Debaryomyces hansenii Strain for Potential Applications in Circular Economy. J Fungi (Basel) 2021; 7:jof7121028. [PMID: 34947010 PMCID: PMC8706832 DOI: 10.3390/jof7121028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The possibility to perform bioprocesses with reduced ecological footprint to produce natural compounds and catalyzers of industrial interest is pushing the research for salt tolerant microorganisms able to grow on seawater-based media and able to use a wide range of nutrients coming from waste. In this study we focused our attention on a Debaryomyces hansenii marine strain (Mo40). We optimized cultivation in a bioreactor at low pH on seawater-based media containing a mixture of sugars (glucose and xylose) and urea. Under these conditions the strain exhibited high growth rate and biomass yield. In addition, we characterized potential applications of this yeast biomass in food/feed industry. We show that Mo40 can produce a biomass containing 45% proteins and 20% lipids. This strain is also able to degrade phytic acid by a cell-bound phytase activity. These features represent an appealing starting point for obtaining D. hansenii biomass in a cheap and environmentally friendly way, and for potential use as an additive or to replace unsustainable ingredients in the feed or food industries, as this species is included in the QPS EFSA list (Quality Presumption as Safe-European Food Safety Authority).
Collapse
|
21
|
Robinson SL, Piel J, Sunagawa S. A roadmap for metagenomic enzyme discovery. Nat Prod Rep 2021; 38:1994-2023. [PMID: 34821235 PMCID: PMC8597712 DOI: 10.1039/d1np00006c] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.
Collapse
Affiliation(s)
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | | |
Collapse
|
22
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
23
|
Koh S, Mizuno M, Izuoka Y, Fujino N, Hamada-Sato N, Amano Y. Xylanase from Marine Filamentous Fungus Pestalotiopsis sp. AN-7 Was Activated with Diluted Salt Solution Like Brackish Water. J Appl Glycosci (1999) 2021; 68:11-18. [PMID: 34354541 PMCID: PMC8116177 DOI: 10.5458/jag.jag.jag-2020_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
The genus Pestalotiopsis are endophytic fungi that have recently been identified as cellulolytic system producers. We herein cloned a gene coding for a xylanase belonging to glycoside hydrolase (GH) family 10 (PesXyn10A) from Pestalotiopsis sp. AN-7, which was isolated from the soil of a mangrove forest. This protein was heterologously expressed by Pichia pastoris as a host, and its enzymatic properties were characterized. PesXyn10A was produced as a glycosylated protein and coincident to theoretical molecular weight (35.3 kDa) after deglycosylation by peptide-NfF-glycosidase F. Purified recombinant PesXyn10A exhibited maximal activity at pH 6.0 and 50 °C, and activity was maintained at 90 % at pH 5.0 and temperatures lower than 30 °C for 24 h. The substrate specificity of PesXyn10A was limited and it hydrolyzed glucuronoxylan and arabinoxylan, but not β-glucan. The final hydrolysis products from birchwood xylan were xylose, xylobiose, and 1,23-α-D-(4-O-methyl-glucuronyl)-1,4-β-D-xylotriose. The addition of metallic salts (NaCl, KCl, MgCl2, and CaCl2) activated PesXyn10A for xylan degradation, and maximal activation by these divalent cations was approximately 160 % at a concentration of 5 mM. The thermostability of PesXyn10A significantly increased in the presence of 50 mM NaCl or 5 mM MgCl2. The present results suggest that the presence of metallic salts at a low concentration, similar to brackish water, exerts positive effects on the enzyme activity and thermal stability of PesXyn10A.
Collapse
Affiliation(s)
- Sangho Koh
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University
| | - Masahiro Mizuno
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University.,2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| | - Yuto Izuoka
- 2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| | - Naoto Fujino
- 2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University.,4 Present address: Biomaterial in Tokyo Co., Ltd
| | - Naoko Hamada-Sato
- 3 Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology
| | - Yoshihiko Amano
- 1 Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology. Shinshu University.,2 Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University
| |
Collapse
|
24
|
Jeong HB, Kim HK. Increased mRNA Stability and Expression Level of Croceibacter atlanticus Lipase Gene Developed through Molecular Evolution Process. J Microbiol Biotechnol 2021; 31:882-889. [PMID: 34024893 PMCID: PMC9706013 DOI: 10.4014/jmb.2103.03011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
In order to use an enzyme industrially, it is necessary to increase the activity of the enzyme and optimize the reaction characteristics through molecular evolution techniques. We used the error-prone PCR method to improve the reaction characteristics of LipCA lipase discovered in Antarctic Croceibacter atlanticus. Recombinant Escherichia coli colonies showing large halo zones were selected in tributyrin-containing medium. The lipase activity of one mutant strain (M3-1) was significantly increased, compared to the wild-type (WT) strain. M3-1 strain produced about three times more lipase enzyme than did WT strain. After confirming the nucleotide sequence of the M3-1 gene to be different from that of the WT gene by four bases (73, 381, 756, and 822), the secondary structures of WT and M3-1 mRNA were predicted and compared by RNAfold web program. Compared to the mean free energy (MFE) of WT mRNA, that of M3-1 mRNA was lowered by 4.4 kcal/mol, and the MFE value was significantly lowered by mutations of bases 73 and 756. Site-directed mutagenesis was performed to find out which of the four base mutations actually affected the enzyme expression level. Among them, one mutant enzyme production decreased as WT enzyme production when the base 73 was changed (T→C). These results show that one base change at position 73 can significantly affect protein expression level, and demonstrate that changing the mRNA sequence can increase the stability of mRNA, and can increase the production of foreign protein in E. coli.
Collapse
Affiliation(s)
- Han Byeol Jeong
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyung Kwoun Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4890 Fax: +82-2-2164-4865 E-mail:
| |
Collapse
|
25
|
Recent advances in biotechnology for marine enzymes and molecules. Curr Opin Biotechnol 2021; 69:308-315. [PMID: 34116375 DOI: 10.1016/j.copbio.2021.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
The marine environment is the most biologically and chemically diverse habitat on Earth, and provides numerous marine-derived products, including enzymes and molecules, for industrial and pharmaceutical applications. Marine biotechnology provides important biological resources from marine habitat conservation to applied science. In recent years, advances in techniques in interdisciplinary research fields, including metabolic engineering and synthetic biology have significantly improved the production of marine-derived commodities. In this review, we outline the recent progress in the use or marine enzymes and molecules in biotechnology, including newly discovered products, function optimization of enzymes, and production improvement of small molecules.
Collapse
|
26
|
Bioprospecting potentials of moderately halophilic bacteria and the isolation of squalene producers from Kuwait sabkha. Int Microbiol 2021; 24:373-384. [PMID: 33755814 DOI: 10.1007/s10123-021-00173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Sabkhas in Kuwait are unique hypersaline marine environments under-explored for bacterial community composition and bioprospecting. The 16S rRNA sequence analysis of 46 isolates with distinct morphology from two Kuwait sabkhas recovered 11 genera. Phylum Firmicutes dominated these isolates, and Bacillus (32.6%) was recovered as the dominant genera, followed by Halococcus (17.4%). These isolates were moderately halophilic, and some of them showed tolerance and growth at extreme levels of salt (20%), pH (5 and/or 11), and temperature (55 °C). A higher percentage of isolates harbored protease (63.0), followed by DNase (41.3), amylase (41.3), and lipase (32.6). Selected isolates showed antimicrobial activity against E. faecalis and isolated Halomonas shengliensis, and Idiomarina piscisalsi harbored gene coding for dNDP-glucose 4,6-dehydratase (Glu 1), indicating their potential to produce biomolecules with deoxysugar moieties. Palmitic acid or oleic acid was the dominant fatty acid, and seven isolates had some polyunsaturated fatty acids (linolenic or γ-linolenic acid). Interestingly, six isolates belonging to Planococcus and Oceanobacillus genus produced squalene, a bioactive isoprenoid molecule. Their content increased 30-50% in the presence of Terbinafine. The potential bioactivities and extreme growth conditions make this untapped bacterial diversity a promising candidate for future bioprospecting studies.
Collapse
|
27
|
da Silva RN, Melo LFDA, Luna Finkler CL. Optimization of the cultivation conditions of Bacillus licheniformis BCLLNF-01 for cellulase production. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00599. [PMID: 33728263 PMCID: PMC7935710 DOI: 10.1016/j.btre.2021.e00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The objective of this study was to optimize the production of CMCase by Bacillus licheniformis BCLLNF-01, a strain associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa). Production of total cellulase and CMCase was investigated in the supernatant, intracellular content and wall content. Cultivation was carried out in BLM medium supplemented with 1.5 % (w/v) CMC, 5.5 % (v/v) inoculum, 40 °C, pH 6.5, 500 rpm for 72 h, and the highest activity was recorded in the supernatant. A Rotational Central Composite Design (RCCD) 2³ was used to investigate the influence of the carbon source concentration (CMC-0.5 to 1.5 % w/v), inoculum concentration (1-10 % v/v) and temperature (35-45 °C) on CMCase production. The maximum enzyme activity was achieved for a CMC concentration of 1.5 % w/v at 40 °C, attaining 0.493 IU/mL after 96 h of cultivation.
Collapse
Affiliation(s)
- Raquel Nascimento da Silva
- Federal University of Pernambuco, Academic Center of Vitória, R. Alto do Reservatório, s/n, Bela Vista, Vitória de Santo Antão, PE, 55608-250, Brazil
| | - Liany Figuerêdo de Andrade Melo
- Federal University of Pernambuco, Academic Center of Vitória, R. Alto do Reservatório, s/n, Bela Vista, Vitória de Santo Antão, PE, 55608-250, Brazil
| | - Christine Lamenha Luna Finkler
- Federal University of Pernambuco, Academic Center of Vitória, R. Alto do Reservatório, s/n, Bela Vista, Vitória de Santo Antão, PE, 55608-250, Brazil
| |
Collapse
|
28
|
Borchert E, García-Moyano A, Sanchez-Carrillo S, Dahlgren TG, Slaby BM, Bjerga GEK, Ferrer M, Franzenburg S, Hentschel U. Deciphering a Marine Bone-Degrading Microbiome Reveals a Complex Community Effort. mSystems 2021; 6:e01218-20. [PMID: 33563781 PMCID: PMC7883544 DOI: 10.1128/msystems.01218-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
The marine bone biome is a complex assemblage of macro- and microorganisms; however, the enzymatic repertoire to access bone-derived nutrients remains unknown. The bone matrix is a composite material made up mainly of organic collagen and inorganic hydroxyapatite. We conducted field experiments to study microbial assemblages that can use organic bone components as nutrient source. Bovine and turkey bones were deposited at 69 m depth in a Norwegian fjord (Byfjorden, Bergen). Metagenomic sequence analysis was used to assess the functional potential of microbial assemblages from bone surface and the bone-eating worm Osedax mucofloris, which is a frequent colonizer of whale falls and known to degrade bone. The bone microbiome displayed a surprising taxonomic diversity revealed by the examination of 59 high-quality metagenome-assembled genomes from at least 23 bacterial families. Over 700 genes encoding enzymes from 12 relevant enzymatic families pertaining to collagenases, peptidases, and glycosidases putatively involved in bone degradation were identified. Metagenome-assembled genomes (MAGs) of the class Bacteroidia contained the most diverse gene repertoires. We postulate that demineralization of inorganic bone components is achieved by a timely succession of a closed sulfur biogeochemical cycle between sulfur-oxidizing and sulfur-reducing bacteria, causing a drop in pH and subsequent enzymatic processing of organic components in the bone surface communities. An unusually large and novel collagen utilization gene cluster was retrieved from one genome belonging to the gammaproteobacterial genus Colwellia IMPORTANCE Bones are an underexploited, yet potentially profitable feedstock for biotechnological advances and value chains, due to the sheer amounts of residues produced by the modern meat and poultry processing industry. In this metagenomic study, we decipher the microbial pathways and enzymes that we postulate to be involved in bone degradation in the marine environment. We here demonstrate the interplay between different bacterial community members, each supplying different enzymatic functions with the potential to cover an array of reactions relating to the degradation of bone matrix components. We identify and describe a novel gene cluster for collagen utilization, which is a key function in this unique environment. We propose that the interplay between the different microbial taxa is necessary to achieve the complex task of bone degradation in the marine environment.
Collapse
Affiliation(s)
- Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | | | | | - Thomas G Dahlgren
- NORCE Norwegian Research Centre, Bergen, Norway
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | | | | | - Sören Franzenburg
- IKMB, Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
- Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Daniotti S, Re I. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Mar Drugs 2021; 19:61. [PMID: 33530360 PMCID: PMC7912129 DOI: 10.3390/md19020061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Biotechnology is an essential tool for the sustainable exploitation of marine resources, although the full development of their potential is complicated by a series of cognitive and technological limitations. Thanks to an innovative systematic approach that combines the meta-analysis of 620 articles produced worldwide with 29 high TRL (Technology Readiness Level) European funded projects, the study provides an assessment of the growth prospects of blue biotechnologies, with a focus on pharmaceutical and food applications, and the most promising technologies to overcome the main challenges in the commercialization of marine products. The results show a positive development trend, with publications more than doubled from 2010 (36) to 2019 (70). Biochemical and molecular characterization, with 150 studies, is the most widely used technology. However, the emerging technologies in basic research are omics technologies, pharmacological analysis and bioinformatics, which have doubled the number of publications in the last five years. On the other hand, technologies for optimizing the conditions of cultivation, harvesting and extraction are central to most business models with immediate commercial exploitation (65% of high-TRL selected projects), especially in food and nutraceutical applications. This research offers a starting point for future research to overcome all those obstacles that restrict the marketing of products derived from organisms.
Collapse
|
30
|
Barzkar N, Sohail M, Tamadoni Jahromi S, Gozari M, Poormozaffar S, Nahavandi R, Hafezieh M. Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Appl Biochem Biotechnol 2021; 193:1187-1214. [PMID: 33411134 DOI: 10.1007/s12010-020-03483-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The marine ecosystem has been known to be a significant source of novel enzymes. Esterase enzymes (EC 3.1.1.1) represent a diverse group of hydrolases that catalyze the cleavage and formation of ester bonds. Although esterases are widely distributed among marine organisms, only microbial esterases are of paramount industrial importance. This article discusses the importance of marine microbial esterases, their biochemical and kinetic properties, and their stability under extreme conditions. Since culture-dependent techniques provide limited insights into microbial diversity of the marine ecosystem, therefore, genomics and metagenomics approaches have widely been adopted in search of novel esterases. Additionally, the article also explains industrial applications of marine bacterial esterases particularly for the synthesis of optically pure substances, the preparation of enantiomerically pure drugs, the degradation of human-made plastics and organophosphorus compounds, degradation of the lipophilic components of the ink, and production of short-chain flavor esters.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, 7931674576, Iran.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Sajjad Poormozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
31
|
Schwarz M, Murphy EJ, Foley AM, Woods DF, Castilla IA, Reen FJ, Collins SG, O'Gara F, Maguire AR. Exploring the synthetic potential of a marine transaminase including discrimination at a remote stereocentre. Org Biomol Chem 2021; 19:188-198. [PMID: 33119023 DOI: 10.1039/d0ob01848a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The marine transaminase, P-ω-TA, can be employed for the transamination from 1-aminotetralins and 1-aminoindanes with differentiation of stereochemistry at both the site of reaction and at a remote stereocentre resulting in formation of ketone products with up to 93% ee. While 4-substituents are tolerated on the tetralin core, the presence of 3- or 8-substituents is not tolerated by the transaminase. In general P-ω-TA shows capacity for remote diastereoselectivity, although both the stereoselectivity and efficiency are dependent on the specific substrate structure. Optimum efficiency and selectivity are seen with 4-haloaryl-1-aminotetralins and 3-haloaryl-1-aminoindanes, which may be associated with the marine origin of this enzyme.
Collapse
Affiliation(s)
- Maria Schwarz
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, T12 K8AF, Cork, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barzkar N, Khan Z, Tamadoni Jahromi S, Pourmozaffar S, Gozari M, Nahavandi R. A critical review on marine serine protease and its inhibitors: A new wave of drugs? Int J Biol Macromol 2020; 170:674-687. [PMID: 33387547 DOI: 10.1016/j.ijbiomac.2020.12.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023]
Abstract
Marine organisms are rich sources of enzymes and their inhibitors having enormous therapeutic potential. Among different proteolytic enzymes, serine proteases, which can be obtained from various marine organisms show a potential to biomedical application as thrombolytic agents. Although this type of proteases plays a crucial role in almost all biological processes, their uncontrolled activity often leads to several diseases. Accordingly, the actions of these types of proteases are regulated by serine protease inhibitors (SPIs). Marine SPIs control complement activation and various other physiological functions, such as inflammation, immune function, fibrinolysis, blood clotting, and cancer metastasis. This review highlights the potential use of serine proteases and their inhibitors as the new wave of promising drugs.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahoor Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecological Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar 'Abbas, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
33
|
Botta L, Saladino R, Barghini P, Fenice M, Pasqualetti M. Production and identification of two antifungal terpenoids from the Posidonia oceanica epiphytic Ascomycota Mariannaea humicola IG100. Microb Cell Fact 2020; 19:184. [PMID: 33004054 PMCID: PMC7528228 DOI: 10.1186/s12934-020-01445-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background Marine fungi are an important repository of bioactive molecules with great potential in different technological fields, the annual number of new compounds isolated from marine fungi is impressive and the general trend indicates that it is still on the rise. In this context, the antifungal and antimicrobial activity of the marine strain Mariannaea humicola IG100 was evaluated and two active terpenoids were isolated and characterized. Methods Preliminary screening of activity of marine strain IG100 was carried out by agar plug diffusion methods against fungal (Penicillium griseofulvum TSF04) and bacterial (Bacillus pumilus KB66 and Escherichia coli JM109) strains. Subsequently, inhibition tests were done by using the cultural broth and the organic extract (ethyl acetate, EtOAc) by the agar well diffusion methods. The main active fractions were identified and tested for their antifungal activity against P. griseofulvum TSF04 in a 24 wells microplate at different concentrations (1000, 100, 10 and 1.0 µg/mL). Two active compounds were characterized and their relative MIC measured by the broth micro-dilution methods in a 96-well microplate against Aspergillus flavus IG133, P. griseofulvum TSF04, and Trichoderma pleuroticola IG137. Results Marine strain IG100 presented significant antifungal activity associated with two active compounds, the terpenoids terperstacin 1 and 19-acetyl-4-hydroxydictyodiol 2. Their MIC values were measured for A. flavus (MIC of 7.9 µg/mL and 31.3 µg/mL for 1 and 2, respectively), P. griseofulvum (MIC of 25 µg/mL and 100 µg/mL for 1 and 2, respectively) and T. pleuroticola (MIC > 500 µg/mL and 125 µg/mL for 1 and 2, respectively). They showed a rather good fungistatic effect. Conclusions In this study, the first marine strain of M. humicola (IG100) was investigated for the production of bioactive molecules. Strain IG100 produced significant amounts of two bioactive terpenoids, terperstacin 1 and 19-acetyl-4-hydroxydictyodiol 2. The two compounds showed significant antifungal activities against A. flavus IG133, T. pleuroticola IG137 and P. griseofulvum TSF04. Compound 2 was identified for the first time in fungi.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100, Viterbo, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100, Viterbo, Italy
| | - Paolo Barghini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100, Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100, Viterbo, Italy.,Laboratory of Applied Marine Microbiology (Conisma), University of Tuscia, Largo Università snc, 01100, Viterbo, Italy
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100, Viterbo, Italy. .,Laboratory of Ecology of Marine Fungi (Conisma), University of Tuscia, Largo Università snc, 01100, Viterbo, Italy.
| |
Collapse
|
34
|
de Queiroz TM, Ellena J, Porto ALM. Biotransformation of Ethinylestradiol by Whole Cells of Brazilian Marine-Derived Fungus Penicillium oxalicum CBMAI 1996. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:673-682. [PMID: 32833111 DOI: 10.1007/s10126-020-09989-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report our contribution to the application of whole cells of Brazilian marine-derived fungi in the biotransformation of ethinylestradiol 1. A preliminary screening with twelve marine-derived fungi strains revealed that the fungus Penicillium oxalicum CBMAI 1996 promoted the biotransformation of ethinylestradiol 1. Then, P. oxalicum CBMAI 1996 was employed in the reactions in decaplicate in order to purify and characterize the main biotransformation products of ethinylestradiol 1. Compounds 1b and 1c were characterized by NMR, HRMS, [α]D and mp. Compound 1b was also characterized by single crystal X-ray diffraction. In addition, kinetic monitoring of the biotransformation of ethinylestradiol 1 by P. oxalicum CBMAI 1996 was evaluated in this study in order to obtain high yields of compounds 1b and 1c with a reduction of the reaction time. In this work, we proposed a biotransformation pathway of ethinylestradiol 1, which suggests the presence of several enzymes such as phenol oxidases, monooxygenases, and ene-reductases in the fungus P. oxalicum CBMAI 1996. In summary, the rapid biodegradation of ethinylestradiol 1 and compounds 1b and 1c also has an environmental relevance, since ethinylestradiol 1 and other steroidal compounds are improperly discarded in the environment, and part of these compounds are displaced into the oceans.
Collapse
Affiliation(s)
- Thayane Melo de Queiroz
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Javier Ellena
- Laboratório Multiusuário de Cristalografia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
35
|
Contente ML, Fiore N, Cannazza P, Roura Padrosa D, Molinari F, Gourlay L, Paradisi F. Uncommon overoxidative catalytic activity in a new halo‐tolerant alcohol dehydrogenase. ChemCatChem 2020. [DOI: 10.1002/cctc.202001112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Noemi Fiore
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan via Mangiagalli 25 20133 Milan Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan via Mangiagalli 25 20133 Milan Italy
| | - David Roura Padrosa
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan via Mangiagalli 25 20133 Milan Italy
| | - Louise Gourlay
- Department of Biosciences (DBS) University of Milan via Celoria 26 20133 Milan Italy
| | - Francesca Paradisi
- University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
36
|
Hossain TJ, Chowdhury SI, Mozumder HA, Chowdhury MNA, Ali F, Rahman N, Dey S. Hydrolytic Exoenzymes Produced by Bacteria Isolated and Identified From the Gastrointestinal Tract of Bombay Duck. Front Microbiol 2020; 11:2097. [PMID: 32983064 PMCID: PMC7479992 DOI: 10.3389/fmicb.2020.02097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria producing hydrolytic exoenzymes are of great importance considering their contribution to the host metabolism as well as for their various applications in industrial bioprocesses. In this work hydrolytic capacity of bacteria isolated from the gastrointestinal tract of Bombay duck (Harpadon nehereus) was analyzed and the enzyme-producing bacteria were genetically characterized. A total of twenty gut-associated bacteria, classified into seventeen different species, were isolated and screened for the production of protease, lipase, pectinase, cellulase and amylase enzymes. It was found that thirteen of the isolates could produce at least one of these hydrolytic enzymes among which protease was the most common enzyme detected in ten isolates; lipase in nine, pectinase in four, and cellulase and amylase in one isolate each. This enzymatic array strongly correlated to the previously reported eating behavior of Bombay duck. 16S rRNA gene sequence-based taxonomic classification of the enzyme-producing isolates revealed that the thirteen isolates were grouped into three different classes of bacteria consisting of eight different genera. Staphylococcus, representing ∼46% of the isolates, was the most dominant genus. Measurement of enzyme-production via agar diffusion technique revealed that one of the isolates which belonged to the genus Exiguobacterium, secreted the highest amount of lipolytic and pectinolytic enzymes, whereas a Staphylococcus species produced highest proteolytic activity. The Exiguobacterium sp. expressing a maximum of four hydrolases, appeared to be the most promising isolate of all.
Collapse
Affiliation(s)
- Tanim J. Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Sumaiya I. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Halima A. Mozumder
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad N. A. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | - Nabila Rahman
- Department of Biology, Chittagong Sunshine College, Chattogram, Bangladesh
| | - Sujan Dey
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
37
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Kalkan SO, Bozcal E, Hames Tuna EE, Uzel A. Characterisation of a thermostable and proteolysis resistant phytase from Penicillium polonicum MF82 associated with the marine sponge Phorbas sp. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1785434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Saban Orcun Kalkan
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, İzmir, Turkey
| | - Elif Bozcal
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, İzmir, Turkey
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Istanbul University, İstanbul, Turkey
| | - Elif Esin Hames Tuna
- Department of Bioengineering, Faculty of Engineering, Ege University, İzmir, Turkey
| | - Atac Uzel
- Faculty of Science, Department of Biology, Basic and Industrial Microbiology Section, Ege University, İzmir, Turkey
| |
Collapse
|
39
|
An overview on marine cellulolytic enzymes and their potential applications. Appl Microbiol Biotechnol 2020; 104:6873-6892. [DOI: 10.1007/s00253-020-10692-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 11/26/2022]
|
40
|
Won SJ, Jeong HB, Kim HK. Characterization of Novel Salt-Tolerant Esterase Isolated from the Marine Bacterium Alteromonas sp. 39-G1. J Microbiol Biotechnol 2020; 30:216-225. [PMID: 31838795 PMCID: PMC9728341 DOI: 10.4014/jmb.1907.07057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An esterase gene, estA1, was cloned from Alteromonas sp. 39-G1 isolated from the Beaufort Sea. The gene is composed of 1,140 nucleotides and codes for a 41,190 Da protein containing 379 amino acids. As a result of a BLAST search, the protein sequence of esterase EstA1 was found to be identical to Alteromonas sp. esterase (GenBank: PHS53692). As far as we know, no research on this enzyme has yet been conducted. Phylogenetic analysis showed that esterase EstA1 was a member of the bacterial lipolytic enzyme family IV (hormone sensitive lipases). Two deletion mutants (Δ20 and Δ54) of the esterase EstA1 were produced in Escherichia coli BL21 (DE3) cells with part of the N-terminal of the protein removed and His-tag attached to the C-terminal. These enzymes exhibited the highest activity toward p-nitrophenyl (pNP) acetate (C2) and had little or no activity towards pNP-esters with acyl chains longer than C6. Their optimum temperature and pH of the catalytic activity were 45°C and pH 8.0, respectively. As the NaCl concentration increased, their enzyme activities continued to increase and the highest enzyme activities were measured in 5 M NaCl. These enzymes were found to be stable for up to 8 h in the concentration of 3-5 M NaCl. Moreover, they have been found to be stable for various metal ions, detergents and organic solvents. These salt-tolerant and chemical-resistant properties suggest that the enzyme esterase EstA1 is both academically and industrially useful.
Collapse
Affiliation(s)
- Seok-Jae Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Han Byeol Jeong
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyung-Kwoun Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4890 Fax: +82-2-2164-4865 E-mail:
| |
Collapse
|
41
|
Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140312. [DOI: 10.1016/j.bbapap.2019.140312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023]
|
42
|
Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production. Microorganisms 2019; 7:microorganisms7100387. [PMID: 31554228 PMCID: PMC6843219 DOI: 10.3390/microorganisms7100387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.
Collapse
|
43
|
Joji K, Santhiagu A, Salim N. Computational modeling of culture media for enhanced production of fibrinolytic enzyme from marine bacterium Fictibacillus sp. strain SKA27 and in vitro evaluation of fibrinolytic activity. 3 Biotech 2019; 9:323. [PMID: 31406645 DOI: 10.1007/s13205-019-1853-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
The present study reports the optimized production and purification of an extremely active fibrinolytic enzyme from newly isolated marine bacterium Fictibacillus sp. strain SKA27, with a specific activity of 125,107.85 U/mg and an apparent molecular weight of 28 kDa on SDS-PAGE. Wheat bran extract used for submerged production proved to be highly beneficial and enhanced fibrinolytic enzyme production when combined with yeast extract and CaCl2. Optimization of culture media by response surface methodology (RSM) resulted in high root mean square error (RMSE), which led to the training of a back propagation multilayer artificial neural network (ANN) with 3-5-1 topology for better prediction quality. The prediction and optimization capabilities of regression and ANN were critically examined and ANN displayed higher proficiency with R 2 of 0.99 and RMSE of 2.0 compared to 0.98 R 2 and 48.9 RMSE of the regression model. An adept ANN linked genetic algorithm (GA) optimized the medium components to achieve 1.8-fold higher enzyme production (4175.41 U/mL). Further, a new and improved in vitro qualitative analysis displayed high specificity of purified enzyme to fibrin.
Collapse
Affiliation(s)
- K Joji
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, 673601 India
| | - A Santhiagu
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, 673601 India
| | - Nisha Salim
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, 673601 India
| |
Collapse
|
44
|
Tagliavia M, Salamone M, Bennici C, Quatrini P, Cuttitta A. A modified culture medium for improved isolation of marine vibrios. Microbiologyopen 2019; 8:e00835. [PMID: 31318499 PMCID: PMC6741135 DOI: 10.1002/mbo3.835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Marine Vibrio members are of great interest for both ecological and biotechnological research, which often relies on their isolation. Whereas many efforts have been made for the detection of food‐borne pathogenic species, much less is known about the performances of standard culture media toward environmental vibrios. We show that the isolation/enumeration of marine vibrios using thiosulfate‐citrate‐bile salts‐sucrose agar (TCBS) as selective medium may be hampered by the variable adaptability of different taxa to the medium, which may result even in isolation failure and/or in substantial total count underestimation. We propose a modified TCBS as isolation medium, adjusted for marine vibrios requirements, which greatly improved their recovery in dilution plate counts, compared with the standard medium. The modified medium offers substantial advantages over TCBS, providing more accurate and likely estimations of the actual presence of vibrios. Modified TCBS allowed the recovery of otherwise undetected vibrios, some of which producing biotechnologically valuable enzymes, thus expanding the isolation power toward potentially new enzyme‐producers Vibrio taxa. Moreover, we report a newly designed Vibrio‐specific PCR primers pair, targeting a unique rpoD sequence, useful for rapid confirmation of isolates as Vibrio members and subsequent genetic analyses.
Collapse
Affiliation(s)
- Marcello Tagliavia
- IAS-CNR, Campobello di Mazara, Italy.,Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | | | | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | |
Collapse
|
45
|
Hettiarachchi SA, Kwon YK, Lee Y, Jo E, Eom TY, Kang YH, Kang DH, De Zoysa M, Marasinghe SD, Oh C. Characterization of an acetyl xylan esterase from the marine bacterium Ochrovirga pacifica and its synergism with xylanase on beechwood xylan. Microb Cell Fact 2019; 18:122. [PMID: 31286972 PMCID: PMC6615230 DOI: 10.1186/s12934-019-1169-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetyl xylan esterase plays an important role in the complete enzymatic hydrolysis of lignocellulosic materials. It hydrolyzes the ester linkages of acetic acid in xylan and supports and enhances the activity of xylanase. This study was conducted to identify and overexpress the acetyl xylan esterase (AXE) gene revealed by the genomic sequencing of the marine bacterium Ochrovirga pacifica. RESULTS The AXE gene has an 864-bp open reading frame that encodes 287 aa and consists of an AXE domain from aa 60 to 274. Gene was cloned to pET-16b vector and expressed the recombinant AXE (rAXE) in Escherichia coli BL21 (DE3). The predicted molecular mass was 31.75 kDa. The maximum specific activity (40.08 U/mg) was recorded at the optimal temperature and pH which were 50 °C and pH 8.0, respectively. The thermal stability assay showed that AXE maintains its residual activity almost constantly throughout and after incubation at 45 °C for 120 min. The synergism of AXE with xylanase on beechwood xylan, increased the relative activity 1.41-fold. CONCLUSION Resulted higher relative activity of rAXE with commercially available xylanase on beechwood xylan showed its potential for the use of rAXE in industrial purposes as a de-esterification enzyme to hydrolyze xylan and hemicellulose-like complex substrates.
Collapse
Affiliation(s)
- Sachithra Amarin Hettiarachchi
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.,Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Young-Kyung Kwon
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Tae-Yang Eom
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yoon-Hyeok Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Do-Hyung Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Svini Dileepa Marasinghe
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Chulhong Oh
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea. .,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
46
|
Han Z, Shang-Guan F, Yang J. Molecular and Biochemical Characterization of a Bimodular Xylanase From Marinifilaceae Bacterium Strain SPP2. Front Microbiol 2019; 10:1507. [PMID: 31312196 PMCID: PMC6614494 DOI: 10.3389/fmicb.2019.01507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/17/2019] [Indexed: 01/31/2023] Open
Abstract
In this study, the first xylantic enzyme from the family Marinifilaceae, XynSPP2, was identified from Marinifilaceae bacterium strain SPP2. Amino acid sequence analysis revealed that XynSPP2 is a rare Fn3-fused xylanase, consisting of a signal peptide, a fibronectin type-III domain (Fn3), and a C-terminal catalytic domain belonging to glycoside hydrolase family 10 (GH10). The catalytic domain shared 17–46% identities to those of biochemically characterized GH10 xylanases. Structural analysis revealed that the conserved asparagine and glutamine at the glycone −2/−3 subsite of GH10 xylanases are substituted by a tryptophan and a serine, respectively, in XynSPP2. Full-length XynSPP2 and its Fn3-deleted variant (XynSPP2ΔFn3) were overexpressed in Escherichia coli and purified by Ni-affinity chromatography. The optimum temperature and pH for both recombinant enzymes were 50°C and 6, respectively. The enzymes were stable under alkaline condition and at temperature lower than 50°C. With beechwood xylan as the substrate, XynSPP2 showed 2.8 times the catalytic efficiency of XynSPP2ΔFn3, indicating that the Fn3 module promotes xylanase activity. XynSPP2 was active toward xylooligosaccharides (XOSs) longer than xylotriose. Such a substrate preference can be explained by the unique −2/−3 subsite composition in the enzyme which provides new insight into subsite interaction within the GH10 family. XynSPP2 hydrolyzed beechwood xylan into small XOSs (xylotriose and xylotetraose as major products). No monosaccharide was detected by thin-layer chromatography which may be ascribed to putative transxylosylation activity of XynSPP2. Preferring long XOS substrate and lack of monosaccharide production suggest its potential in probiotic XOS manufacture.
Collapse
Affiliation(s)
- Zhenggang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Fang Shang-Guan
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jiangke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
47
|
Malafatti-Picca L, de Barros Chaves MR, de Castro AM, Valoni É, de Oliveira VM, Marsaioli AJ, de Franceschi de Angelis D, Attili-Angelis D. Hydrocarbon-associated substrates reveal promising fungi for poly (ethylene terephthalate) (PET) depolymerization. Braz J Microbiol 2019; 50:633-648. [PMID: 31175657 PMCID: PMC6863199 DOI: 10.1007/s42770-019-00093-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recalcitrant characteristics and insolubility in water make the disposal of synthetic polymers a great environmental problem to be faced by modern society. Strategies towards the recycling of post-consumer polymers, like poly (ethylene terephthalate, PET) degradation/depolymerization have been studied but still need improvement. To contribute with this purpose, 100 fungal strains from hydrocarbon-associated environments were screened for lipase and esterase activities by plate assays and high-throughput screening (HTS), using short- and long-chain fluorogenic probes. Nine isolates were selected for their outstanding hydrolytic activity, comprising the genera Microsphaeropsis, Mucor, Trichoderma, Westerdykella, and Pycnidiophora. Two strains of Microsphaeropsis arundinis were able to convert 2-3% of PET nanoparticle into terephthalic acid, and when cultured with two kinds of commercial PET bottle fragments, they also promoted weight loss, surface and chemical changes, increased lipase and esterase activities, and led to PET depolymerization with release of terephthalic acid at concentrations above 20.0 ppm and other oligomers over 0.6 ppm. The results corroborate that hydrocarbon-associated areas are important source of microorganisms for application in environmental technologies, and the sources investigated revealed important strains with potential for PET depolymerization.
Collapse
Affiliation(s)
- Lusiane Malafatti-Picca
- Environmental Studies Center, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| | | | - Aline Machado de Castro
- Biotechnology Department, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro, RJ, 21941-915, Brazil
| | - Érika Valoni
- Biotechnology Department, R&D Center, PETROBRAS, Av. Horácio Macedo, 950, Ilha do Fundão, Rio de Janeiro, RJ, 21941-915, Brazil
| | - Valéria Maia de Oliveira
- Division of Microbial Resources, CPQBA - State University of Campinas, Alexandre Cazellato Str., 999, Paulínia, SP, 13148-218, Brazil
| | - Anita Jocelyne Marsaioli
- Institute of Chemistry, State University of Campinas, PO Box 6154, Campinas, SP, 13084-971, Brazil
| | - Dejanira de Franceschi de Angelis
- Department of Biochemistry and Microbiology, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Derlene Attili-Angelis
- Environmental Studies Center, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
- Division of Microbial Resources, CPQBA - State University of Campinas, Alexandre Cazellato Str., 999, Paulínia, SP, 13148-218, Brazil
- Department of Biochemistry and Microbiology, UNESP, São Paulo State University, 24-A Av., 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
48
|
Rojo-Arreola L, Navarrete del Toro M, Cordova-Murueta J, García-Carreño F. Techniques for protein digestion research in Decapoda: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Del Monte-Martínez A, González-Bacerio J, Varela CM, Vega-Villasante F, Lalana-Rueda R, Nolasco H, Díaz J, Guisán JM. Screening and Immobilization of Interfacial Esterases from Marine Invertebrates as Promising Biocatalyst Derivatives. Appl Biochem Biotechnol 2019; 189:903-918. [PMID: 31144254 DOI: 10.1007/s12010-019-03036-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Interfacial esterases are useful enzymes in bioconversion and racemic mixture resolution processes. Marine invertebrates are few explored potential sources of these proteins. In this work, aqueous extracts of 41 species of marine invertebrates were screened for esterase, lipase, and phospholipase A activities, being all positive. Five extracts (Stichodactyla helianthus, Condylactis gigantea, Stylocheilus longicauda, Zoanthus pulchellus, and Plexaura homomalla) were selected for their activity values and immobilized on Octyl-Sepharose CL 4B support by interfacial adsorption. The selectivity of this immobilization method for interfacial esterases was evidenced by immobilization percentages ≥ 94% in almost all cases for lipase and phospholipase A activities. Six pharmaceutical-relevant esters (phenylethyl butyrate, ethyl-2-hydroxy-4-phenyl-butanoate, 2-oxyranylmethyl acetate (glycidol acetate), 7-aminocephalosporanic acid, methyl-prostaglandin F2α, and methyl-6-metoxy-α-methyl-2-naphtalen-acetate -naproxen methyl ester-) were bioconverted by at least three of these biocatalysts, with the lowest conversion percentage of 24%. In addition, three biocatalysts were used in the racemic mixture resolution of three previous compounds. The S. helianthus-derived biocatalyst showed the highest enantiomeric ratios for glycidol acetate (2.67, (S)-selective) and naproxen methyl ester (8.32, (R)-selective), and the immobilized extract of S. longicauda was the most resolutive toward the ethyl-2-hydroxy-4-phenyl-butanoate (8.13, (S)-selective). These results indicate the relevance of such marine interfacial esterases as immobilized biocatalysts for the pharmaceutical industry.
Collapse
Affiliation(s)
- Alberto Del Monte-Martínez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455 entre I y J, Vedado, Havana, Cuba.
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455 entre I y J, Vedado, Havana, Cuba.,Departamento de Bioquímica, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, Vedado, 10400, Havana, Cuba
| | - Carlos M Varela
- Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA.,Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Fernando Vega-Villasante
- Centro Universitario de La Costa, Universidad de Guadalajara, Av. Universidad #203, Delegación Ixtapa, 48280, Puerto Vallarta, Jalisco, Mexico
| | - Rogelio Lalana-Rueda
- Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16 #114 entre 1ra y 3ra, Miramar, 11300, Havana, Cuba
| | - Héctor Nolasco
- Centro de Investigaciones Biológicas del Noroeste, Consejo Nacional de Ciencia y Tecnología (CONACyT), Mar Bermejo #195, Colonia Playa Palo de Santa Rita, 23090, La Paz, Baja California Sur, Mexico
| | - Joaquín Díaz
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455 entre I y J, Vedado, Havana, Cuba
| | - José M Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC) Campus Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
50
|
Pasqualetti M, Barghini P, Giovannini V, Fenice M. High Production of Chitinolytic Activity in Halophilic Conditions by a New Marine Strain of Clonostachys rosea. Molecules 2019; 24:E1880. [PMID: 31100818 PMCID: PMC6571954 DOI: 10.3390/molecules24101880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Twenty-eight fungal strains have been isolated from different natural marine substrates and plate screened for their production of chitinolytic activity. The two apparent best producers, Trichoderma lixii IG127 and Clonostachys rosea IG119, were screened in shaken cultures in media containing 1% colloidal chitin, 1% yeast nitrogen base and 38‰ NaCl, for their ability to produce chitinolytic enzymes under halophilic conditions. In addition, they were tested for optimal growth conditions with respect to pH, salinity and temperature. The Trichoderma strain appeared to be a slight halotolerant fungus, while C. rosea IG119 clearly showed to be a halophilic marine fungus, its optimal growth conditions being very coherent for life in the marine environment (i.e., pH 8.0, salinity 38‰). Due to its high and relatively fast activity (258 U/L after 192 h of growth) accompanied by its halophilic behaviour (growth from 0 to 160‰ of salinity), C. rosea was selected for further studies. In view of possible industrial applications, its medium for chitinolytic enzyme production was optimized by Response Surface Methodology using 1% colloidal chitin and different concentrations of corn step liquor and yeast nitrogen base (0-0.5%). Time course of growth under optimized condition showed that maximum activity (394 U/L) was recorded after 120 h on medium containing Corn Steep Liquor 0.47% and Yeast Nitrogen Base 0.37%. Maximum of productivity (3.3 U/Lh) was recorded at the same incubation time. This was the first study that demonstrated high chitinolytic activity in a marine strain of C. rosea.
Collapse
Affiliation(s)
- Marcella Pasqualetti
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
- Laboratorio di Ecologia dei Funghi Marini, CoNISMa, University of Tuscia, 01100 Viterbo, Italy.
| | - Paolo Barghini
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
| | - Valeria Giovannini
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
| | - Massimiliano Fenice
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
- Laboratorio di Microbiologia Marina Applicata, CoNISMa, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|