1
|
Zhao Y, Li J, Cao G, Zhao D, Li G, Zhang H, Yan M. Ethnic, Botanic, Phytochemistry and Pharmacology of the Acorus L. Genus: A Review. Molecules 2023; 28:7117. [PMID: 37894595 PMCID: PMC10609487 DOI: 10.3390/molecules28207117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The genus Acorus, a perennial monocotyledonous-class herb and part of the Acoraceae family, is widely distributed in the temperate and subtropical zones of the Northern and Southern Hemispheres. Acorus is rich in biological activities and can be used to treat various diseases of the nervous system, cardiovascular system, and digestive system, including Alzheimer's disease, depression, epilepsy, hyperlipidemia, and indigestion. Recently, it has been widely used to improve eutrophic water and control heavy-metal-polluted water. Thus far, only three species of Acorus have been reported in terms of chemical components and pharmacological activities. Previously published reviews have not further distinguished or comprehensively expounded the chemical components and pharmacological activities of Acorus plants. By carrying out a literature search, we collected documents closely related to Acorus published from 1956 to 2022. We then performed a comprehensive and systematic review of the genus Acorus from different perspectives, including botanical aspects, ethnic applications, phytochemistry aspects, and pharmacological aspects. Our aim was to provide a basis for further research and the development of new concepts.
Collapse
Affiliation(s)
- Yu Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guoshi Cao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guangzhe Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hongyin Zhang
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingming Yan
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
2
|
Alsafi A, AlKaabi SJ. Aqueous Rosa damascena extract: Antibacterial activity and its role of adhesion to human epithelial cells in vitro. Cell Biochem Funct 2023; 41:365-374. [PMID: 36918753 DOI: 10.1002/cbf.3788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
The current study aimed to investigate the inhibitory activity of aqueous extracts of different plant parts of Rosa damascena, represented by the whole rose, petals, and calyces, against clinical isolates of Staphylococcus spp., Escherichia coli, and Klebsiella pneumoniae, and the inhibition of the bacterial cell. The isolates were obtained from the advanced microbiology laboratory for postgraduate studies in the Department of Biology, Faculty of Education for Girls. They were isolated from urinary tract infections, which were subsequently subjected to diagnosis by the Vitek-2 compact system to confirm the type of bacteria as well as their sensitivity to antibiotics. The results obtained included Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus lentus, Staphylococcus saprophyticus, E. coli, and K. pneumoniae. A test was conducted to investigate the microbiological inhibitory activity of aqueous plant extracts of the whole rose, petals, and calyces using the well diffusion method and three concentrations of each aqueous extract (25, 50, and 100 mg/ml). The results showed the inhibitory ability of all concentrations of the different extracts toward Staphylococcus spp., and E. coli and K. pneumoniae bacteria were not affected by the different concentrations of the plant extract. The concentration of (100 mg/ml) for the aqueous extract was the most efficient in inhibiting growth compared to the other concentrations. The synergistic effect of three antibiotics was examined (Amoxicillin-clavulanate 10/20 μg, Piperacillin 100 μg, Trimethoprim-sulfamethoxazole 23.75/1.25 μg) and for all concentrations of the aqueous plant extract was investigated in both E. coli and K. pneumoniae, as it found a synergistic action between some of the antibiotics and extracts towards inhibiting the growth of the two bacterial isolates Resistance to the plant extract alone. Bacterial isolates showed a significant decrease in the rate of adhesion to epithelial cells isolated from urine samples of healthy women in the presence of the aqueous extract of whole rose, petals, and calyces at their three concentrations compared with the control treatment.
Collapse
Affiliation(s)
- Alaa Alsafi
- Department of Biology, Faculty of Education for Girls, Kufa University, Kufa, Iraq
| | - Siham Jasim AlKaabi
- Department of Biology, Faculty of Education for Girls, Kufa University, Kufa, Iraq
| |
Collapse
|
3
|
Antimicrobial Activity of Spices Popularly Used in Mexico against Urinary Tract Infections. Antibiotics (Basel) 2023; 12:antibiotics12020325. [PMID: 36830236 PMCID: PMC9952462 DOI: 10.3390/antibiotics12020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Urinary tract infections (UTIs) are the most common infectious diseases worldwide. These infections are common in all people; however, they are more prevalent in women than in men. The main microorganism that causes 80-90% of UTIs is Escherichia coli. However, other bacteria such as Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae cause UTIs, and antibiotics are required to treat them. However, UTI treatment can be complicated by antibiotic resistance and biofilm formation. Therefore, medicinal plants, such as spices generally added to foods, can be a therapeutic alternative due to the variety of phytochemicals such as polyphenols, saponins, alkaloids, and terpenes present in their extracts that exert antimicrobial activity. Essential oils extracted from spices have been used to demonstrate their antimicrobial efficacy against strains of pathogens isolated from UTI patients and their synergistic effect with antibiotics. This article summarizes relevant findings on the antimicrobial activity of cinnamon, clove, cumin, oregano, pepper, and rosemary, spices popularly used in Mexico against the uropathogens responsible for UTIs.
Collapse
|
4
|
Phytochemistry and Pharmacology of Medicinal Plants Used by the Tenggerese Society in Java Island of Indonesia. Molecules 2022; 27:molecules27217532. [DOI: 10.3390/molecules27217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The archipelagic country of Indonesia is inhabited by 300 ethnic groups, including the indigenous people of Tengger. Based on the reported list of medicinal plants used by the Tengger community, we have reviewed each of them for their phytochemical constituents and pharmacological activities. Out of a total of 41 medicinal plants used by the Tengerrese people, 33 species were studied for their phytochemical and pharmacological properties. More than 554 phytochemicals with diverse molecular structures belonging to different chemical classes including flavonoids, terpenoids, saponins and volatiles were identified from these studied 34 medicinal plants. Many of these medicinal plants and their compounds have been tested for various pharmacological activities including anti-inflammatory, antimicrobial, wound healing, headache, antimalarial and hypertension. Five popularly used medicinal plants by the healers were Garcinia mangostana, Apium graveolens, Cayratia clematidea, Drymocallis arguta and Elaeocarpus longifolius. Only A. graviolens were previously studied, with the outcomes supporting the pharmacological claims to treat hypertension. Few unexplored medicinal plants are Physalis lagascae, Piper amplum, Rosa tomentosa and Tagetes tenuifolia, and they present great potential for biodiscovery and drug lead identification.
Collapse
|
5
|
Annaz H, Sane Y, Bitchagno GTM, Ben Bakrim W, Drissi B, Mahdi I, El Bouhssini M, Sobeh M. Caper (Capparis spinosa L.): An Updated Review on Its Phytochemistry, Nutritional Value, Traditional Uses, and Therapeutic Potential. Front Pharmacol 2022; 13:878749. [PMID: 35935860 PMCID: PMC9353632 DOI: 10.3389/fphar.2022.878749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Caper (Capparis spinosa L.) is a perennial shrub of the family Capparaceae, endemic to circum-Mediterranean countries. Caper carries a renowned nutritional value, especially in terms of vitamins and antioxidants related to the occurrence of flavonoids, alkaloids, and glucosinolates as main secondary metabolites. Caper extracts have also shown to display antibacterial, antifungal, analgesic, antitumor, hepatoprotective, antioxidant, anti-inflammatory, and neuroprotective effects which correlate the uses of the plant in folk medicine against both metabolic and infectious diseases. The present review aims to provide exhaustive phytochemistry and pharmacological properties survey on Caper constituents. Attention has also been given to the nutritional values and traditional uses of main organs to pinpoint research gaps for future investigations on the plant.
Collapse
Affiliation(s)
- Hassan Annaz
- AgrobioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- *Correspondence: Hassan Annaz, ; Mansour Sobeh,
| | - Yaya Sane
- AgrobioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | | | - Widad Ben Bakrim
- AgrobioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Badreddine Drissi
- AgrobioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Ismail Mahdi
- AgrobioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | | | - Mansour Sobeh
- AgrobioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- *Correspondence: Hassan Annaz, ; Mansour Sobeh,
| |
Collapse
|
6
|
Safety and Efficacy of Medicinal Plants Used to Manufacture Herbal Products with Regulatory Approval in Uganda: A Cross-Sectional Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1304839. [PMID: 35463071 PMCID: PMC9020950 DOI: 10.1155/2022/1304839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/27/2022]
Abstract
Introduction The Uganda National Drug Authority requires phytochemical screening, freedom from microbial contamination, and evidence of safety and efficacy of the constituent plants to register herbal products. Since Uganda has no pharmacopeia, safety, efficacy, and plant processing information are not readily available. We documented the plant materials used to manufacture products in Uganda and established evidence of their safety and efficacy and availability of monographs. Methods The NDA register of herbal products was reviewed, and a product list was extracted. The herbal products were purchased from local pharmacies, and their labels were studied to identify plant ingredients and drug use. Literature was reviewed to document evidence of the safety and efficacy of the plant materials concerning manufacturer's claims. Also, the WHO and available African Pharmacopeia were searched to establish the availability of the plant monographs. Results Of the 84 NDA-registered local products, only 18 were obtained from the market; 82% were indicated for respiratory tract disorders. Thirty-three plant materials were listed with Eucalyptus globulus Labill, being the commonest. Several in vitro and in vivo studies demonstrate efficacy, thus supporting the use of the selected plant species for empirical treatment as stated on the product label. While most plants were safe, some species such as Albizia coriaria Oliv. had dose-dependent toxicities that cannot be predicted in combinations. The WHO, African Pharmacopoeia, and West African Herbal Pharmacopoeia had only 16 plant monographs of the 33 plants of interest. Nevertheless, Aloe vera (L.) Burm.f., Azadirachta indica A.Juss., Zingiber officinale Roscoe, and Allium sativum L. monographs were published by all three pharmacopoeias. Conclusions Preclinical evidence of safety and efficacy exists in the literature for most of the plants used to manufacture registered herbal products in Uganda. More specific bioassays and clinical trials are required for the products to provide conclusive evidence of safety and toxicity. Monographs are urgently needed for the Ugandan plants.
Collapse
|
7
|
Iqbal Z, Mumtaz MZ, Malik A. Extensive drug-resistance in strains of Escherichia coli and Klebsiella pneumoniae isolated from paediatric urinary tract infections. J Taibah Univ Med Sci 2021; 16:565-574. [PMID: 34408614 PMCID: PMC8348552 DOI: 10.1016/j.jtumed.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Urinary tract infections (UTIs) in children are rapidly increasing worldwide and are commonly caused by extensively drug-resistant bacteria. This study determines the prevalence of UTIs in paediatric patients and evaluates the pattern of extensively drug-resistance in Escherichia coli and Klebsiella pneumoniae strains isolated from paediatric UTI patients. METHODS Uropathogenic bacterial strains were isolated from paediatric patients with UTIs admitted to the Institute of Child Health, Lahore, Pakistan. Strains of both E. coli and K. pneumoniae were identified using biochemical characterisation and subjected to antibiotic susceptibility assays for 21 common antimicrobial drugs in order to determine their extensively drug-resistant profile. RESULTS We isolated 63 E. coli and 37 K. pneumoniae strains from 130 paediatric patients with UTIs over a period of six months. The antibiotic susceptibility assays showed that both the E. coli and K. pneumoniae strains exhibited a high degree of resistance against co-amoxiclav, cefuroxime, cefixime, cefotaxime, ceftazidime, ceftriaxone, ciprofloxacin, nalidixic acid, norfloxacin, pepedemic acid, and co-trimoxazole. However, several of the antimicrobial agents, including polymyxin B, colistin sulphate, chloramphenicol, nitrofurantoin, and fosfomycin, were found to retain their antimicrobial activities against both pathogens. The five highest antibiotic resistant strains were identified as E. coli strains ZK9, ZK40, and ZK60 and K. pneumoniae ZK32 and ZK89 using 16S rRNA gene sequencing. CONCLUSION Our study demonstrates that E. coli and K. pneumonia are the dominant extensively drug-resistant uropathogenic bacteria in community-acquired UTIs in our cohort. These uropathogens were found to be resistant to the majority of the routinely-used classes of β-lactams, pyridopyrimidines, quinolones, and fluoroquinolone antibiotics, and these findings may be useful for clinicians in their treatment of paediatric UTIs.
Collapse
Affiliation(s)
- Zakia Iqbal
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Z. Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
8
|
Investigations of Bioactivity of Acalypha indica (L.), Centella asiatica (L.) and Croton bonplandianus (Baill) against Multidrug Resistant Bacteria and Cancer Cells. J Herb Med 2021. [DOI: 10.1016/j.hermed.2020.100359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Song Q, Prabakaran S, Duan J, Jeyaraj M, Mickymaray S, Paramasivam A, Rajan M. Enhanced bone tissue regeneration via bioactive electrospun fibrous composite coated titanium orthopedic implant. Int J Pharm 2021; 607:120961. [PMID: 34333026 DOI: 10.1016/j.ijpharm.2021.120961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
One of the very reliable, attractive, and cheapest techniques for synthesizing nanofibers for biomedical applications is electrospinning. Here, we have created a novel nanofibrous composite coated Ti plate to mimic an Extra Cellular Matrix (ECM) of native bone in order to enhance the bone tissue regeneration. An electrospun fibrous composite was obtained by the combination of minerals (Zn, Mg, Si) substituted hydroxyapatite (MHAP)/Polyethylene Glycol (PEG)/Cissus quadrangularis (CQ) extract. Fibrous composite's functionality, phase characteristics, and morphology were evaluated by FT-IR, XRD, and SEM techniques, respectively. The average fiber diameter of MHAP/PVA had decreased from ~274 to ~255 nm after incorporating PEG polymer. That further increased from ~255 to ~275 nm after adding CQ extract. Besides the bioactivity in SBF solution, the degradable nature was confirmed by immersing the fibrous composite in Tris-HCL solution. The degradable studies evaluate that the composite was degraded depending on time, and it degrades about 9.42% after 7 days of immersion. Osteoblasts like MG-63 cells differentiation, proliferation, and calcium deposition were also determined. These results show that this new fibrous composite exhibits advanced osteoblasts properties. Thus, we concluded that this new fibrous scaffold coated Ti implant could act as a better implant to mimic ECM of bone structure and to improve osteogenesis during bone regeneration.
Collapse
Affiliation(s)
- Qichun Song
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
| | - Jiafeng Duan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology Xi'an Jiaotong University, Xi'an 710004, China
| | | | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia
| | - Anand Paramasivam
- Department of Basic Medical Sciences, College of Dentistry, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh region, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
10
|
Ganesan K, Quiles JL, Daglia M, Xiao J, Xu B. Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- The School of Chinese Medicine The University of Hong Kong Hong Kong China
| | - José L. Quiles
- Institute of Nutrition and Food Technology “José Mataix Verdú,” Department of Physiology Biomedical Research Center University of Granada Granada Spain
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo Vigo Pontevedra E‐36310 Spain
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
11
|
Antibacterial Activity of Defatted and Nondefatted Methanolic Extracts of Aframomum melegueta K. Schum. against Multidrug-Resistant Bacteria of Clinical Importance. ScientificWorldJournal 2021; 2020:4808432. [PMID: 32831805 PMCID: PMC7428896 DOI: 10.1155/2020/4808432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
The antibacterial activity of the extracts of Aframomum melegueta including n-hexane extract (NHE), nondefatted methanol extract (NDME), and defatted methanol extract (DME) was investigated in this study. The NHE exhibited no antibacterial activity. The DME showed higher antibacterial activity than the NDME against the different isolates. At the highest concentration of 10 mg/mL in agar diffusion, NDME produced inhibition zones ranging from 11 to 29 mm against the microorganisms while DME produced inhibition zones ranging from 20 to 40 mm with the concentration of 10 mg/mL against the microorganisms. 0.1 mg/mL of the DME produced inhibition zones ranging between 12 and 14 mm in Aeromonas hydrophila ATCC 35654 and Pseudomonas aeruginosa ATCC 15442, respectively, while none of the isolates were inhibited by the NDME at a concentration of 1 mg/mL or less. In the agar dilution assay, the MICs of the NDME and DME ranged between 0.31 and 10 mg/mL, but more isolates were inhibited at 0.31 mg/mL of DME than those in NDME. In macrobroth assay, the MICs of the NDME ranged between 0.15 and 5.0 mg/mL and the MBCs ranged between 0.63 and 5.0 mg/mL, and the MICs of the DME ranged between 0.08 and 5.0 mg/mL and the MBCs were between 0.31 and 5.0 mg/mL. This study indicated that DME was more active with higher antibacterial activity than the NDME of this plant, and extracting the fatty portion of plant materials prior susceptibility testing would allow plant extracts to be more effective as well as justifying the use of Aframomum melegueta in traditional medicine for the treatment of bacterial infections.
Collapse
|
12
|
Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci 2021; 28:3641-3649. [PMID: 34220214 PMCID: PMC8241634 DOI: 10.1016/j.sjbs.2021.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma is the frequent pediatric bone cancer where pediatric osteosarcoma incidences are more than 10% within the population. Most of the patients with osteosarcoma fall within the age of 15-30 years. Therefore, in this research, we examined the anticancer effect of Rhaponticin against the human osteosarcoma (MG-63) cells. The cytotoxicity of Rhaponticin on the MC3T3-E1 and MG-63 cells was examined through the MTT assay. The intracellular ROS accumulation, cell nuclear morphological alterations, apoptotic cell death and nuclear damages, and MMP status of Rhaponticin administered MG-63 cells were inspected by fluorescent staining techniques. The cell migration was assessed through scratch assay. The mRNA expressions of PI3K-Akt-mTOR signaling proteins were studied by RT-PCR analysis. Rhaponticin showed potent cytotoxicity, substantially inhibited the MG-63 cell growth, and displayed morphological alterations. However, rhaponticin did not affect the MC3T3-E1 cell viability. Rhaponticin administered MG-63 cells demonstrated augmented intracellular ROS accretion, weakened MMP, increased nuclear damages, and increased apoptosis. Rhaponticin effectively down-regulated the PI3K-Akt-mTOR signaling cascade in the MG-63 cells. These outcomes proved that the Rhaponticin can be a hopeful chemotherapeutic agent in the future to treat human osteosarcoma.
Collapse
|
13
|
Aboody MSA. Cytotoxic, antioxidant, and antimicrobial activities of Celery (Apium graveolens L.). Bioinformation 2021; 17:147-156. [PMID: 34393430 PMCID: PMC8340686 DOI: 10.6026/97320630017147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
Celery (Apium graveolens Linn, Family: Apiaceae) is a common edible herb used as a spice in the traditional medicine of several nations since time immemorial. The whole plant is extensively used in cooking as soups and salads. A. graveolens has various pharmacological properties such as anticancer, anti-obesity, anti-hepatotoxic, and antihypertensive agents. Hence, it is of interest to document the in vitro cytotoxic, antioxidant, and antimicrobial activity of A. graveolens. The plants were collected in the local market, shade dried, and different parts of the plants were extracted with 70% ethanol using a cold maceration process. Antioxidant tests were performed based on the various radical scavenging methods. Antimicrobial activity and MIC were completed using the respective cup-plate and two-fold serial dilution method. In vitro cytotoxic studies were achieved by the MTT; Sulphorhodamine B assayed total cell protein content. DLA and ESC cells determined the short-term toxicity. The leaf extract exhibited significant antioxidant properties against NO, DPPH, ABTS, LPO, and HPO methods. Thus, potential inhibition against Gram-positive, Gram-negative, and fungal strains within the MIC ranges of 250-500 µg/ml was observed. All the extracts of the plant presented in the study revealed greater cytotoxicity effects against five respective cancer cell lines, L6, Vero, BRL 3A, A-549, L929, and L-929 with the ranging of 443-168.5 µg/ml. Thus, we show that A. graveolens possess a potential cytotoxic, antioxidant, and antimicrobial activity.
Collapse
Affiliation(s)
- Mohammed Saleh Al Aboody
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah- 11952, Riyadh region Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Flavonoids Profile, Taxonomic Data, History of Cosmetic Uses, Anti-Oxidant and Anti-Aging Potential of Alpinia galanga (L.) Willd. COSMETICS 2020. [DOI: 10.3390/cosmetics7040089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alpinia galanga is a well-known medicinal plant in Southeast Asia and has been used for a long time as food and medicine. A large number of flavonoid phytochemical compounds have been identified in various parts of this medicinal herb. Flavonoids are commonly known as attractive compounds that can be applied to cosmetic or cosmeceutical product development because of their antioxidant, anti-aging and many other potential biological activities. This recent review aims to illustrate and update the taxonomic status as well as the species description that will be helpful for a rigorous identification and authenticate the raw material or living specimen from A. galanga. The flavonoid phytochemical compounds and the bioactivity of this medicinal plant are also provided. The future perspectives and research directions of A. galanga and its flavonoids are pointed out in this study as well.
Collapse
|
15
|
Gajdács M. The Importance of Reporting Clinical and Epidemiological Data in Urology: Local Experiences and Insights from the International Literature. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E581. [PMID: 33143077 PMCID: PMC7693886 DOI: 10.3390/medicina56110581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022]
Abstract
Pathologies of the genito-urinary tract are responsible for a considerable disease burden worldwide, leading to significant losses of income, lost working days, increased expenditures for national healthcare systems, and decreased quality of life (QoL) in the affected patients. Among these diseases, infections and malignancies in this anatomical region are some of the most important illnesses in human medicine; nevertheless, benign prostate hyperplasia (BPH), erectile dysfunction, hypospadias, urinary incontinence, and vesicoureteral reflux are also relevant disorders affecting millions. The publication of various microbiological and clinical studies in urology from different geographical regions has important ramifications from the standpoint of epidemiology: on one hand, reported data may influence the development of therapeutic guidelines for urinary tract infections (UTIs) (empiric antibiotic-therapy) and malignancies (including classical cytotoxic drug protocols and next-generation anticancer therapies) both locally and internationally; on the other hand, the relevant stakeholders and government representatives often base their decisions on published evidence. Therefore, novel studies in the field of urology are strongly encouraged to maintain and improve the high standard of patient care internationally and to ensure continuous information supply for international datasets on the causative agents of UTIs and cancer registries. The present Editorial aims to highlight some relevant studies published from the field of urology in Medicina over the last several years.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; or ; Tel.: +36-62-341-330
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
16
|
Mickymaray S, Alfaiz FA, Paramasivam A. Efficacy and Mechanisms of Flavonoids against the Emerging Opportunistic Nontuberculous Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9080450. [PMID: 32726972 PMCID: PMC7460331 DOI: 10.3390/antibiotics9080450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are the causative agent of severe chronic pulmonary diseases and is accountable for post-traumatic wound infections, lymphadenitis, endometritis, cutaneous, eye infections and disseminated diseases. These infections are extremely challenging to treat due to multidrug resistance, which encompasses the classical and existing antituberculosis agents. Hence, current studies are aimed to appraise the antimycobacterial activity of flavonoids against NTM, their capacity to synergize with pharmacological agents and their ability to block virulence. Flavonoids have potential antimycobacterial effects at minor quantities by themselves or in synergistic combinations. A cocktail of flavonoids used with existing antimycobacterial agents is a strategy to lessen side effects. The present review focuses on recent studies on naturally occurring flavonoids and their antimycobacterial effects, underlying mechanisms and synergistic effects in a cocktail with traditional agents.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
- Correspondence:
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
| | - Anand Paramasivam
- Department of Basic Medical Sciences, College of Dentistry, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
| |
Collapse
|
17
|
Loubet P, Ranfaing J, Dinh A, Dunyach-Remy C, Bernard L, Bruyère F, Lavigne JP, Sotto A. Alternative Therapeutic Options to Antibiotics for the Treatment of Urinary Tract Infections. Front Microbiol 2020; 11:1509. [PMID: 32719668 PMCID: PMC7350282 DOI: 10.3389/fmicb.2020.01509] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
Urinary tract infections (UTIs) mainly caused by Uropathogenic Escherichia coli (UPEC), are common bacterial infections. Many individuals suffer from chronically recurring UTIs, sometimes requiring long-term prophylactic antibiotic regimens. The global emergence of multi-drug resistant uropathogens in the last decade underlines the need for alternative non-antibiotic therapeutic and preventative strategies against UTIs. The research on non-antibiotic therapeutic options in UTIs has focused on the following phases of the pathogenesis: colonization, adherence of pathogens to uroepithelial cell receptors and invasion. In this review, we discuss vaccines, small compounds, nutraceuticals, immunomodulating agents, probiotics and bacteriophages, highlighting the challenges each of these approaches face. Most of these treatments show interesting but only preliminary results. Lactobacillus-containing products and cranberry products in conjunction with propolis have shown the most robust results to date and appear to be the most promising new alternative to currently used antibiotics. Larger efficacy clinical trials as well as studies on the interplay between non-antibiotic therapies, uropathogens and the host immune system are warranted.
Collapse
Affiliation(s)
- Paul Loubet
- VBMI, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France
| | - Jérémy Ranfaing
- VBMI, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Aurélien Dinh
- Service des Maladies Infectieuses, AP-HP Raymond-Poincaré, Garches, France
| | - Catherine Dunyach-Remy
- VBMI, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Louis Bernard
- PRES Centre Val de Loire, Université François Rabelais de Tours, Tours, France.,Service des Maladies Infectieuses, CHU Tours, Tours, France
| | - Franck Bruyère
- PRES Centre Val de Loire, Université François Rabelais de Tours, Tours, France.,Service d'Urologie, CHU Tours, Tours, France
| | - Jean-Philippe Lavigne
- VBMI, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Albert Sotto
- VBMI, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France
| |
Collapse
|
18
|
Synthesis of Silver Nanoparticles from Caryota urens Against Dengue Causing Vector Aedes aegypti. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Al Aboody MS, Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 2020; 9:E45. [PMID: 31991883 PMCID: PMC7168129 DOI: 10.3390/antibiotics9020045] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of fungal infections is growing at an alarming pace and the pathogenesis is still not clearly understood. Recurrence of these fungal diseases is often due to their evolutionary avoidance of antifungal resistance. The development of suitable novel antimicrobial agents for fungal diseases continues to be a major problem in the current clinical field. Hence, it is urgently necessary to develop surrogate agents that are more effective than conventional available drugs. Among the remarkable innovations from earlier investigations on natural-drugs, flavonoids are a group of plant-derived substances capable of promoting many valuable effects on humans. The identification of flavonoids with possible antifungal effects at small concentrations or in synergistic combinations could help to overcome this problem. A combination of flavonoids with available drugs is an excellent approach to reduce the side effects and toxicity. This review focuses on various naturally occurring flavonoids and their antifungal activities, modes of action, and synergetic use in combination with conventional drugs.
Collapse
Affiliation(s)
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Riyadh Region, Majmaah 11952, Saudi Arabia;
| |
Collapse
|
20
|
Mickymaray S. Efficacy and Mechanism of Traditional Medicinal Plants and Bioactive Compounds against Clinically Important Pathogens. Antibiotics (Basel) 2019; 8:antibiotics8040257. [PMID: 31835403 PMCID: PMC6963422 DOI: 10.3390/antibiotics8040257] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
Traditional medicinal plants have been cultivated to treat various human illnesses and avert numerous infectious diseases. They display an extensive range of beneficial pharmacological and health effects for humans. These plants generally synthesize a diverse range of bioactive compounds which have been established to be potent antimicrobial agents against a wide range of pathogenic organisms. Various research studies have demonstrated the antimicrobial activity of traditional plants scientifically or experimentally measured with reports on pathogenic microorganisms resistant to antimicrobials. The antimicrobial activity of medicinal plants or their bioactive compounds arising from several functional activities may be capable of inhibiting virulence factors as well as targeting microbial cells. Some bioactive compounds derived from traditional plants manifest the ability to reverse antibiotic resistance and improve synergetic action with current antibiotic agents. Therefore, the advancement of bioactive-based pharmacological agents can be an auspicious method for treating antibiotic-resistant infections. This review considers the functional and molecular roles of medicinal plants and their bioactive compounds, focusing typically on their antimicrobial activities against clinically important pathogens.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
21
|
Mickymaray S. One-step Synthesis of Silver Nanoparticles Using Saudi Arabian Desert Seasonal Plant Sisymbrium irio and Antibacterial Activity Against Multidrug-Resistant Bacterial Strains. Biomolecules 2019; 9:biom9110662. [PMID: 31661912 PMCID: PMC6920946 DOI: 10.3390/biom9110662] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
Globally, antimicrobial resistance has grown at an alarming rate. To combat the multidrug-resistant (MDR) superbugs, silver nanoparticles (Ag NPs) were synthesized using an aqueous leaf extract of seasonal desert plant Sisymbrium irio obtained from the central region of Saudi Arabia by a simple one-step procedure. The physical and chemical properties of the Ag NPs were investigated through ultraviolet visisble analysis (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) analysis. The UV-vis spectrum showed an absorption band at 426 nm. The XRD results showed a highly crystalline face-centered cubic structure. The surface morphology analyzed using SEM and TEM analyses showed the particle size to be in the range 24 nm to 50 nm. Various concentrations of Ag NPs were tested against MDR Pseudomonas aeruginosa and Acinetobacter baumanii that cause ventilator-associated pneumonia (VAP). American Type Culture Collection (ATCC) Escherichia coli-25922 was used as the reference control strain. The Ag NPs effectively inhibited tested pathogens, even at the lowest concentration (6.25 µg) used. The bacterial inhibitory zone ranged from 11–21 mm. In conclusion, the newly synthesized Ag NPs could be a potential alternative candidate in biomedical applications in controlling the spread of MDR pathogens.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia.
| |
Collapse
|