1
|
Cao F, Yu S, Chen X, Xiao L, Qiu T, Wang X, Zhang D, Yuan X, Shi P. Identification and pharmacological properties of 2-(1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (MDMB-INACA), N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (ADB-INACA), and N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). J Pharm Biomed Anal 2025; 255:116566. [PMID: 39616837 DOI: 10.1016/j.jpba.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 01/27/2025]
Abstract
Synthetic cannabinoids (SCs) are an evolving class of new psychoactive substances (NPS) with structurally various compounds that are increasing over the past few years. Therefore, they are initially hard to identify because of the lack of analytical information. Moreover, there is little to no information regarding the pharmacology of these compounds despite human abuse. In the present study, gas chromatography-mass spectrometry (GC-MS), ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS), and nuclear magnetic resonance (NMR) spectroscopy were used to identify the structure of three compounds obtained from seized materials. The pharmacological properties of these compounds were evaluated by subsequent behavioral testing, including von Frey and cold allodynia tests. The results indicated that these compounds were determined to be 2-(1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (MDMB-INACA), N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (ADB-INACA), and N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA) via GC-MS, UPLC-Q-TOF MS and NMR analysis, and they can attenuate mechanical and cold allodynia induced by paclitaxel in rats with peripheral neuropathy. Compared with MDMB-INACA and ADB-HINACA, ADB-INACA showed better analgesic effects on paclitaxel-induced peripheral neuropathy (PIPN) in rats, and its effect was similar to that of the positive drug N'-(1-hexyl-2-oxoindolin-3-ylidene) benzohydrazide (MDA-19).
Collapse
Affiliation(s)
- Fangqi Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Shuchen Yu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China.
| | - Xiujuan Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China.
| | - Lu Xiao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Tingting Qiu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Xiru Wang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Daiwen Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China; Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Xiaoliang Yuan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Maglaviceanu A, Peer M, Rockel J, Bonin RP, Fitzcharles MA, Ladha KS, Bhatia A, Leroux T, Kotra L, Kapoor M, Clarke H. The State of Synthetic Cannabinoid Medications for the Treatment of Pain. CNS Drugs 2024; 38:597-612. [PMID: 38951463 DOI: 10.1007/s40263-024-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Synthetic cannabinoids are compounds made in the laboratory to structurally and functionally mimic phytocannabinoids from the Cannabis sativa L. plant, including delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids (SCs) can signal via the classical endogenous cannabinoid system (ECS) and the greater endocannabidiome network, highlighting their signalling complexity and far-reaching effects. Dronabinol and nabilone, which mimic THC signalling, have been approved by the Food and Drug Administration (FDA) for treating nausea associated with cancer chemotherapy and/or acquired immunodeficiency syndrome (AIDS). However, there is ongoing interest in these two drugs as potential analgesics for a variety of other clinical conditions, including neuropathic pain, spasticity-related pain, and nociplastic pain syndromes including fibromyalgia, osteoarthritis, and postoperative pain, among others. In this review, we highlight the signalling mechanisms of FDA-approved synthetic cannabinoids, discuss key clinical trials that investigate their analgesic potential, and illustrate challenges faced when bringing synthetic cannabinoids to the clinic.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Jason Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, McGill University, Montreal, Canada
- Alan Edwards Pain Management Unit, McGill University, Montreal, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Anuj Bhatia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, Toronto Western Hospital-University Health Network, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Timothy Leroux
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Lakshmi Kotra
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Krembil Research Institute, University Health Network, Toronto, Canada.
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.
- Transitional Pain Service, Pain Research Unit, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
3
|
Creanga-Murariu I, Filipiuc LE, Gogu MR, Ciorpac M, Cumpat CM, Tamba BI, Alexa-Stratulat T. The potential neuroprotective effects of cannabinoids against paclitaxel-induced peripheral neuropathy: in vitro study on neurite outgrowth. Front Pharmacol 2024; 15:1395951. [PMID: 38933665 PMCID: PMC11199736 DOI: 10.3389/fphar.2024.1395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a shared burden for 68.1% of oncological patients undergoing chemotherapy with Paclitaxel (PTX). The symptoms are intense and troublesome, patients reporting paresthesia, loss of sensation, and dysesthetic pain. While current medications focus on decreasing the symptom intensity, often ineffective, no medication is yet recommended by the guidelines for the prevention of CIPN. Cannabinoids are an attractive option, as their neuroprotective features have already been demonstrated in neuropathies with other etiologies, by offering the peripheral neurons protection against toxic effects, which promotes analgesia. Methods: We aim to screen several new cannabinoids for their potential use as neuroprotective agents for CIPN by investigating the cellular toxicity profile and by assessing the potential neuroprotective features against PTX using a primary dorsal root ganglion neuronal culture. Results: Our study showed that synthetic cannabinoids JWH-007, AM-694 and MAB-CHMINACA and phytocannabinoids Cannabixir® Medium dried flowers (NC1) and Cannabixir® THC full extract (NC2) preserve the viability of fibroblasts and primary cultured neurons, in most of the tested dosages and time-points. The combination between the cannabinoids and PTX conducted to a cell viability of 70%-89% compared to 40% when PTX was administered alone for 48 h. When assessing the efficacy for neuroprotection, the combination between cannabinoids and PTX led to better preservation of neurite length at all tested time-points compared to controls, highly drug and exposure-time dependent. By comparison, the combination of the cannabinoids and PTX administered for 24 h conducted to axonal shortening between 23% and 44%, as opposed to PTX only, which shortened the axons by 63% compared to their baseline values. Discussion and Conclusion: Cannabinoids could be potential new candidates for the treatment of paclitaxel-induced peripheral neuropathy; however, our findings need to be followed by additional tests to understand the exact mechanism of action, which would support the translation of the cannabinoids in the oncological clinical practice.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Carmen Marinela Cumpat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
4
|
Safi K, Sobieraj J, Błaszkiewicz M, Żyła J, Salata B, Dzierżanowski T. Tetrahydrocannabinol and Cannabidiol for Pain Treatment-An Update on the Evidence. Biomedicines 2024; 12:307. [PMID: 38397910 PMCID: PMC10886939 DOI: 10.3390/biomedicines12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the current International Association for the Study of Pain (IASP) clinical practice guidelines (CPGs) and the European Society for Medical Oncology (ESMO) guidelines, the topic of cannabinoids in relation to pain remains controversial, with insufficient research presently available. Cannabinoids are an attractive pain management option due to their synergistic effects when administered with opioids, thereby also limiting the extent of respiratory depression. On their own, however, cannabinoids have been shown to have the potential to relieve specific subtypes of chronic pain in adults, although controversies remain. Among these subtypes are neuropathic, musculoskeletal, cancer, and geriatric pain. Another interesting feature is their effectiveness in chemotherapy-induced peripheral neuropathy (CIPN). Analgesic benefits are hypothesized to extend to HIV-associated neuropathic pain, as well as to lower back pain in the elderly. The aim of this article is to provide an up-to-date review of the existing preclinical as well as clinical studies, along with relevant systematic reviews addressing the roles of various types of cannabinoids in neuropathic pain settings. The impact of cannabinoids in chronic cancer pain and in non-cancer conditions, such as multiple sclerosis and headaches, are all discussed, as well as novel techniques of administration and relevant mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Dzierżanowski
- Palliative Medicine Clinic, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| |
Collapse
|
5
|
Park C, Zuo J, Gil MC, Löbenberg R, Lee BJ. Investigation of Cannabinoid Acid/Cyclodextrin Inclusion Complex for Improving Physicochemical and Biological Performance. Pharmaceutics 2023; 15:2533. [PMID: 38004513 PMCID: PMC10675134 DOI: 10.3390/pharmaceutics15112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to investigate the enhancement of cannabinoid acid solubility and stability through the formation of a cannabinoid acid/cyclodextrin (CD) inclusion complex. Two cannabinoid acids, tetrahydro-cannabinolic acid (THCA) and cannabidiolic acid (CBDA), were selected as a model drug along with five types of CD: α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and methylated-β-cyclodextrin (M-β-CD). Phase solubility studies were conducted using various types of CD to determine the complex stoichiometry. The preparation methods of the CD inclusion complex were optimized by adjusting the loading pH solution and the drying processes (spray-drying, freeze-drying, spray-freeze-drying). The drying process of the cannabinoid acid/M-β-CD inclusion complex was further optimized through the spray-freeze-drying method. These CD complexes were characterized using solubility determination, differential scanning calorimetry (DSC), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and 1H NMR spectroscopy. DSC, XRD, and FE-SEM studies confirmed the non-crystalline state of the cannabinoid acid/CD inclusion complex. The permeation of THCA or CBDA from the M-β-CD spray-freeze-dried inclusion complex was highly improved compared to those of cannabis ethanolic extracts under simulated physiological conditions. The stability of the cannabinoid acid/M-β-CD inclusion complex was maintained for 7 days in a simulated physiological condition. Furthermore, the minimum inhibitory concentration of cannabinoid acid/M-β-CD inclusion complex had superior anti-cancer activity in MCF-7 breast cancer cell lines compared to cannabinoid acid alone. The improved physicochemical and biological performances indicated that these CD inclusion complexes could provide a promising option for loading lipophilic cannabinoids in cannabis-derived drug products.
Collapse
Affiliation(s)
- Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.Z.); (R.L.)
| | - Myung-Chul Gil
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
- PLUTO Inc., Seongnam 13453, Republic of Korea
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (J.Z.); (R.L.)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea;
| |
Collapse
|
6
|
Filipiuc SI, Neagu AN, Uritu CM, Tamba BI, Filipiuc LE, Tudorancea IM, Boca AN, Hâncu MF, Porumb V, Bild W. The Skin and Natural Cannabinoids-Topical and Transdermal Applications. Pharmaceuticals (Basel) 2023; 16:1049. [PMID: 37513960 PMCID: PMC10386449 DOI: 10.3390/ph16071049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The chemical constituents of the Cannabis plant known as cannabinoids have been extensively researched for their potential therapeutic benefits. The use of cannabinoids applied to the skin as a potential method for both skin-related benefits and systemic administration has attracted increasing interest in recent years. This review aims to present an overview of the most recent scientific research on cannabinoids used topically, including their potential advantages for treating a number of skin conditions like psoriasis, atopic dermatitis, and acne. Additionally, with a focus on the pharmacokinetics and security of this route of administration, we investigate the potential of the transdermal delivery of cannabinoids as a method of systemic administration. The review also discusses the restrictions and difficulties related to the application of cannabinoids on the skin, emphasizing the potential of topical cannabinoids as a promising route for both localized and systemic administration. More studies are required to fully comprehend the efficacy and safety of cannabinoids in various settings.
Collapse
Affiliation(s)
- Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I bvd, No. 20A, 700505 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Andreea Nicoleta Boca
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | | | - Vlad Porumb
- Department Surgery, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street, 16, 700115 Iasi, Romania
| | - Walther Bild
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| |
Collapse
|
7
|
Creanga-Murariu I, Filipiuc LE, Cuciureanu M, Tamba BI, Alexa-Stratulat T. Should oncologists trust cannabinoids? Front Pharmacol 2023; 14:1211506. [PMID: 37521486 PMCID: PMC10373070 DOI: 10.3389/fphar.2023.1211506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Cannabis enjoyed a "golden age" as a medicinal product in the late 19th, early 20th century, but the increased risk of overdose and abuse led to its criminalization. However, the 21st century have witnessed a resurgence of interest and a large body of literature regarding the benefits of cannabinoids have emerged. As legalization and decriminalization have spread around the world, cancer patients are increasingly interested in the potential utility of cannabinoids. Although eager to discuss cannabis use with their oncologist, patients often find them to be reluctant, mainly because clinicians are still not convinced by the existing evidence-based data to guide their treatment plans. Physicians should prescribe cannabis only if a careful explanation can be provided and follow up response evaluation ensured, making it mandatory for them to be up to date with the positive and also negative aspects of the cannabis in the case of cancer patients. Consequently, this article aims to bring some clarifications to clinicians regarding the sometimes-confusing various nomenclature under which this plant is mentioned, current legislation and the existing evidence (both preclinical and clinical) for the utility of cannabinoids in cancer patients, for either palliation of the associated symptoms or even the potential antitumor effects that cannabinoids may have.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Leontina Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Magda Cuciureanu
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | | |
Collapse
|
8
|
Persia D, Mangiavacchi F, Marcotullio MC, Rosati O. Cannabinoids as multifaceted compounds. PHYTOCHEMISTRY 2023; 212:113718. [PMID: 37196772 DOI: 10.1016/j.phytochem.2023.113718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Since ancient times, Cannabis and its preparations have found various applications such as for medical, recreational and industrial purposes. Subsequently the 1930s, legislation in many countries has restricted its use due to its psychotropic properties. More recently, the discovery of endocannabinoid system, including new receptors, ligands, and mediators, its role in maintaining the homeostasis of the human body and the possible implication in various physiological and pathophysiological processes has also been understood. Based on this evidence, researchers were able to develop new therapeutic targets for the treatment of various pathological disorders. For this purpose, Cannabis and cannabinoids were subjected for the evaluation of their pharmacological activities. The renewed interest in the medical use of cannabis for its potential therapeutic application has prompted legislators to take action to regulate the safe use of cannabis and products containing cannabinoids. However, each country has an enormous heterogeneity in the regulation of laws. Here, we are pleased to show a general and prevailing overview of the findings regarding cannabinoids and the multiple research fields such as chemistry, phytochemistry, pharmacology and analytics in which they are involved.
Collapse
Affiliation(s)
- Diana Persia
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Francesca Mangiavacchi
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy; Current Address: Department of Chemistry 'Ugo Schiff', Via Della Lastruccia, 16 - Università Degli Studi di Firenze, 50019, Sesto Fiorentino, Italy
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy
| | - Ornelio Rosati
- Department of Pharmaceutical Sciences, Via Del Liceo, 1 - Università Degli Studi di Perugia, 06123, Perugia, Italy.
| |
Collapse
|
9
|
Filipiuc LE, Ştefănescu R, Solcan C, Ciorpac M, Szilagyi A, Cojocaru D, Stanciu GD, Creangă I, Caratașu CC, Ababei DC, Gavrila RE, Timofte AD, Filipiuc SI, Bild V. Acute Toxicity and Pharmacokinetic Profile of an EU-GMP-Certified Cannabis sativa L. in Rodents. Pharmaceuticals (Basel) 2023; 16:ph16050694. [PMID: 37242477 DOI: 10.3390/ph16050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The conundrum of Cannabis sativa's applications for therapeutical purposes is set apart by the hundreds of known and commercially available strains, the social, cultural and historical context, and the legalization of its use for medical purposes in various jurisdictions around the globe. In an era where targeted therapies are continuously being developed and have become the norm, it is imperative to conduct standardized, controlled studies on strains currently cultivated under Good Manufacturing Practices (GMP) certification, a standard that guarantees the quality requirements for modern medical and therapeutic use. Thus, the aim of our study is to evaluate the acute toxicity of a 15.6% THC: <1% CBD, EU-GMP certified, Cannabis sativa L. in rodents, following the OECD acute oral toxicity guidelines, and to provide an overview of its pharmacokinetic profile. Groups of healthy female Sprague-Dawley rats were treated orally with a stepwise incremental dose, each step using three animals. The absence or presence of plant-induced mortality in rats dosed at one step determined the next step. For the EU GMP-certified Cannabis sativa L. investigated, we determined an oral LD50 value of over 5000 mg/kg in rats and a human equivalent oral dose of ≈806.45 mg/kg. Additionally, no significant clinical signs of toxicity or gross pathological findings were observed. According to our data, the toxicology, safety and pharmacokinetic profile of the tested EU-GMP-certified Cannabis sativa L. support further investigations through efficacy and chronic toxicity studies in preparation for potential future clinical applications and especially for the treatment of chronic pain.
Collapse
Affiliation(s)
- Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Raluca Ştefănescu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, 700490 Iasi, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Dana Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cătălin-Cezar Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Roxana-Elena Gavrila
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei-Daniel Timofte
- Histology Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
10
|
Crescente G, Minervini G, Spagnuolo C, Moccia S. Cannabis Bioactive Compound-Based Formulations: New Perspectives for the Management of Orofacial Pain. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010106. [PMID: 36615298 PMCID: PMC9822121 DOI: 10.3390/molecules28010106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The management of orofacial pain to alleviate the quality of life of affected patients is becoming increasingly challenging for scientific research and healthcare professionals. From this perspective, in addition to conventional therapies, new alternatives are being sought, increasingly looking at the use of both natural and synthetic products. Cannabis sativa L. represents an interesting source of bioactive compounds, including non-psychoactive cannabinoids, flavonoids, and terpenes, many of which are effective in improving pain intensity. Here, we aim to analyze the possible mechanisms of action of the bioactive natural and synthetic hemp-derived compounds responsible for the modulatory effects on pain-related pathways. The ability of these compounds to act on multiple mechanisms through a synergistic effect, reducing both the release of inflammatory mediators and regulating the response of the endocannabinoid system, makes them interesting agents for alternative formulations to be used in orofacial pain.
Collapse
Affiliation(s)
| | - Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
- Correspondence: ; Tel.: +39-082-5299-423
| |
Collapse
|
11
|
Pricope CV, Tamba BI, Stanciu GD, Cuciureanu M, Neagu AN, Creanga-Murariu I, Dobrovat BI, Uritu CM, Filipiuc SI, Pricope BM, Alexa-Stratulat T. The Roles of Imaging Biomarkers in the Management of Chronic Neuropathic Pain. Int J Mol Sci 2022; 23:13038. [PMID: 36361821 PMCID: PMC9657736 DOI: 10.3390/ijms232113038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 08/04/2023] Open
Abstract
Chronic neuropathic pain (CNP) affects around 10% of the general population and has a significant social, emotional, and economic impact. Current diagnosis techniques rely mainly on patient-reported outcomes and symptoms, which leads to significant diagnostic heterogeneity and subsequent challenges in management and assessment of outcomes. As such, it is necessary to review the approach to a pathology that occurs so frequently, with such burdensome and complex implications. Recent research has shown that imaging methods can detect subtle neuroplastic changes in the central and peripheral nervous system, which can be correlated with neuropathic symptoms and may serve as potential markers. The aim of this paper is to review available imaging methods used for diagnosing and assessing therapeutic efficacy in CNP for both the preclinical and clinical setting. Of course, further research is required to standardize and improve detection accuracy, but available data indicate that imaging is a valuable tool that can impact the management of CNP.
Collapse
Affiliation(s)
- Cosmin Vasilica Pricope
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I bvd. No. 22, 700505 Iasi, Romania
| | - Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bogdan-Ionut Dobrovat
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silviu Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Bianca-Mariana Pricope
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Teodora Alexa-Stratulat
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Medical Oncology-Radiotherapy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
12
|
Badiola I, Doshi A, Narouze S. Cannabis, cannabinoids, and cannabis-based medicines: future research directions for analgesia. Reg Anesth Pain Med 2022; 47:rapm-2021-103109. [PMID: 35534020 DOI: 10.1136/rapm-2021-103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/05/2022] [Indexed: 11/03/2022]
Abstract
The use of cannabis spans thousands of years and encompasses almost all dimensions of the human experience, including consumption for recreational, religious, social, and medicinal purposes. Its use in the management of pain has been anecdotally described for millennia. However, an evidence base has only developed over the last 100 years, with an explosion in research occurring in the last 20-30 years, as more states in the USA as well as countries worldwide have legalized and encouraged its use in pain management. Pain remains one of the most common reasons for individuals deciding to use cannabis medicinally. However, cannabis remains illegal at the federal level in the USA and in most countries of the world, making it difficult to advance quality research on its efficacy for pain treatment. Nonetheless, new products derived both from the cannabis plant and the chemistry laboratory are being developed for use as analgesics. This review examines the current landscape of cannabinoids research and future research directions in the management of pain.
Collapse
Affiliation(s)
- Ignacio Badiola
- Anesthesiology & Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amit Doshi
- Anesthesiology & Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
13
|
Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 2021; 13:pharmaceutics13111823. [PMID: 34834237 PMCID: PMC8625816 DOI: 10.3390/pharmaceutics13111823] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The most important discoveries in pharmacology, such as certain classes of analgesics or chemotherapeutics, started from natural extracts which have been found to have effects in traditional medicine. Cannabis, traditionally used in Asia for the treatment of pain, nausea, spasms, sleep, depression, and low appetite, is still a good candidate for the development of new compounds. If initially all attention was directed to the endocannabinoid system, recent studies suggest that many of the clinically proven effects are based on an intrinsic chain of mechanisms that do not necessarily involve only cannabinoid receptors. Recent research has shown that major phytocannabinoids and their derivatives also interact with non-cannabinoid receptors such as vanilloid receptor 1, transient receptor ankyrin 1 potential, peroxisome proliferator-activated receptor-gamma or glitazone receptor, G55 protein-coupled receptor, and nuclear receptor, producing pharmacological effects in diseases such as Alzheimer's, epilepsy, depression, neuropathic pain, cancer, and diabetes. Nonetheless, further studies are needed to elucidate the precise mechanisms of these compounds. Structure modulation of phytocannabinoids, in order to improve pharmacological effects, should not be limited to the exploration of cannabinoid receptors, and it should target other courses of action discovered through recent research.
Collapse
|
14
|
Coronado-Álvarez A, Romero-Cordero K, Macías-Triana L, Tatum-Kuri A, Vera-Barrón A, Budde H, Machado S, Yamamoto T, Imperatori C, Murillo-Rodríguez E. The synthetic CB 1 cannabinoid receptor selective agonists: Putative medical uses and their legalization. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110301. [PMID: 33741446 DOI: 10.1016/j.pnpbp.2021.110301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
More than 500 molecules have been identified as components of Cannabis sativa (C. sativa), of which the most studied is Δ9-tetrahydrocannabinol (Δ9-THC). Several studies have suggested that Δ9-THC exerts diverse biological effects, ranging from fragmentation of DNA to behavioral disruptions. Currently, it is accepted that most of the pharmacological properties of Δ9-THC engage the activation of the cannabinoid receptors, named CB1 and CB2. Interestingly, multiple pieces of evidence have suggested that the cannabinoid receptors play an active role in the modulation of several diseases leading to the design of synthetic cannabinoid-like compounds. Advances in the development of synthetic CB1 cannabinoid receptor selective agonists as therapeutical approaches are, however, limited. This review focuses on available evidence searched in PubMed regarding the synthetic CB1 cannabinoid receptor selective agonists such as AM-1235, arachidonyl-2' chloroethylamide (ACEA), CP 50,556-1 (Levonantradol), CP-55,940, HU-210, JWH-007, JWH-018, JWH-200 (WIN 55,225), methanandamide, nabilone, O-1812, UR-144, WIN 55,212-2, nabiximols, and dronabinol. Indeed, it would be ambitious to describe all available evidence related to the synthetic CB1 cannabinoid receptor selective agonists. However, and despite the positive evidence on the positive results of using these compounds in experimental models of health disturbances and preclinical trials, we discuss evidence in regards some concerns due to side effects.
Collapse
Affiliation(s)
- Astrid Coronado-Álvarez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Karen Romero-Cordero
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Lorena Macías-Triana
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Agnes Tatum-Kuri
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Alba Vera-Barrón
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mexico; Medical School Hamburg, Hamburg, Germany
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mexico; Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mexico; Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group, Mexico; Cognitive and Clinical Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico; Intercontinental Neuroscience Research Group, Mexico.
| |
Collapse
|
15
|
Yu CHJ, Rupasinghe HPV. Cannabidiol-based natural health products for companion animals: Recent advances in the management of anxiety, pain, and inflammation. Res Vet Sci 2021; 140:38-46. [PMID: 34391060 DOI: 10.1016/j.rvsc.2021.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Recent advances in cannabidiol (CBD) use in canines and felines for anxiety management, pain management, and anti-inflammatory effects were reviewed using a literature search conducted with the following keywords: CBD, anxiety, inflammation, pain, dogs, cats, and companion animals. For decades, research on CBD has been hindered due to the status of cannabis (C. sativa L.) as an illicit drug. Limited safety data show that CBD is well-tolerated in dogs, with insufficient information on the safety profile of CBD in cats. Upon oral supplementation of CBD, elevation in liver enzymes was observed for both dogs and cats, and pharmacokinetics of CBD are different in the two species. There is a significant gap in the literature on the therapeutic use of CBD in cats, with no feline data on anxiety, pain, and inflammation management. There is evidence that chronic osteoarthritic pain in dogs can be reduced by supplementation with CBD. Furthermore, experiments are required to better understand whether CBD has an influence on noise-induced fear and anxiolytic response. Preliminary evidence exists to support the analgesic properties of CBD in treating chronic canine osteoarthritis; however, there are inter- and intra-species differences in pharmacokinetics, tolerance, dosage, and safety of CBD. Therefore, to validate the anxiety management, pain management, and anti-inflammatory efficacy of CBD, it is essential to conduct systematic, randomized, and controlled trials. Further, the safety and efficacious dose of CBD in companion animals warrants investigation.
Collapse
Affiliation(s)
- Cindy H J Yu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
16
|
Abstract
As medical cannabis is legalized, food safety management systems, including CBD (cannabidiol), have received attention from scientific and engineering perspectives. Observations attribute CBD changes in acidic environments and high temperatures to THC (tetrahydrocannabinol). The current research focuses on employing and optimizing 3D printers, specifically material extrusion additive manufacturing processes for telemedicine applications to safely and accurately deliver CBD-infused food. Soft meat is prepared by supercritical CO2 (SC-CO2) process and simultaneously infused with hemp oil for food printing. This study personalized the amount of CBD-infused food and analyzed its operating parameters based on a theoretical Hagen-Poiseuille equation and pressure drop. Head speed, direction change within a given time, pressure drops at tip or piston, the constant mass-flux in PTE (piston type extrusion), Vizo design (VD) with aesthetic elements, and head travel distance have been optimized. Between the University of Texas at El Paso in Texas, USA, and the Korea University in Seoul, Korea, repeated IoT system variable experiments through the web-cloud were limited to less than 1 min, including print time. The telemedicine system was first tried and successfully performed using CBD-infused foods. During this process, images, G-code, video, and text, including medical descriptions, were provided simultaneously with CBD-infused food.
Collapse
|
17
|
Sholler DJ, Huestis MA, Amendolara B, Vandrey R, Cooper ZD. Therapeutic potential and safety considerations for the clinical use of synthetic cannabinoids. Pharmacol Biochem Behav 2020; 199:173059. [PMID: 33086126 PMCID: PMC7725960 DOI: 10.1016/j.pbb.2020.173059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
The phytocannabinoid Δ9-tetrahydrocannabinol (THC) was isolated and synthesized in the 1960s. Since then, two synthetic cannabinoids (SCBs) targeting the cannabinoid 1 (CB1R) and 2 (CB2R) receptors were approved for medical use based on clinical safety and efficacy data: dronabinol (synthetic THC) and nabilone (synthetic THC analog). To probe the function of the endocannabinoid system further, hundreds of investigational compounds were developed; in particular, agonists with (1) greater CB1/2R affinity relative to THC and (2) full CB1/2R agonist activity. This pharmacological profile may pose greater risks for misuse and adverse effects relative to THC, and these SCBs proliferated in retail markets as legal alternatives to cannabis (e.g., novel psychoactive substances [NPS], "Spice," "K2"). These SCBs were largely outlawed in the U.S., but blanket policies that placed all SCB chemicals into restrictive control categories impeded research progress into novel mechanisms for SCB therapeutic development. There is a concerted effort to develop new, therapeutically useful SCBs that target novel pharmacological mechanisms. This review highlights the potential therapeutic efficacy and safety considerations for unique SCBs, including CB1R partial and full agonists, peripherally-restricted CB1R agonists, selective CB2R agonists, selective CB1R antagonists/inverse agonists, CB1R allosteric modulators, endocannabinoid-degrading enzyme inhibitors, and cannabidiol. We propose promising directions for SCB research that may optimize therapeutic efficacy and diminish potential for adverse events, for example, peripherally-restricted CB1R antagonists/inverse agonists and biased CB1/2R agonists. Together, these strategies could lead to the discovery of new, therapeutically useful SCBs with reduced negative public health impact.
Collapse
Affiliation(s)
- Dennis J Sholler
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin Amendolara
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ryan Vandrey
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziva D Cooper
- UCLA Cannabis Research Initiative, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Öblom H, Cornett C, Bøtker J, Frokjaer S, Hansen H, Rades T, Rantanen J, Genina N. Data-enriched edible pharmaceuticals (DEEP) of medical cannabis by inkjet printing. Int J Pharm 2020; 589:119866. [DOI: 10.1016/j.ijpharm.2020.119866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
|
19
|
Pichini S, Lo Faro AF, Busardò FP, Giorgetti R. Medicinal Cannabis and Synthetic Cannabinoid Use. ACTA ACUST UNITED AC 2020; 56:medicina56090453. [PMID: 32906770 PMCID: PMC7558594 DOI: 10.3390/medicina56090453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/03/2022]
Abstract
Cannabis products have been used for centuries by humans for recreational and medical purposes. Resent research, proposed the promising therapeutic potential of cannabis and related cannabinoids for a wide range of medical conditions, including psychiatric and neurological diseases. This Special Issue presents the latest updates on medicinal cannabis and synthetic cannabinoids pharmacology, toxicology and new analytical methods to identify and quantify these compounds in conventional and non-conventional biological matrices. Moreover, it provides current data regarding their adverse effects, safety, application for medical purposes and their harmful effects.
Collapse
Affiliation(s)
- Simona Pichini
- Analytical Pharmacotoxicology Unit, National Centre on Addiction and Doping, Istituto Superiore di Sanità V.Le Regina Elena 299, 00161 Rome, Italy;
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, “Politecnica delle Marche” University of Ancona, Via Tronto 10/a, 60126 Ancona, Italy; (A.F.L.F); (R.G.)
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, “Politecnica delle Marche” University of Ancona, Via Tronto 10/a, 60126 Ancona, Italy; (A.F.L.F); (R.G.)
- Correspondence: ; Tel.: +39-0712206274
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, “Politecnica delle Marche” University of Ancona, Via Tronto 10/a, 60126 Ancona, Italy; (A.F.L.F); (R.G.)
| |
Collapse
|
20
|
Salami SA, Martinelli F, Giovino A, Bachari A, Arad N, Mantri N. It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets. Molecules 2020; 25:E4036. [PMID: 32899626 PMCID: PMC7571138 DOI: 10.3390/molecules25184036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis is an annual plant with a long history of use as food, feed, fiber, oil, medicine, and narcotics. Despite realizing its true value, it has not yet found its true place. Cannabis has had a long history with many ups and downs, and now it is our turn to promote it. Cannabis contains approximately 600 identified and many yet unidentified potentially useful compounds. Cannabinoids, phenolic compounds, terpenoids, and alkaloids are some of the secondary metabolites present in cannabis. However, among a plethora of unique chemical compounds found in this plant, the most important ones are phytocannabinoids (PCs). Over hundreds of 21-22-carbon compounds exclusively produce in cannabis glandular hairs through either polyketide and or deoxyxylulose phosphate/methylerythritol phosphate (DOXP/MEP) pathways. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are those that first come to mind while talking about cannabis. Nevertheless, despite the low concentration, cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabinodiol (CBND), and cannabinidiol (CBDL) may have potentially some medical effects. PCs and endocannabinoids (ECs) mediate their effects mainly through CB1 and CB2 receptors. Despite all concerns regarding cannabis, nobody can ignore the use of cannabinoids as promising tonic, analgesic, antipyretic, antiemetic, anti-inflammatory, anti-epileptic, anticancer agents, which are effective for pain relief, depression, anxiety, sleep disorders, nausea and vomiting, multiple sclerosis, cardiovascular disorders, and appetite stimulation. The scientific community and public society have now increasingly accepted cannabis specifically hemp as much more than a recreational drug. There are growing demands for cannabinoids, mainly CBD, with many diverse therapeutic and nutritional properties in veterinary or human medicine. The main objective of this review article is to historically summarize findings concerning cannabinoids, mainly THC and CBD, towards putting these valuable compounds into food, feed and health baskets and current and future trends in the consumption of products derived from cannabis.
Collapse
Affiliation(s)
- Seyed Alireza Salami
- Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria (PA), Italy;
| | - Ava Bachari
- School of Science, RMIT University, Melbourne, Bundoora, VIC 3083, Australia; (A.B.); (N.M.)
| | - Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne, Bundoora, VIC 3083, Australia; (A.B.); (N.M.)
| |
Collapse
|