1
|
Elattar KM, Ghoniem AA, Al-Otibi FO, Fakhouri AS, Helmy YA, Saber WIA, Hassan MAE, Elsayed A. Eco-friendly synthesis of Ag/CeO 2 and CuO/CeO 2 nanocomposites using Curcuma longa extract and assessment of their antioxidant, antifungal, and cytotoxic activities. RSC Adv 2025; 15:12100-12116. [PMID: 40248230 PMCID: PMC12005080 DOI: 10.1039/d5ra00739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
This work focused on the biosynthesis of Ag/CeO2 and CuO/CeO2 nanocomposites (NCs) using Curcuma longa extract. The nanocomposites were efficiently characterized using different techniques such as FTIR, UV-visible spectroscopy, zeta potential, DLS, TEM, SEM, EDX, and XRD analyses. The C. longa extract provided high phenolic and flavonoid contents, while demonstrating strong antioxidant action at IC50 = 0.042 mg mL-1. In particular, both nanocomposites exhibited privileged antifungal activity against Macrophomina phaseolina with superiority to CuO/CeO2 (MIC = 29 µg mL-1) over Ag/CeO2 (MIC = 49 µg mL-1). TEM analyses confirmed the adverse effect of nanocomposites on the fungal cell wall. The CuO/CeO2 structure led to mitochondrial and cytoplasmic damage in MCF-7 cells (IC50 = 0.5071 µg mL-1) according to cytotoxicity tests; however, the Ag/CeO2 NC resulted in significant nuclear damage and an increased occurrence of autophagy events. The nanocomposites showed cytotoxic properties by causing oxidative stress, leading to damage of the genomic material and defects in cell structure, suggesting potential therapeutic applications.
Collapse
Affiliation(s)
- Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University El-Gomhoria St. Mansoura 35516 Egypt
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center Giza 12619 Egypt
| | - Fatimah O Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University Riyadh 11451 Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
| | - Abdulaziz S Fakhouri
- Center of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University Riyadh 12372 Saudi Arabia
| | - Yosra A Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky Lexington KY 40546 USA
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center Giza 12619 Egypt
| | - Mahmoud A E Hassan
- Animal Production Research Institute (APRI), Agricultural Research Center Giza 12619 Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
2
|
Rokhgireh S, Chaichian S, Mehdizadeh Kashi A, Haji Ali B, Tehermanesh K, Ajdary M, Nasir S, Pirhajati Mahabadi V, Eslahi N. Curcumin-gold nanoshell mediated near-infrared irradiation on human ovarian cancer cell: in vitro study. Med Oncol 2025; 42:145. [PMID: 40167850 DOI: 10.1007/s12032-025-02687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Ovarian cancer is considered a predominant female reproductive malignancy and poses a significant threat due to its 80-90% fatality rate. The typical approach involves surgery and chemotherapy, which due to problems such as drug resistance, encourage researchers to use new methods such as nanotechnology. The current study introduces a novel strategy: leveraging Curcumin-Gold Nanoshells (Cur-AuNShs) to combat chemotherapy's adverse effects and overcome drug resistance through hyperthermia mediation. Gold-based nanoparticles that absorb laser have shown the potential to target and treat cancer selectively through highly efficient light-to-heat conversion. This experimental study focused on the synthesis of AuNShs and their subsequent conjugation with Cur. The gold shell coverage on the surfaces of silica nanoparticles was examined using UV-VIS spectroscopy and transmission electron microscopy (TEM). Dynamic light scattering (DLS) and Zeta potential analysis were employed to evaluate the stability of particle size and surface charge. Human ovarian carcinoma cell lines (SKOV-3) were treated with a combination of Cur (15 μM) and AuNShs (75 μM), under the activation of near-infrared (NIR) laser irradiation at a power of 2.5 W/cm3 for 5 or 10 min. Cell viability was then assessed using the MTT assay. Lastly, the expression levels of Bax, Bcl2, and HSPB1 genes were analyzed using the real-time polymerase chain reaction (real-time PCR) technique. The average diameter of the AuNShs was measured at 70 ± 7.1 nm. Findings revealed that after a 48 h incubation with Cur-AuNShs followed by 10 min of laser irradiation, cell viability decreased significantly from 44.3 ± 1.7 to 14.4 ± 1. Analysis using real-time PCR showed an increase in Bax expression alongside a decrease in Bcl2 expression. Additionally, the expression of the HSPB1 gene was reduced from 1.35 ± 1 to 0.9 ± 0.65 in the laser-treated Cur-AuNShs-NIR group. The AuNShs, when combined with hyperthermia at 43 °C, demonstrated potential as an effective carrier for Cur administration. This combination was associated with a greater activation of apoptosis compared to the free drug.
Collapse
Affiliation(s)
- Samaneh Rokhgireh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Mehdizadeh Kashi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
- Iranian Scientific Society of Minimally Invasive Gynecology, Tehran, Iran
| | - Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Tehermanesh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Setare Nasir
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neurosciences Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
| | - Neda Eslahi
- Finetech in Medicine Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
| |
Collapse
|
3
|
Salami C, Mbakidi JP, Audonnet S, Brassart-Pasco S, Bouquillon S. Extraction of Curcuminoids and Carvacrol with Biobased Ionic Liquids-Evaluation of Anti-Cancer Properties of Curcuminoid Extracts. Molecules 2025; 30:1180. [PMID: 40076402 PMCID: PMC11901620 DOI: 10.3390/molecules30051180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Six biobased ionic liquids were prepared from saturated fatty acids (octanoic, decanoic and dodecanoic acids) and choline with yields up to 90% following procedures respecting green chemistry principles. These ionic liquids were fully characterized (NMR, IR, elemental analysis, viscosimetry and TGA) and used as extraction solvents for bioactive compounds (curcuminoids and carvacrol) using classical conditions, and the ionic liquids were able to be recovered after five runs without loss of activity. The ionic liquid containing a C12 carbon chain was the best extracting solvent, extracting 95% of the total curcuminoids contained in turmeric and 69% of the total carvacrol contained in oregano, which are higher yields compared to the extraction procedures described in the literature. As C12 ionic liquids were more cytotoxic than C8 ones, the biological activity of the curcuminoids extracted with C8 ionic liquids was evaluated on a MIAPaCa-2, a pancreatic adenocarcinoma cell line for which antitumor activity of curcuminoids had previously been reported. Compared to the cytotoxicity of the commercially available extract, the cytotoxic activity of the extracts was slightly weaker.
Collapse
Affiliation(s)
- Chefikou Salami
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Boîte n° 44, B.P. 1039, 51687 Reims, France; (C.S.); (J.-P.M.)
| | - Jean-Pierre Mbakidi
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Boîte n° 44, B.P. 1039, 51687 Reims, France; (C.S.); (J.-P.M.)
| | - Sandra Audonnet
- URCATech, URCACyt, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay CS30018, 51095 Reims, France;
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369 (MEDyC), Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay CS30018, 51095 Reims, France;
| | - Sandrine Bouquillon
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, Boîte n° 44, B.P. 1039, 51687 Reims, France; (C.S.); (J.-P.M.)
| |
Collapse
|
4
|
Netshimbupfe MH, Berner J, Van Der Kooy F, Oladimeji O, Gouws C. The effect of environmental stressors on the anticancer potential of Amaranthus hypochondriacus aqueous extracts and fractions. Nat Prod Res 2025; 39:1729-1734. [PMID: 38156555 DOI: 10.1080/14786419.2023.2299307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Some Amaranthus species have been shown to have pharmacological properties such as activity against cancer, and it is also used as a traditional herbal medicine in many rural parts of the world. The (3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay was used as a screening tool to determine the approximate cell viability inhibitory concentrations of methanol and aqueous crude extracts of Amaranthus spp. The extracts were screened using small-cell lung cancer (H69V), hepatocellular carcinoma (HepG2/C3A) and non-cancerous kidney cells (Vero) cell lines. Viability was assessed following exposure to a series of concentrations of each extract and A. hypochondriacus showed cytotoxicity of 70.55 µg/mL against H69V with a Si index of 1.8. The fractionated aqueous extract of 40 °C-treated A. hypochondriacus under well-watered conditions had a higher viability inhibition on H69V and Vero cell lines compared to the A. caudatus, A. cruentus and A. spinosus crude extracts. In conclusion, A. hypochondriacus could serve as a potential source of anticancer phytoconstituents for drug development.
Collapse
Affiliation(s)
| | - Jacques Berner
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Frank Van Der Kooy
- Unit for Environmental Science and Management, North-West University (Potchefstroom campus), Potchefstroom, South Africa
| | - Olakunle Oladimeji
- Unit for Environmental Science and Management, North-West University (Potchefstroom campus), Potchefstroom, South Africa
| | - Chrisna Gouws
- Unit for Environmental Science and Management, North-West University (Potchefstroom campus), Potchefstroom, South Africa
| |
Collapse
|
5
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2025; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Campagna R, Cecati M, Vignini A. The Multifaceted Role of the Polyphenol Curcumin: A Focus on Type 2 Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e15733998313402. [PMID: 39620334 DOI: 10.2174/0115733998313402240726080637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 04/23/2025]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder characterized by chronic hyperglycemia, which often co-exists with other metabolic impairments. This condition can damage various tissues and organs, resulting in the development of severe complications, both microvascular, such as retinopathy, nephropathy, and neuropathy, and macrovascular, responsible for an increased risk of cardiovascular diseases. Curcumin is the main bioactive molecule found in the rhizomes of turmeric. Many studies have reported curcumin to exhibit antioxidant, anti-inflammatory, anti-infectious, and anti-cancer properties; thus, there is an increasing interest in exploiting these properties in order to prevent the rise or the progression of T2DM, as well as its possible associated conditions. In this review, we have presented the current state-ofart regarding the clinical trials that have involved curcumin administration and analyzed the possible mechanisms by which curcumin might exert the beneficial effects observed in literature.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Scientific Direction, Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
7
|
Katsipis G, Lavrentiadou SN, Geromichalos GD, Tsantarliotou MP, Halevas E, Litsardakis G, Pantazaki AA. Evaluation of the Anti-Amyloid and Anti-Inflammatory Properties of a Novel Vanadium(IV)-Curcumin Complex in Lipopolysaccharides-Stimulated Primary Rat Neuron-Microglia Mixed Cultures. Int J Mol Sci 2024; 26:282. [PMID: 39796150 PMCID: PMC11720140 DOI: 10.3390/ijms26010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability. V-Cur, a novel hemocompatible Vanadium(IV)-curcumin complex with higher solubility and bioactivity than curcumin, is studied here. Co-cultures consisting of rat primary neurons and microglia were treated with LPS and/or curcumin or V-Cur. V-Cur disrupted LPS-induced overexpression of amyloid precursor protein (APP) and the in vitro aggregation of human insulin (HI), more effectively than curcumin. Cell stimulation with LPS also increased full-length, inactive, and total iNOS levels, and the inflammation markers IL-1β and TNF-α. Both curcumin and V-Cur alleviated these effects, with V-Cur reducing iNOS levels more than curcumin. Complementary insights into possible bioactivity mechanisms of both curcumin and V-Cur were provided by In silico molecular docking calculations on Aβ1-42, APP, Aβ fibrils, HI, and iNOS. This study renders curcumin-based compounds a promising anti-inflammatory intervention that may be proven a strong tool in the effort to mitigate neurodegenerative disease pathology and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| | - Sophia N. Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George D. Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P. Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleftherios Halevas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - George Litsardakis
- Laboratory of Materials for Electrotechnics, School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| |
Collapse
|
8
|
Liu S, Matsuo T, Matsuo C, Abe T, Chen J, Sun C, Zhao Q. Perspectives of traditional herbal medicines in treating retinitis pigmentosa. Front Med (Lausanne) 2024; 11:1468230. [PMID: 39712182 PMCID: PMC11660805 DOI: 10.3389/fmed.2024.1468230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Medicinal plants, also known as herbs, have been discovered and utilized in traditional medical practice since prehistoric times. Medicinal plants have been proven rich in thousands of natural products that hold great potential for the development of new drugs. Previously, we reviewed the types of Chinese traditional medicines that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from China in 742. This article aims to review the origin of Kampo (Japanese traditional medicine), and to present the overview of neurodegenerative diseases and retinitis pigmentosa as well as medicinal plants in some depth. Through the study of medical history of the origin of Kampo, we found that herbs medicines contain many neuroprotective ingredients. It provides us a new perspective on extracting neuroprotective components from herbs medicines to treat neurodegenerative diseases. Retinitis pigmentosa (one of the ophthalmic neurodegenerative diseases) is an incurable blinding disease and has become a popular research direction in global ophthalmology. To date, treatments for retinitis pigmentosa are very limited worldwide. Therefore, we intend to integrate the knowledge and skills from different disciplines, such as medical science, pharmaceutical science and plant science, to take a new therapeutic approach to treat neurodegenerative diseases. In the future, we will use specific active ingredients extracted from medicinal plants to treat retinitis pigmentosa. By exploring the potent bioactive ingredients present in medicinal plants, a valuable opportunity will be offered to uncover novel approaches for the development of drugs which target for retinitis pigmentosa.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama, Japan
| | - Chie Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jinghua Chen
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Sorouri N, Soleymani N, Sadr S, Rahdar A, Ebrahimzadeh E, Borji H. Investigating the therapeutic effects of curcumin nanocapsules in hydatid cyst-infected mice. Exp Parasitol 2024; 267:108860. [PMID: 39528001 DOI: 10.1016/j.exppara.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND/OBJECTIVE The primary treatment for cysts is surgery, including removing the cyst and administering the appropriate chemical drugs. Herbal remedies have gained popularity as a viable and secure alternative to conventional pharmaceuticals. It may be advantageous to use nanocapsules to overcome the bioavailability challenges associated with herbal remedies like curcumin. The present study aims to provide insights into the effectiveness of curcumin nanocapsules in treating hydatid infections. METHODS Curcumin-loaded oil-in-water surfactant-based biocompatible nanomicelles were developed from dissolving Curcumin in 1% (w/w) solutions of ethyl butyrate oil by dissolving an amount of fatty acid sodium caprylate (SC, 0.09 g) and F127 (0.009 g), phosphate-buffered saline (PBS at pH 7.4) under vigorous stirring at a fixed ethyl butyrate-to-surfactant molar ratio of 10 and final total volume of 50 mL. The excess of free PHT was eliminated by dialysis for 24 h. Following five months after infection, 45 mice were divided into six groups. Groups 1, 2, and 3 were treated daily with curcumin nanocapsules (0.5, 0.25, 0.125 mg/ml) for one month. Group 4 was treated with curcumin (0.5 mg/ml), group 5 was treated with albendazole (150 mg/kg), and group 6 was the negative control group without treatments (only received saline). A detailed analysis of the cysts' physical characteristics, including their size and weight, has been conducted. RESULTS The mean zeta potential spectrum of the nanocapsules was -33.96 mV. Regarding the total cyst numbers, all three nanocapsule groups had significantly lower total cyst numbers than the curcumin, albendazole, and negative control groups. Regarding the total cyst weight, all three nanocapsule groups had a significantly lower total cyst weight than the curcumin and negative control groups. Regarding the cyst with the maximum size, nanocapsules groups 1 and 2 had a significantly smaller size than the curcumin, albendazole, and negative control groups. CONCLUSION The current study found that encapsulation positively affects curcumin efficacy as a superior alternative to chemical drugs, offering both biological advantages and environmental benefits.
Collapse
Affiliation(s)
- Negar Sorouri
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Elahe Ebrahimzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
10
|
El Oirdi M, Farhan M. Clinical Trial Findings and Drug Development Challenges for Curcumin in Infectious Disease Prevention and Treatment. Life (Basel) 2024; 14:1138. [PMID: 39337921 PMCID: PMC11432846 DOI: 10.3390/life14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Since ancient times, turmeric, scientifically known as Curcuma longa, has been renowned for its therapeutic properties. Recently, extensive documentation has highlighted the prevalence of microbial diseases without effective treatments, the increased expense of certain antimicrobial medications, and the growing occurrence of antimicrobial drug resistance. Experts predict that drug resistance will emerge as a significant global cause of death by the middle of this century, thereby necessitating intervention. Curcumin, a major curcuminoid molecule, has shown extensive antimicrobial action. Improving and altering the use of natural antimicrobial agents is the most effective approach to addressing issues of targeted specificity and drug resistance in chemically synthesized medicines. Further research is required to explore the efficacy of curcumin and other natural antimicrobial substances in combating microbial infections. The solubility and bioavailability of curcumin impede its antimicrobial capability. To enhance curcumin's antimicrobial effectiveness, researchers have recently employed several methods, including the development of curcumin-based nanoformulations. This review seeks to compile the latest available literature to assess the advantages of curcumin as a natural antimicrobial agent (particularly antiviral and antibacterial) and strategies to enhance its medical efficacy. The future application of curcumin will help to alleviate microbial infections, thereby promoting the sustainability of the world's population.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Chemistry, College of Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
11
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Neuroprotective Effects of Curcumin in Neurodegenerative Diseases. Foods 2024; 13:1774. [PMID: 38891002 PMCID: PMC11172163 DOI: 10.3390/foods13111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood-brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
12
|
Thomas A, Shinde S, Wavhale R, Jadhav P, Tambe S, Lokhande K, Chitlange S. In-silico screening of phytomolecules against multiple targets for wound management. In Silico Pharmacol 2024; 12:19. [PMID: 38550524 PMCID: PMC10965871 DOI: 10.1007/s40203-024-00194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/07/2024] [Indexed: 03/28/2025] Open
Abstract
Chronic wound healing, especially in burns, is a major medical challenge with limited treatments. This study employs computational tools to identify phytomolecules that target multiple pathways involved in wound healing. By utilizing shape analysis, molecular docking, and binding energy calculations, potential compounds are pinpointed,to address the growing problem of chronic wounds. Initially, a set of phytomolecules from the ZINC database of natural molecules was screened to find compounds with shapes similar to well-known wound healing phytomolecules like curcumin, chromogenic acid, gallic acid, and quercetin. The most promising phytomolecules identified through shape similarity were further studied through molecular docking studies on several key targets involved in wound healing, including TNF-α, FGF, and TGF-β. Among the tested phytomolecules, a ligand known as Fluorophenyl(5-(5-chloro-1-(2-fluorophenyl)-2-oxopentyl)-4,5,6,7-tetrahydrothieno[3,2c]pyridine-2-yl acetate) exhibited a strong affinity with favourable binding interactions for TNF-α ( - 7.1 kcal/mole), FGF (-6.9 kcal/mole), and TGF-β (-5.1 kcal/mole). Another compound, 2,4 methoxybenzylidene-(-3)-oxo-2,3-dihydro-1-benzofuran-6-yl-4-methoxybenzoate, demonstrated a strong affinity with low binding energy for TNF-α ( - 6.8 kcal/mole) and FGF ( - 7.0 kcal/mole) targets. Isosakuranetin and Ermanin displayed moderate affinity for both TNF-α and FGF, with the highest affinity observed for the TGF-β target. These findings suggest that these identified phytomolecules hold promise as potential lead compounds for further structural modifications, with the goal of designing new molecules that can target multiple pathways involved in the wound healing process.
Collapse
Affiliation(s)
- Asha Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Sheetal Shinde
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Ravindra Wavhale
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Pranali Jadhav
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Sham Tambe
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Kiran Lokhande
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Deemed to Be University, Pune, Maharashtra India
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP India
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| |
Collapse
|
13
|
Pardeshi S, Mohite P, Rajput T, Puri A. The Nanotech Potential of Curcumin in Pharmaceuticals: An Overview. Curr Drug Discov Technol 2024; 21:e260723219113. [PMID: 37493163 DOI: 10.2174/1570163820666230726125809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 07/27/2023]
Abstract
It is safe to use Curcumin as a cosmetic and therapeutic ingredient in pharmaceutical products. For the uses mentioned above and for fundamental research, it is essential to obtain pure Curcumin from plant sources. There is a requirement for effective extraction and purification techniques that adhere to green chemistry standards for efficiency improvement, process safety, and environmental friendliness. Several outstanding studies have looked into the extraction and purification of Curcumin. This review thoroughly covers the currently available curcumin extraction, synthesis, and transformation techniques. Additionally, Curcumin's poor solubility and low absorption in the human body have limited its potential for pharmaceutical use. However, recent developments in novel curcumin formulations utilizing nanotechnology delivery methods have provided new approaches to transport and maximize the human body's curcumin absorption efficiency. In this review, we explore the various curcumin nanoformulations and the potential medicinal uses of nano curcumin. Additionally, we review the necessary future research directions to recommend Curcumin as an excellent therapeutic candidate.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutics AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra- 401404, India
| | - Popat Mohite
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Tanavirsing Rajput
- Department of Pharmaceutical Chemistry, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| | - Abhijeet Puri
- Department of Pharmacognosy, AET's St. John Institute of Pharmacy and Research, Manor Road, Palghar, Maharashtra-401404, India
| |
Collapse
|
14
|
David IG, Iorgulescu EE, Popa DE, Buleandra M, Cheregi MC, Noor H. Curcumin Electrochemistry-Antioxidant Activity Assessment, Voltammetric Behavior and Quantitative Determination, Applications as Electrode Modifier. Antioxidants (Basel) 2023; 12:1908. [PMID: 38001760 PMCID: PMC10669510 DOI: 10.3390/antiox12111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Curcumin (CU) is a polyphenolic compound extracted from turmeric, a well-known dietary spice. Since it has been shown that CU exerts beneficial effects on human health, interest has increased in its use but also in its analysis in different matrices. CU has an antioxidant character and is electroactive due to the presence of phenolic groups in its molecule. This paper reviews the data reported in the literature regarding the use of electrochemical techniques for the assessment of CU antioxidant activity and the investigation of the voltammetric behavior at different electrodes of free or loaded CU on various carriers. The performance characteristics and the analytical applications of the electrochemical methods developed for CU analysis are compared and critically discussed. Examples of voltammetric investigations of CU interaction with different metallic ions or of CU or CU complexes with DNA as well as the CU applications as electrode modifiers for the enhanced detection of various chemical species are also shown.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Mihaela Carmen Cheregi
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania; (D.E.P.); (M.B.); (M.C.C.)
| | - Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania;
- Medlife-Polisano Hospital, Strada Izvorului 1A, 550172 Sibiu, Romania
| |
Collapse
|
15
|
Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB. Curcumin, inflammation, and neurological disorders: How are they linked? Integr Med Res 2023; 12:100968. [PMID: 37664456 PMCID: PMC10469086 DOI: 10.1016/j.imr.2023.100968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background Despite the extensive research in recent years, the current treatment modalities for neurological disorders are suboptimal. Curcumin, a polyphenol found in Curcuma genus, has been shown to mitigate the pathophysiology and clinical sequalae involved in neuroinflammation and neurodegenerative diseases. Methods We searched PubMed database for relevant publications on curcumin and its uses in treating neurological diseases. We also reviewed relevant clinical trials which appeared on searching PubMed database using 'Curcumin and clinical trials'. Results This review details the pleiotropic immunomodulatory functions and neuroprotective properties of curcumin, its derivatives and formulations in various preclinical and clinical investigations. The effects of curcumin on neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), brain tumors, epilepsy, Huntington's disorder (HD), ischemia, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI) with a major focus on associated signalling pathways have been thoroughly discussed. Conclusion This review demonstrates curcumin can suppress spinal neuroinflammation by modulating diverse astroglia mediated cascades, ensuring the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Mangala Hegde
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | | | | |
Collapse
|
16
|
Kapoor DU, Gaur M, Parihar A, Prajapati BG, Singh S, Patel RJ. Phosphatidylcholine (PCL) fortified nano-phytopharmaceuticals for improvement of therapeutic efficacy. EXCLI JOURNAL 2023; 22:880-903. [PMID: 38317861 PMCID: PMC10839237 DOI: 10.17179/excli2023-6345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 02/07/2024]
Abstract
Phytopharmaceuticals, derived from plants, are increasingly recognized for their potential therapeutic benefits. However, their effectiveness is often hindered by challenges such as poor bioavailability, stability, and targeted delivery. In this study, we aimed to address these limitations by developing PCL (phosphatidylcholine) fortified nano-phytopharmaceuticals to enhance therapeutic efficacy. PCL, a biocompatible and biodegradable polymer, was employed to encapsulate the phytopharmaceuticals, thereby improving their stability and bioavailability. The encapsulation process utilized nanoprecipitation, resulting in the formation of nanoparticles with controlled size and morphology. Various analytical techniques were employed to characterize the physicochemical properties of PCL fortified nano-phytopharmaceuticals, including dynamic light scattering, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Furthermore, the release kinetics of encapsulated phytopharmaceuticals from PCL nanoparticles were evaluated, demonstrating sustained and controlled release profiles, essential for prolonged therapeutic effects. Cytotoxicity studies conducted on in vitro cell culture models confirmed the biocompatibility and non-toxic nature of the developed nano-phytopharmaceuticals. Additionally, in vivo studies were conducted to assess the therapeutic efficacy of PCL fortified nano-phytopharmaceuticals in animal models. The results showIased improved bioavailability, targeted tissue distribution, and enhanced therapeutic effects compared to free phytopharmaceuticals. Moreover, the developed nano-phytopharmaceuticals exhibited prolonged circulation time in the bloodstream, enabling improved drug delivery and reduced dosing frequency. This review highlights the promising potential of PCL fortified nano-phytopharmaceuticals as an effective approach for enhancing the therapeutic efficacy of phytopharmaceuticals. The improved stability, bioavailability, sustained release, and targeted delivery achieved through this formulation strategy offer promising opportunities for advancing plant-based therapies. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Devesh U. Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli-394601 Gujarat, India
| | - Mansi Gaur
- Senior Process Associate, Medical Scribe, Integrity Healthcare Solutions, Ahmedabad-380054, Gujarat, India
| | - Akshay Parihar
- Faculty of Pharmaceutical Sciences, The ICFAI University, Baddi-174103, Himachal Pradesh, India
| | - Bhupendra G. Prajapati
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa-388421, Anand, Gujarat, India
| |
Collapse
|
17
|
Silvestre F, Santos C, Silva V, Ombredane A, Pinheiro W, Andrade L, Garcia M, Pacheco T, Joanitti G, Luz G, Carneiro M. Pharmacokinetics of Curcumin Delivered by Nanoparticles and the Relationship with Antitumor Efficacy: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:943. [PMID: 37513855 PMCID: PMC10384157 DOI: 10.3390/ph16070943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 07/30/2023] Open
Abstract
Curcumin is a polyphenolic compound, derived from Curcuma longa, and it has several pharmacological effects such as antioxidant, anti-inflammatory, and antitumor. Although it is a pleiotropic molecule, curcumin's free form, which is lipophilic, has low bioavailability and is rapidly metabolized, limiting its clinical use. With the advances in techniques for loading curcumin into nanostructures, it is possible to improve its bioavailability and extend its applications. In this review, we gather evidence about the comparison of the pharmacokinetics (biodistribution and bioavailability) between free curcumin (Cur) and nanostructured curcumin (Cur-NPs) and their respective relationships with antitumor efficacy. The search was performed in the following databases: Cochrane, LILACS, Embase, MEDLINE/Pubmed, Clinical Trials, BSV regional portal, ScienceDirect, Scopus, and Web of Science. The selected studies were based on studies that used High-Performance Liquid Chromatography (HPLC) as the pharmacokinetics evaluation method. Of the 345 studies initially pooled, 11 met the inclusion criteria and all included studies classified as high quality. In this search, a variety of nanoparticles used to deliver curcumin (polymeric, copolymeric, nanocrystals, nanovesicles, and nanosuspension) were found. Most Cur-NPs presented negative Zeta potential ranging from -25 mV to 12.7 mV, polydispersion index (PDI) ranging from 0.06 to 0.283, and hydrodynamic diameter ranging from 30.47 to 550.1 nm. Selected studies adopted mainly oral and intravenous administrations. In the pharmacokinetics analysis, samples of plasma, liver, tumor, lung, brain, kidney, and spleen were evaluated. The administration of curcumin, in nanoparticle systems, resulted in a higher level of curcumin in tumors compared to free curcumin, leading to an improved antitumor effect. Thus, the use of nanoparticles can be a promising alternative for curcumin delivery since this improves its bioavailability.
Collapse
Affiliation(s)
- Fernanda Silvestre
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Carolina Santos
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Vitória Silva
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Alicia Ombredane
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Department of Nutrition, Faculty of Health Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Willie Pinheiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Sciences and Technologies in Health, Faculty of Ceilândia, Campus Darcy Ribeiro, University of Brasilia, Brasilia 72220-275, Brazil
| | - Laise Andrade
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Mônica Garcia
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Thyago Pacheco
- Post-Graduate Program in Animal Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
| | - Graziella Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Sciences and Technologies in Health, Faculty of Ceilândia, Campus Darcy Ribeiro, University of Brasilia, Brasilia 72220-275, Brazil
| | - Glécia Luz
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| | - Marcella Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LCBNano), Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, Brazil
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasilia 72444-240, Brazil
| |
Collapse
|
18
|
Feng L, Lu WH, Li QY, Zhang HY, Xu LR, Zang WQ, Guo WT, Li YF, Zheng WJ, Geng YX, Li Q, Liu YH. Curcuma Longa Induces the Transcription Factor FOXP3 to Downregulate Human Chemokine CCR5 Expression and Inhibit HIV-1 Infection. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1189-1209. [PMID: 37314412 DOI: 10.1142/s0192415x23500544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
HIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents. For instance, curcumin inhibits HIV and inflammation in cell culture assays. Curcumin, the principal constituent of the dried rhizomes of Curcuma longa L. (turmeric), is known as a strong anti-oxidant and anti-inflammatory agent with different pharmacological effects. This work aims to assess curcumin's inhibitory effects on HIV in vitro and to explore the underpinning mechanism, focusing on CCR5 and the transcription factor forkhead box protein P3 (FOXP3). First, curcumin and the RT inhibitor zidovudine (AZT) were evaluated for their inhibitory properties. HIV-1 pseudovirus infectivity was determined by green fluorescence and luciferase activity measurements in HEK293T cells. AZT was used as a positive control that inhibited HIV-1 pseudoviruses dose-dependently, with IC50 values in the nanomolar range. Then, a molecular docking analysis was carried out to assess the binding affinities of curcumin for CCR5 and HIV-1 RNase H/RT. The anti-HIV activity assay showed that curcumin inhibited HIV-1 infection, and the molecular docking analysis revealed equilibrium dissociation constants of [Formula: see text]9.8[Formula: see text]kcal/mol and [Formula: see text]9.3[Formula: see text]kcal/mol between curcumin and CCR5 and HIV-1 RNase H/RT, respectively. To examine curcumin's anti-HIV effect and its mechanism in vitro, cell cytotoxicity, transcriptome sequencing, and CCR5 and FOXP3 amounts were assessed at different concentrations of curcumin. In addition, human CCR5 promoter deletion constructs and the FOXP3 expression plasmid pRP-FOXP3 (with an EGFP tag) were generated. Whether FOXP3 DNA binding to the CCR5 promoter was blunted by curcumin was examined using transfection assays employing truncated CCR5 gene promoter constructs, a luciferase reporter assay, and a chromatin immunoprecipitation (ChIP) assay. Furthermore, micromolar concentrations of curcumin inactivated the nuclear transcription factor FOXP3, which resulted in decreased expression of CCR5 in Jurkat cells. Moreover, curcumin inhibited PI3K-AKT activation and its downstream target FOXP3. These findings provide mechanistic evidence encouraging further assessment of curcumin as a dietary agent used to reduce the virulence of CCR5-tropic HIV-1. Curcumin-mediated FOXP3 degradation was also reflected in its functions, namely, CCR5 promoter transactivation and HIV-1 virion production. Furthermore, curcumin inhibition of CCR5 and HIV-1 might constitute a potential therapeutic strategy for reducing HIV progression.
Collapse
Affiliation(s)
- Long Feng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wu-Hao Lu
- Department of Otolaryngology Head and Neck Surgery, The First Affliated Hospital, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Qing-Ya Li
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Hai-Yan Zhang
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Li-Ran Xu
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wen-Qiao Zang
- Department of Immunology & Microbiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Wen-Tao Guo
- Department of Immunology & Microbiology, Guangdong Medical University, Dongguan, Guangdong Province 523808, P. R. China
| | - Yan-Fang Li
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Wen-Jin Zheng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Yu-Xuan Geng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Qing Li
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| | - Yu-Han Liu
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, Henan Province 450046, P. R. China
| |
Collapse
|
19
|
Rezaei F, Eikani MH, Nosratinia F, Bidaroni HH. Optimization of ethanol-modified subcritical water extraction of curcuminoids from turmeric (Curcuma longa L.) rhizomes: Comparison with conventional techniques. Food Chem 2023; 410:135331. [PMID: 36610095 DOI: 10.1016/j.foodchem.2022.135331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Subcritical solvent extraction (SSE) as ethanol-modified subcritical water extraction (SWE) was applied to extract curcuminoids from turmeric (Curcuma longa L.) rhizomes. RSM-CCD was employed to evaluate the influential factors including temperature (90-150 °C), flow rate (1-4 mL/min), and ethanol concentration (25-75 wt%) on the extraction yield. The optimum condition was 90 °C, 4 mL/min, and 25 wt% with the extraction yield of 4.12 wt% (db). Applying ethanol as a polarity-tuning parameter enabled operations at lower temperatures, which prevented thermal degradation. The SSE optimum experiment was compared with Soxhlet, ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE), both with the ethanol-water mixture (25 wt%). Their yields were 2.71, 0.85, and 0.84 wt% (db), respectively. The higher yield of SSE was related to the higher solubility of curcuminoids due to the more appropriate adjustment of solvent polarity by a decrease in the dielectric constant with a rise in the operating temperature.
Collapse
Affiliation(s)
- Farzad Rezaei
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad H Eikani
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran P.O. Box: 33535111, Iran.
| | - Ferial Nosratinia
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Homayun Hassani Bidaroni
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Ejaz SA, Aziz M, Fawzy Ramadan M, Fayyaz A, Bilal MS. Pharmacophore-Based Virtual Screening and In-Silico Explorations of Biomolecules (Curcumin Derivatives) of Curcuma longa as Potential Lead Inhibitors of ERBB and VEGFR-2 for the Treatment of Colorectal Cancer. Molecules 2023; 28:molecules28104044. [PMID: 37241785 DOI: 10.3390/molecules28104044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 05/28/2023] Open
Abstract
The newly FDA-approved drug, Axitinib, is an effective therapy against RTKs, but it possesses severe adverse effects like hypertension, stomatitis, and dose-dependent toxicity. In order to ameliorate Axitinib's downsides, the current study is expedited to search for energetically stable and optimized pharmacophore features of 14 curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) derivatives. The rationale behind the selection of curcumin derivatives is their reported anti-angiogenic and anti-cancer properties. Furthermore, they possessed a low molecular weight and a low toxicity profile. In the current investigation, the pharmacophore model-based drug design, facilitates the filtering of curcumin derivatives as VEGFR2 interfacial inhibitors. Initially, the Axitinib scaffold was used to build a pharmacophore query model against which curcumin derivatives were screened. Then, top hits from pharmacophore virtual screening were subjected to in-depth computational studies such as molecular docking, density functional theory (DFT) studies, molecular dynamics (MD) simulations, and ADMET property prediction. The findings of the current investigation revealed the substantial chemical reactivity of the compounds. Specifically, compounds S8, S11, and S14 produced potential molecular interactions against all four selected protein kinases. Docking scores of -41.48 and -29.88 kJ/mol for compounds S8 against VEGFR1 and VEGFR3, respectively, were excellent. Whereas compounds S11 and S14 demonstrated the highest inhibitory potential against ERBB and VEGFR2, with docking scores of -37.92 and -38.5 kJ/mol against ERBB and -41.2 and -46.5 kJ/mol against VEGFR-2, respectively. The results of the molecular docking studies were further correlated with the molecular dynamics simulation studies. Moreover, HYDE energy was calculated through SeeSAR analysis, and the safety profile of the compounds was predicted through ADME studies.
Collapse
Affiliation(s)
- Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Sajjad Bilal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
21
|
Jamil SNH, Ali AH, Feroz SR, Lam SD, Agustar HK, Mohd Abd Razak MR, Latip J. Curcumin and Its Derivatives as Potential Antimalarial and Anti-Inflammatory Agents: A Review on Structure-Activity Relationship and Mechanism of Action. Pharmaceuticals (Basel) 2023; 16:609. [PMID: 37111366 PMCID: PMC10146798 DOI: 10.3390/ph16040609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Curcumin, one of the major ingredients of turmeric (Curcuma longa), has been widely reported for its diverse bioactivities, including against malaria and inflammatory-related diseases. However, curcumin's low bioavailability limits its potential as an antimalarial and anti-inflammatory agent. Therefore, research on the design and synthesis of novel curcumin derivatives is being actively pursued to improve the pharmacokinetic profile and efficacy of curcumin. This review discusses the antimalarial and anti-inflammatory activities and the structure-activity relationship (SAR), as well as the mechanisms of action of curcumin and its derivatives in malarial treatment. This review provides information on the identification of the methoxy phenyl group responsible for the antimalarial activity and the potential sites and functional groups of curcumin for structural modification to improve its antimalarial and anti-inflammatory actions, as well as potential molecular targets of curcumin derivatives in the context of malaria and inflammation.
Collapse
Affiliation(s)
- Siti Nur Hidayah Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Ridzuan Mohd Abd Razak
- Herbal Medicine Research Centre, Institute for Medical Research, National Institute of Health (NIH) Complex, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
22
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
23
|
Milanese G, Agostini E, De Angelis MV, Pretore E, Galosi AB, Castellani D. Efficacy of 1-Year Cavacurmin ® Therapy in Reducing Prostate Growth in Men Suffering from Lower Urinary Tract Symptoms. J Clin Med 2023; 12:jcm12041689. [PMID: 36836224 PMCID: PMC9966610 DOI: 10.3390/jcm12041689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
We aim to assess the effect of Cavacurmin® on prostate volume (PV), lower urinary tract symptoms (LUTS) and micturition parameters in men after 1 year of therapy. From September 2020 to October 2021, data from 20 men with LUTS/benign prostatic hyperplasia and PV ≥40 mL who were on therapy with α1-adrenoceptor antagonists plus Cavacurmin® were retrospectively compared with 20 men on only α1-adrenoceptor antagonists. Patients were evaluated at baseline and after 1 year using the International Prostate Symptom Score (IPSS), prostate-specific antigen (PSA), maximum urinary flow (Qmax) and PV. A Mann-Whitney U-test and Chi-square were used to assess the difference between the two groups. A comparison of paired data was performed with the Wilcoxon signed-rank test. Statistical significance was set at p-value < 0.05. There was no statistically significant difference in baseline characteristics between the two groups. At the 1-year follow-up, PV [55.0 (15.0) vs. 62.5 (18.0) mL, p = 0.04)], PSA [2.5 (1.5) ng/mL vs. 3.05 (2.7) vs. p = 0.009] and IPSS [13.5 (3.75) vs. 18 (9.25) p = 0.009] were significantly lower in the Cavacurmin® group. Qmax was significantly higher in the Cavacurmin® group [15.85 (2.9) vs. 14.5 (4.2), p = 0.022]. PV was reduced to 2 (5.75) mL in the Cavacurmin® group from baseline, while it increased to 12 (6.75) mL in the α1-adrenoceptor antagonists group (p < 0.001). PSA decreased in the Cavacurmin® group [-0.45 (0.55) ng/mL], whereas it increased in the α1-adrenoceptor antagonists group [0.5 (0.30) ng/mL, p < 0.001]. In conclusion, one-year Cavacurmin® therapy was able to block prostate growth with a concomitant decrease in PSA value from baseline. The association of Cavacurmin® with α1-adrenoceptor antagonists had a more beneficial effect compared to patients on α1-adrenoceptor antagonists alone but this needs further larger studies to be confirmed, particularly in the long-term.
Collapse
Affiliation(s)
- Giulio Milanese
- Urology Unit, ASUR Area Vasta 5, Mazzoni Hospital, 63100 Ascoli Piceno, Italy
- Faculty of Medicine, School of Urology, Polytechinic University of Le Marche, 60121 Ancona, Italy
| | - Edoardo Agostini
- Urology Unit, ASUR Area Vasta 5, Mazzoni Hospital, 63100 Ascoli Piceno, Italy
- Faculty of Medicine, School of Urology, Polytechinic University of Le Marche, 60121 Ancona, Italy
| | - Maria Vittoria De Angelis
- Urology Unit, ASUR Area Vasta 5, Mazzoni Hospital, 63100 Ascoli Piceno, Italy
- Faculty of Medicine, School of Urology, Polytechinic University of Le Marche, 60121 Ancona, Italy
| | - Eugenio Pretore
- Urology Unit, ASUR Area Vasta 5, Mazzoni Hospital, 63100 Ascoli Piceno, Italy
| | - Andrea Benedetto Galosi
- Faculty of Medicine, School of Urology, Polytechinic University of Le Marche, 60121 Ancona, Italy
- Urology Unit, Azienda Ospedaliero-Universitaria delle Marche, 60121 Ancona, Italy
| | - Daniele Castellani
- Faculty of Medicine, School of Urology, Polytechinic University of Le Marche, 60121 Ancona, Italy
- Urology Unit, Azienda Ospedaliero-Universitaria delle Marche, 60121 Ancona, Italy
- Correspondence: ; Tel.: +39-71-596-3367
| |
Collapse
|
24
|
Alkahtani S, S. AL-Johani N, Alarifi S, Afzal M. Cytotoxicity Mechanisms of Blue-Light-Activated Curcumin in T98G Cell Line: Inducing Apoptosis through ROS-Dependent Downregulation of MMP Pathways. Int J Mol Sci 2023; 24:ijms24043842. [PMID: 36835252 PMCID: PMC9961595 DOI: 10.3390/ijms24043842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
We examined the photodynamic activation of Curcumin under blue light in glioblastoma T98G cells. The therapeutic effect of Curcumin, in both the absence and presence of blue light, was measured by the MTT assay and apoptosis progression using flow cytometry. Fluorescence imaging was carried out to evaluate Curcumin uptake. Photodynamic activation of Curcumin (10 µM), in the presence of blue light, enhanced its cytotoxic effect, resulting in the activation of ROS-dependent apoptotic pathways in T98G cells. The gene expression studies showed the expression of matrixes metalloproteinase 2 (MMP2) and 9 (MMP9) decrease with Curcumin (10 µM) under blue light exposure, indicating possible proteolytic mechanisms. Moreover, the cytometric appearance displayed that the expressions of NF-κB and Nrf2 were found to be increased upon exposure to blue light, which revealed a significant induction of expression of nuclear factor as a result of blue-light-induced oxidative stress and cell death. These data further demonstrate that Curcumin exhibited a photodynamic effect via induction of ROS-mediated apoptosis in the presence of blue light. Our results suggest that the application of blue light enhances the therapeutic efficacy of Curcumin in glioblastoma because of the phototherapeutic effect.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S. AL-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
25
|
Curcumin-Loaded Platelet Membrane Bioinspired Chitosan-Modified Liposome for Effective Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15020631. [PMID: 36839952 PMCID: PMC9965064 DOI: 10.3390/pharmaceutics15020631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is a serious threat to human health, and chemotherapy for cancer is limited by severe side effects. Curcumin (CUR) is a commonly used natural product for antitumor treatment without safety concerns. However, low bioavailability and poor tumor accumulation are great obstacles for its clinical application. Our previous research has demonstrated that platelet membrane-camouflaged nanoparticles can efficiently ameliorate the in vivo kinetic characteristics and enhance the tumor affinity of payloads. Nevertheless, the antitumor efficiency of this formulation still needs to be thoroughly investigated, and its drug release behavior is limited. Herein, CUR-loaded platelet membrane bioinspired chitosan-modified liposome (PCLP-CUR) was constructed to improve CUR release. PCLP-CUR was shown to have long retention time, improved bioavailability, strong tumor targeting capacity and effective cellular uptake. The incorporation of chitosan enabled PCLP-CUR to release cargoes quickly under mild acidic tumor conditions, leading to more complete drug release and favoring subsequent treatment. Both in vitro and in vivo investigations showed that PCLP-CUR could significantly enhance the anticancer efficacy of CUR with minimal side effects through biomimetic membrane and chitosan modification. In summary, this developed delivery system can provide a promising strategy for tumor-targeting therapy and phytochemical delivery.
Collapse
|
26
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
27
|
Zeng Y, Luo Y, Wang L, Zhang K, Peng J, Fan G. Therapeutic Effect of Curcumin on Metabolic Diseases: Evidence from Clinical Studies. Int J Mol Sci 2023; 24:ijms24043323. [PMID: 36834734 PMCID: PMC9959718 DOI: 10.3390/ijms24043323] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Metabolic diseases have become a serious threat to human health worldwide. It is crucial to look for effective drugs from natural products to treat metabolic diseases. Curcumin, a natural polyphenolic compound, is mainly obtained from the rhizomes of the genus Curcuma. In recent years, clinical trials using curcumin for the treatment of metabolic diseases have been increasing. In this review, we provide a timely and comprehensive summary of the clinical progress of curcumin in the treatment of three metabolic diseases, namely type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). The therapeutic effects and underlying mechanisms of curcumin on these three diseases are presented categorically. Accumulating clinical evidence demonstrates that curcumin has good therapeutic potential and a low number of side effects for the three metabolic diseases. It can lower blood glucose and lipid levels, improve insulin resistance and reduce inflammation and oxidative stress. Overall, curcumin may be an effective drug for the treatment of T2DM, obesity and NAFLD. However, more high-quality clinical trials are still required in the future to verify its efficacy and determine its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: ; Tel.: +86-28-61656141
| |
Collapse
|
28
|
Cicero N, Gangemi S, Allegra A. Natural products and oxidative stress: potential agents against multiple myeloma. Nat Prod Res 2023; 37:687-690. [PMID: 35502884 DOI: 10.1080/14786419.2022.2067852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
29
|
Nikolić L, Urošević M, Nikolić V, Gajić I, Dinić A, Miljković V, Rakić S, Đokić S, Kesić J, Ilić-Stojanović S, Nikolić G. The Formulation of Curcumin: 2-Hydroxypropyl-β-cyclodextrin Complex with Smart Hydrogel for Prolonged Release of Curcumin. Pharmaceutics 2023; 15:382. [PMID: 36839703 PMCID: PMC9967663 DOI: 10.3390/pharmaceutics15020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Curcumin comes from the plant species Curcuma longa and shows numerous pharmacological activities. There are numerous curcumin formulations with gels or cyclodextrins in order to increase its solubility and bioavailability. This paper presents the formulation of complex of curcumin with 2-hydroxypropyl-β-cyclodextrin in a thermosensitive hydrogel, based on N-isopropylmethacrylamide and N-isopropylacrylamide with ethylene glycol dimethacrylate as a crosslinker. The product was characterized by chemical methods and also by FTIR, HPLC, DSC, SEM, XRD. The results show that synthesis was successfully done. With an increase in the quantity of crosslinker in the hydrogels, the starting release and the release rate of curcumin from the formulation of the complex with hydrogels decreases. The release rate of curcumin from the gel complex formulation is constant over time. It is possible to design a formulation that will release curcumin for more than 60 days. In order to determine the mechanism and kinetics of curcumin release, various mathematical models were applied by using the DDSolver package for Microsoft Excel application. The Korsmeyer-Peppas model best describes the release of curcumin from the gel formulation of the complex, while the values for the diffusion exponent (0.063-0.074) shows that mechanism of the release rate is based on diffusion.
Collapse
Affiliation(s)
- Ljubiša Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Maja Urošević
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Vesna Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Ivana Gajić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Ana Dinić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Vojkan Miljković
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| | - Srđan Rakić
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
| | - Sanja Đokić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Jelena Kesić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | | | - Goran Nikolić
- Faculty of Technology, University of Niš, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia
| |
Collapse
|
30
|
Rahman MA, Ali A, Rahamathulla M, Salam S, Hani U, Wahab S, Warsi MH, Yusuf M, Ali A, Mittal V, Harwansh RK. Fabrication of Sustained Release Curcumin-Loaded Solid Lipid Nanoparticles (Cur-SLNs) as a Potential Drug Delivery System for the Treatment of Lung Cancer: Optimization of Formulation and In Vitro Biological Evaluation. Polymers (Basel) 2023; 15:polym15030542. [PMID: 36771843 PMCID: PMC9918916 DOI: 10.3390/polym15030542] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The goal of current research was to develop a new form of effective drug, curcumin-loaded solid lipid nanoparticles (Cur-SLNs) and test its efficacy in the treatment of lung cancer. Different batches of SLNs were prepared by the emulsification-ultrasonication method. For the optimization of formulation, each batch was evaluated for particle size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (EE) and drug loading (DL). The formulation components and process parameters largely affected the quality of SLNs. The SLNs obtained with particle size, 114.9 ± 1.36 nm; PI, 0.112 ± 0.005; ZP, -32.3 ± 0.30 mV; EE, 69.74 ± 2.03%, and DL, 0.81 ± 0.04% was designated as an optimized formulation. The formulation was freeze-dried to remove excess water to improve the physical stability. Freeze-dried Cur-SLNs showed 99.32% of drug release and demonstrated a burst effect trailed by sustained release up to 120 h periods. The erythrocyte toxicity study of Cur-SLNs and its components demonstrated moderate hemolytic potential towards red blood cells (RBCs). The cytotoxic potential of the formulation and plain curcumin was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against A549 cell line. After 48 h of incubation, Cur-SLNs demonstrated more cytotoxicity (IC50 = 26.12 ± 1.24 µM) than plain curcumin (IC50 = 35.12 ± 2.33 µM). Moreover, the cellular uptake of curcumin was found to be significantly higher from Cur-SLNs (682.08 ± 6.33 ng/µg) compared to plain curcumin (162.4 ± 4.2 ng/µg). Additionally, the optimized formulation was found to be stable over the period of 90 days of storage. Hence, curcumin-loaded SLNs can be prepared using the proposed cost effective method, and can be utilized as an effective drug delivery system for the treatment of lung cancer, provided in vivo studies warrant a similar outcome.
Collapse
Affiliation(s)
- Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 62236, Abha 62223, Saudi Arabia
| | - Shahana Salam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 62236, Abha 62223, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, P.O. Box 62236, Abha 62529, Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak 124001, India
| | | |
Collapse
|
31
|
Equine Muscle Derived Mesenchymal Stem Cells Loaded with Water-Soluble Curcumin: Modulation of Neutrophil Activation and Enhanced Protection against Intracellular Oxidative Attack. Int J Mol Sci 2023; 24:ijms24021030. [PMID: 36674546 PMCID: PMC9865820 DOI: 10.3390/ijms24021030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
We investigated the antioxidant potential of equine mesenchymal stem cells derived from muscle microbiopsies (mdMSCs), loaded by a water-soluble curcumin lysinate incorporated into hydroxypropyl-β-cyclodextrin (NDS27). The cell loading was rapid and dependent on NDS27 dosage (14, 7, 3.5 and 1 µM). The immunomodulatory capacity of loaded mdMSCs was evaluated by ROS production, on active and total myeloperoxidase (MPO) degranulation and neutrophil extracellular trap (NET) formation after neutrophil stimulation. The intracellular protection of loaded cells was tested by an oxidative stress induced by cumene hydroperoxide. Results showed that 10 min of mdMSC loading with NDS27 did not affect their viability while reducing their metabolism. NDS27 loaded cells in presence of 14, 7 µM NDS27 inhibited more intensively the ROS production, the activity of the MPO released and bound to the NET after neutrophil stimulation. Furthermore, loaded cells powerfully inhibited intracellular ROS production induced by cumene as compared to control cells or cyclodextrin-loaded cells. Our results showed that the loading of mdMSCs with NDS27 significantly improved their antioxidant potential against the oxidative burst of neutrophil and protected them against intracellular ROS production. The improved antioxidant protective capacity of loaded mdMSCs could be applied to target inflammatory foci involving neutrophils.
Collapse
|
32
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Ajanaku CO, Ademosun OT, Atohengbe PO, Ajayi SO, Obafemi YD, Owolabi OA, Akinduti PA, Ajanaku KO. Functional bioactive compounds in ginger, turmeric, and garlic. Front Nutr 2022; 9:1012023. [PMID: 36570131 PMCID: PMC9773837 DOI: 10.3389/fnut.2022.1012023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
Abstract
Nutrition plays a very important role in the health promotion of individuals and brought about a global paradigm shift from pharmaceuticals to nutraceuticals. This is due to the high cost, non-availability, and side effects associated with the unregulated consumption of pharmaceuticals. Over the ages, nutraceuticals from food products were reported to contain bioactive compounds with great health and physiological benefits. This report reviews bioactive compounds in selected foods namely ginger (Zingiber officinale), turmeric (Curcuma longa), and garlic (Allium sativum) as potential natural therapeutics for ailments of cancer and heart-related diseases. Analytical profiles, functional activities, and characterization of these compounds were discussed with possible recommendations for the prospective treatment of diseases using these nutraceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | - Olayinka Ayotunde Owolabi
- Department of Agriculture Economics and Extension, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | | |
Collapse
|
34
|
Costantini E, Di Nicola M, Marchioni M, Aielli L, Reale M, Schips L. Effects of Curcumin and Lactoferrin to Inhibit the Growth and Migration of Prostatic Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16193. [PMID: 36498267 PMCID: PMC9737629 DOI: 10.3390/ijerph192316193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 05/14/2023]
Abstract
Prostate cancer remains one of the main causes of death for men worldwide. Despite recent advances in cancer treatment, patients develop resistance after an initial period of optimal efficacy. Nowadays, it is accepted that natural compounds can result in health benefits with a preventive or adjuvant effect. The purpose of this study was to evaluate the effects of curcumin (CU), a bioactive compound in the spice turmeric, and lactoferrin (LF), a natural glycoprotein with immunomodulatory properties, on DU145 and PC3. Prostate cancer cells were cultured with and without LF (175 μM) and CU (2.5 μg/mL and 5 μg/mL), alone and in combination. Cell viability, migration ability, death receptors (DRs), and integrins (α3, β1) gene expression were evaluated, as well as human annexin V quantification and Akt phosphorylation. Differences among cells group, defined according to the treatment used, were assessed with ANOVA. The results showed that the effects of CU and LF are different between the two prostatic cell lines analyzed. In DU145, a reduction in cell proliferation and migration is reported both in the presence of single and combined treatments. In PC3 cells, there is a significant reduction in proliferation in the presence of CU alone, while the inhibition of migration is mainly related to the LF treatment and its combination with CU, compared to untreated cells. Moreover, the reduction in gene expression of integrins and Akt pathway activation were observed mostly in the presence of the CU and LF combination, including the upregulation of DR and annexin V levels, with greater significance for the DU145 cells. In conclusion, our results suggest that CU and LF may have a potentially beneficial effect, mainly when administered in combination, leading to a reduction in cancer cells' aggressiveness.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (M.D.N.); (L.S.)
| |
Collapse
|
35
|
Kupthammasan N, Wittayarat M, Panichayupakaranant P, Didas N, Wattanachant C, Panyaboriban S. Effects of water-soluble curcuminoid-rich extract in a solid dispersion form (CRE-SD) on the sperm characteristics, longevity and casein kinase II catalytic subunit alpha protein stability in chilled goat semen. Cryobiology 2022; 109:30-36. [PMID: 36191622 DOI: 10.1016/j.cryobiol.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 01/15/2023]
Abstract
The present study evaluated the effects of water-soluble curcuminoid-rich extract in a solid dispersion form (CRE-SD) on goat sperm qualities and sperm protein CSNK2A2 expression during liquid storage. Semen was collected from five fertile goats, using an artificial vagina. Ejaculates with a motility above 70% were cooled to 4 °C using TRIS-citric acid-fructose diluent with 10% egg yolk containing various concentrations of CRE-SD (0, 0.1, 1, 10 and 100 μg/mL). Chilled sperm were evaluated for sperm characteristics, casein kinase II catalytic subunit alpha (CSNK2A2) protein level and oxidative status up to 15 days. After 12 days of preservation, sperm motility, viability, acrosomal integrity and mitochondrial activity were significantly higher in the group preserved with 10 μg/mL CRE-SD as compared with the control group. Supplementation of CRE-SD at this concentration was also able to conserve the CSNK2A2 a significantly higher than that in control group until 9 days of cold storage, possibly by reducing oxidative stress. The molecular mass of the sperm CSNK2A2 protein detected in this study was 37 kDa; it was mostly located in the post-acrosomal region, midpiece and flagellum. These results demonstrate the possibility to use the CRE-SD as a natural antioxidant during liquid semen storage in goats.
Collapse
Affiliation(s)
- Navapol Kupthammasan
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90110, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nutsiwat Didas
- Immunology and Virology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Chaiyawan Wattanachant
- Animal Production Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand; Small Ruminant Research and Development Center, Faculty of Natural Resources, Prince of Songkla University, Songkhla, 90110, Thailand
| | | |
Collapse
|
36
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Shahriarinour M, Divsar F. Release Kinetics and Antibacterial Property of Curcumin-Loaded Date Palm (Phoenix dactylifera L.) Pollen. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Widmann AK, Wahl MA, Kammerer DR, Daniels R. Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction. Pharmaceutics 2022; 14:pharmaceutics14091943. [PMID: 36145691 PMCID: PMC9502963 DOI: 10.3390/pharmaceutics14091943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuma longa L. is a traditional medicinal and spice plant containing a variety of lipophilic active substances with promising therapeutic properties. In this work, the solvent properties of supercritical carbon dioxide in a pressure and temperature range of 75–425 bar and 35–75 °C were investigated when Curcuma longa rhizomes were extracted. The three main curcuminoids, namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin, together with the three main constituents of the essential oil, i.e., ar-turmerone, α-turmerone, and β-turmerone, were analyzed in the resulting extracts. For statistical evaluation, experiments were performed employing a full factorial design, in which flow rate, extraction time, and drug load were kept constant. Within the given conditions, the experimental design revealed an optimum yield of all aforementioned substances, when supercritical carbon dioxide extraction was performed at 425 bar and 75 °C. For comparison, solvent extracts using methanol and n-hexane were prepared and their main components were characterized using LC-MS. The stability of the extracts was monitored upon storage for 6 months at 22 and 40 °C under protection from light. The decomposition of individual compounds was mainly observed in the presence of residual water in the extracts.
Collapse
Affiliation(s)
- Ann-Kathrin Widmann
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Martin A. Wahl
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Dietmar R. Kammerer
- Department of Analytical Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstrasse 1, 73087 Bad Boll, Germany
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-7071-297-2462; Fax: +49-7071-295-531
| |
Collapse
|
39
|
Sterniczuk B, Rossouw PE, Michelogiannakis D, Javed F. Effectiveness of Curcumin in Reducing Self-Rated Pain-Levels in the Orofacial Region: A Systematic Review of Randomized-Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116443. [PMID: 35682028 PMCID: PMC9180889 DOI: 10.3390/ijerph19116443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
The aim was to systematically review randomized controlled trials (RCTs) that assessed the effectiveness of curcumin in reducing self-rated pain levels in the orofacial region (OFR). The addressed focused question was “Is curcumin effective in reducing self-rated pain levels in the OFR?”. Indexed databases (PubMed (National Library of Medicine), Scopus, EMBASE, MEDLINE (OVID), and Web of Science) were searched up to and including February 2022 using different keywords. The inclusion criteria were (a) original studies (RCTs) in indexed databases; and (b) studies assessing the role of curcumin in the management of pain in the OFR. The risk of bias was assessed using the Cochrane risk of bias tool. The pattern of the present systematic review was customized to primarily summarize the pertinent information. Nineteen RCTs were included. Results from 79% of the studies reported that curcumin exhibits analgesic properties and is effective in reducing self-rated pain associated with the OFR. Three studies had a low risk of bias, while nine and seven studies had a moderate and high risk of bias, respectively. Curcumin can be used as an alternative to conventional therapies in alleviating pain in the OFR. However, due to the limitations and risk of bias in the aforementioned studies, more high-quality RCTs are needed.
Collapse
|
40
|
Tang X, Xiong K, Wassie T, Wu X. Curcumin and Intestinal Oxidative Stress of Pigs With Intrauterine Growth Retardation: A Review. Front Nutr 2022; 9:847673. [PMID: 35571913 PMCID: PMC9101057 DOI: 10.3389/fnut.2022.847673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) refers to the slow growth and development of a mammalian embryo/fetus or fetal organs during pregnancy, which is popular in swine production and causes considerable economic losses. Nutritional strategies have been reported to improve the health status and growth performance of IUGR piglets, among which dietary curcumin supplementation is an efficient alternative. Curcumin is a natural lipophilic polyphenol derived from the rhizome of Curcuma longa with many biological activities. It has been demonstrated that curcumin promotes intestinal development and alleviates intestinal oxidative damage. However, due to its low bioavailability caused by poor solubility, chemical instability, and rapid degradation, the application of curcumin in animal production is rare. In this manuscript, the structural-activity relationship to enhance the bioavailability, and the nutritional effects of curcumin on intestinal health from the aspect of protecting piglets from IUGR associated intestinal oxidative damage were summarized to provide new insight into the application of curcumin in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
41
|
Alesci A, Lauriano ER, Fumia A, Irrera N, Mastrantonio E, Vaccaro M, Gangemi S, Santini A, Cicero N, Pergolizzi S. Relationship between Immune Cells, Depression, Stress, and Psoriasis: Could the Use of Natural Products Be Helpful? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061953. [PMID: 35335319 PMCID: PMC8954591 DOI: 10.3390/molecules27061953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
Psoriasis is one of the most widespread chronic inflammatory skin diseases, affecting about 2%-3% of the worldwide adult population. The pathogenesis of this disease is quite complex, but an interaction between genetic and environmental factors has been recognized with an essential modulation of inflammatory and immune responses in affected patients. Psoriatic plaques generally represent the clinical psoriatic feature resulting from an abnormal proliferation and differentiation of keratinocytes, which cause dermal hyperplasia, skin infiltration of immune cells, and increased capillarity. Some scientific pieces of evidence have reported that psychological stress may play a key role in psoriasis, and the disease itself may cause stress conditions in patients, thus reproducing a vicious cycle. The present review aims at examining immune cell involvement in psoriasis and the relationship of depression and stress in its pathogenesis and development. In addition, this review contains a focus on the possible use of natural products, thus pointing out their mechanism of action in order to counteract clinical and psychological symptoms.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine—Section of Pharmacology, University of Messina, 98125 Messina, Italy;
| | | | - Mario Vaccaro
- Department of Clinical and Experimental Medicine—Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Viale Gazzi, 98147 Messina, Italy; (A.F.); (S.G.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Correspondence: (A.A.); (A.S.); (N.C.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 31, 98166 Messina, Italy; (E.R.L.); (S.P.)
| |
Collapse
|
42
|
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel) 2022; 11:antibiotics11020135. [PMID: 35203738 PMCID: PMC8868220 DOI: 10.3390/antibiotics11020135] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.
Collapse
|
43
|
Zielińska A, Eder P, Rannier L, Cardoso JC, Severino P, Silva AM, Souto EB. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2021; 28:609-618. [PMID: 34967292 DOI: 10.2174/1381612828666211230114755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Hydrogels for the modified-release drug delivery systems is a continuously growing area of interest for the pharmaceutical industry. According to the global market, the use of polymers in this area is projected to reach $31.4 million by 2027. This review discusses the recent advances and perspectives of hydrogel in drug delivery systems for oral, parenteral, nasal, topical, and ophthalmic. The search strategy did in January 2021, and it conducted an extensive database to identify studies published from January 2010 to December 2020.We described the main characteristic of the polymers to obtain an ideal hydrogel for a specific route of administration and the formulations that was a highlight in the literature. It concluded that the hydrogels are a set useful to decrease the number of doses, side effects, promote adhesion of patient and enhances the bioavailability of the drugs improving the safety and efficacy of the treatment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Lucas Rannier
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Juliana C Cardoso
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Patrícia Severino
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Amélia M Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD); 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-801 Vila Real, Portugal
| | - Eliana B Souto
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
44
|
Kubczak M, Szustka A, Rogalińska M. Molecular Targets of Natural Compounds with Anti-Cancer Properties. Int J Mol Sci 2021; 22:ijms222413659. [PMID: 34948455 PMCID: PMC8708931 DOI: 10.3390/ijms222413659] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in humans. Despite rapid developments in diagnostic methods and therapies, metastasis and resistance to administrated drugs are the main obstacles to successful treatment. Therefore, the main challenge should be the diagnosis and design of optimal therapeutic strategies for patients to increase their chances of responding positively to treatment and increase their life expectancy. In many types of cancer, a deregulation of multiple pathways has been found. This includes disturbances in cellular metabolism, cell cycle, apoptosis, angiogenesis, or epigenetic modifications. Additionally, signals received from the microenvironment may significantly contribute to cancer development. Chemical agents obtained from natural sources seem to be very attractive alternatives to synthetic compounds. They can exhibit similar anti-cancer potential, usually with reduced side effects. It was reported that natural compounds obtained from fruits and vegetables, e.g., polyphenols, flavonoids, stilbenes, carotenoids and acetogenins, might be effective against cancer cells in vitro and in vivo. Several published results indicate the activity of natural compounds on protein expression by its influence on transcription factors. They could also be involved in alterations in cellular response, cell signaling and epigenetic modifications. Such natural components could be used in our diet for anti-cancer protection. In this review, the activities of natural compounds, including anti-cancer properties, are described. The influence of natural agents on cancer cell metabolism, proliferation, signal transduction and epigenetic modifications is highlighted.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Aleksandra Szustka
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Correspondence:
| |
Collapse
|
45
|
Mumtaz S, Ali S, Tahir HM, Kazmi SAR, Shakir HA, Mughal TA, Mumtaz S, Summer M, Farooq MA. Aging and its treatment with vitamin C: a comprehensive mechanistic review. Mol Biol Rep 2021; 48:8141-8153. [PMID: 34655018 DOI: 10.1007/s11033-021-06781-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023]
Abstract
Aging and age-related disorders have become one of the prominent issue of world. Oxidative stress due to overproduction of reactive oxygen species is the most significant cause of aging. The aim of literature compilation was to elucidate the therapeutic effect of vitamin C against oxidative stress. Various mediators with anti-inflammatory and anti-oxidant properties might be probable competitors of vitamin C for the improvement of innovative anti-aging treatments. More attention has been paid to vitamin C due to its anti-oxidant property and potentially beneficial biological activities for inhibiting aging.Vitamin C acts as an antioxidant agent and free radical scavenger that can protect the cell from oxidative stress, disorganization of chromatin, telomere attrition, and prolong the lifetime. This review emphasizes mechanism of aging and various biomarkers that are directly related to aging and also focuses on the therapeutic aspect of vitamin C against oxidative stress and age-related disorders.
Collapse
Affiliation(s)
- Shumaila Mumtaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | | | | | - Tafail Akbar Mughal
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Samaira Mumtaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
46
|
Abd El-Hameed NM, Abd El-Aleem SA, Khattab MA, Ali AH, Mohammed HH. Curcumin activation of nuclear factor E2-related factor 2 gene (Nrf2): Prophylactic and therapeutic effect in nonalcoholic steatohepatitis (NASH). Life Sci 2021; 285:119983. [PMID: 34599938 DOI: 10.1016/j.lfs.2021.119983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS Modern dietary habits have been associated with Nonalcoholic Steatohepatitis (NASH). Curcumin is a natural herbal found to suppress cellular oxidative states and could be beneficial in NASH. This study investigates the effect of curcumin in an animal model of NASH. MATERIALS AND METHODS Fifty rats were allocated into five groups. Control, High Fat Diet (HFD), curcumin prophylactic (CP) and therapeutic (CT) groups. HFD regimen was given for 16 weeks. Curcumin was given along with HFD (prophylactic) or after establishment of the model for two weeks (therapeutic). Livers and blood samples were harvested for histological, biochemical, and molecular studies. KEY FINDINGS Livers from HFD groups showed vascular, inflammatory, cellular degenerative and fibrotic changes. The hepatic damage was reflected by the increased serum liver enzymes. HFD groups showed excessive fibrotic change. Interestingly, curcumin administration as prophylactic or therapeutic significantly preserved and/or restored liver structure. This was evidenced by the normalization of the liver enzymes, preservation and/or reversibility of cellular changes and the decrease of the stage of fibrosis. Nuclear factor E2-related factor 2 gene (Nrf2) expression showed no changes in the HFD groups, however it showed upregulation in curcumin treated groups. Thus, the protective and therapeutic effect of curcumin could be induced through upregulation of the Nrf2 gene. Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers. SIGNIFICANCE Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers.
Collapse
|
47
|
Lipid Nanocarriers for Hyperproliferative Skin Diseases. Cancers (Basel) 2021; 13:cancers13225619. [PMID: 34830774 PMCID: PMC8615830 DOI: 10.3390/cancers13225619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Different drugs, including antiproliferative and corticosteroids in general, are recommended for the treatment of hyperproliferative skin diseases (HSD). The effectiveness of many of these drugs is limited due to their low solubility in water and low penetration in the skin. The loading of these drugs in lipid nanocarriers, such as lipid nanoparticles and liposomes, has been considered as a successful solution to improve the drug bioavailability through the skin, to control their release kinetics and thus reduce the risk of potential side effects. In this work, we discuss the use of lipid nanocarriers loading drugs against HSD. Abstract Hyperproliferative skin diseases (HSD) are a group of diseases that include cancers, pre-cancerous lesions and diseases of unknown etiology that present different skin manifestations in terms of the degree and distribution of the injuries. Anti-proliferative agents used to treat these diseases are so diverse, including 5-aminolevulinic acid, 5-fluorouracil, imiquimod, methotrexate, paclitaxel, podophyllotoxin, realgar, and corticosteroids in general. These drugs usually have low aqueous solubility, which consequently decreases skin permeation. Thus, their incorporation in lipid nanocarriers has been proposed with the main objective to increase the effectiveness of topical treatment and reduce side effects. This manuscript aims to describe the advantages of using lipid nanoparticles and liposomes that can be used to load diversity of chemically different drugs for the treatment of HSD.
Collapse
|
48
|
Elanthendral G, Shobana N, Meena R, P P, Samrot AV. Utilizing pharmacological properties of polyphenolic curcumin in nanotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Morsink M, Parente L, Silva F, Abrantes A, Ramos A, Primo I, Willemen N, Sanchez-Lopez E, Severino P, Souto EB. Nanotherapeutics and nanotheragnostics for cancers: properties, pharmacokinetics, biopharmaceutics, and biosafety. Curr Pharm Des 2021; 28:104-115. [PMID: 34348617 DOI: 10.2174/1381612827666210804102645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
With the worldwide increasing rate of chronic diseases, such as cancer, the development of novel techniques to improve the efficacy of therapeutic agents is highly demanded. Nanoparticles are especially well suited to encapsulate drugs and other therapeutic agents, bringing additional advantages, such as less frequent dosage requirements, reduced side effects due to specific targeting, and therefore increased patient compliance. However, with the increasing use of nanoparticles and their recent launch on the pharmaceutical market it is important to achieve high quality control of these advanced systems. In this review, we discuss the properties of different nanoparticles, the pharmacokinetics, the biosafety issues of concern, and conclude with novel nanotherapeutics and nanotheragnostics for cancer drug delivery.
Collapse
Affiliation(s)
- Margreet Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Lucia Parente
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Fernanda Silva
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Alexandra Abrantes
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Ana Ramos
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Inês Primo
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Niels Willemen
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Elena Sanchez-Lopez
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| | - Patricia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139. United States
| | - Eliana B Souto
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra. Portugal
| |
Collapse
|
50
|
Fu YS, Chen TH, Weng L, Huang L, Lai D, Weng CF. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother 2021; 141:111888. [PMID: 34237598 DOI: 10.1016/j.biopha.2021.111888] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Lebin Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Liyue Huang
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Department of Transfusion, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|