1
|
Stojković D, Živković J, Bolevich S, Zengin G, Cetiz MV, Bolevich S, Soković M. Lipophilic Extracts of Portulaca oleracea L.: Analysis of Bioactive Fatty Acids Targeting Microbial and Cancer Pathways. Pharmaceuticals (Basel) 2025; 18:587. [PMID: 40284022 PMCID: PMC12030143 DOI: 10.3390/ph18040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives:Portulaca oleracea L. (purslane) is a widely distributed plant known for its medicinal and nutritional properties. This study aims to evaluate the fatty acid composition and bioactivities of crude lipophilic extracts (chloroform/methanol 2:1) from purslane collected in Serbia and Greece, with a focus on its antimicrobial and anticancer potential. Methods: Chemical analysis was conducted to determine the fatty acid composition of the extracts. Antibacterial activity was assessed using standard microdilution assays, while antibiofilm assays evaluated the extracts' ability to inhibit biofilm formation. Cytotoxicity was tested on cancer cell lines (MCF7, HeLa, CaCo2, HepG2) and normal keratinocyte cells (HaCaT). Molecular docking and dynamics simulations were performed to explore the interactions of bioactive fatty acids with microbial and cancer-related proteins. Results: The analysis revealed significant levels of polyunsaturated fatty acids, with linoleic acid as the predominant fatty acid in both samples (31.42% and 34.51%). The Greek extract exhibited stronger antibacterial activity than the Serbian extract, particularly against Aspergillus versicolor, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiofilm assays showed up to 89.54% destruction at MIC levels, with notable reductions in exopolysaccharide and extracellular DNA production, especially for Greek samples. Cytotoxicity testing indicated moderate effects on cancer cell lines (IC50 = 178.17-397.31 µg/mL) while being non-toxic to keratinocytes. Molecular docking identified strong interactions between key fatty acids and microbial and cancer-related proteins. Conclusions: These results highlight purslane's potential as a source of bioactive compounds, particularly in antimicrobial and anticancer applications. The findings suggest that purslane extracts could be developed for therapeutic purposes targeting microbial infections and cancer.
Collapse
Affiliation(s)
- Dejan Stojković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia;
| | - Stefani Bolevich
- Department of Pathologic Physiology, First Moscow State Medical University I.M. Sechenov (Sechenov University), Trubetskaya Street, House 8, Building 2, 119991 Moscow, Russia; (S.B.); (S.B.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus-Konya, 42250 Konya, Turkey;
| | - Mehmet Veysi Cetiz
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, 63290 Sanliurfa, Turkey;
| | - Sergey Bolevich
- Department of Pathologic Physiology, First Moscow State Medical University I.M. Sechenov (Sechenov University), Trubetskaya Street, House 8, Building 2, 119991 Moscow, Russia; (S.B.); (S.B.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
- Department of Pathologic Physiology, First Moscow State Medical University I.M. Sechenov (Sechenov University), Trubetskaya Street, House 8, Building 2, 119991 Moscow, Russia; (S.B.); (S.B.)
| |
Collapse
|
2
|
Chong CSC, Lau YY, Michels PAM, Lim CSY. Insights into biofilm-mediated mechanisms driving last-resort antibiotic resistance in clinical ESKAPE pathogens. Crit Rev Microbiol 2025:1-26. [PMID: 40098357 DOI: 10.1080/1040841x.2025.2473332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The rise of antibiotic-resistant bacteria poses a grave threat to global health, with the ESKAPE pathogens, which comprise Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. being among the most notorious. The World Health Organization has reserved a group of last-resort antibiotics for treating multidrug-resistant bacterial infections, including those caused by ESKAPE pathogens. This situation calls for a comprehensive understanding of the resistance mechanisms as it threatens public health and hinder progress toward the Sustainable Development Goal (SDG) 3: Good Health and Well-being. The present article reviews resistance mechanisms, focusing on emerging resistance mutations in multidrug-resistant ESKAPE pathogens, particularly against last-resort antibiotics, and describes the role of biofilm formation in multidrug-resistant ESKAPE pathogens. It discusses the latest therapeutic advances, including the use of antimicrobial peptides and CRISPR-Cas systems, and the modulation of quorum sensing and iron homeostasis, which offer promising strategies for countering resistance. The integration of CRISPR-based tools and biofilm-targeted approaches provides a potential framework for managing ESKAPE infections. By highlighting the spread of current resistance mutations and biofilm-targeted approaches, the review aims to contribute significantly to advancing our understanding and strategies in combatting this pressing global health challenge.
Collapse
Affiliation(s)
- Christina Shook Cheng Chong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Yin Yin Lau
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Paul A M Michels
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh 3FL, UK
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Ontita NC, Anaman R, Sarkodie EK, Wang Y, Bichi AH, Shanshan X, Nyangweso HN, Xu Y, Amanze C, El Houda Bouroubi N, Yin Z, Zeng W. Electrochemically active biofilms responses to gadolinium stress during wastewater treatment in bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137941. [PMID: 40107103 DOI: 10.1016/j.jhazmat.2025.137941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/15/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Gadolinium-based contrast agents used in magnetic resonance imaging (MRI) contribute to increasing gadolinium(III) [Gd(III)] concentrations in aquatic environments, as conventional wastewater treatment plants lack effective removal mechanisms. This study investigated the potential of single-chamber microbial fuel cells (SCMFCs) for Gd(III) removal, focusing on removal efficiency and the physiological responses of electrochemically active biofilms. SCMFCs demonstrated exceptional Gd(III) removal efficiency exceeding 99.75 ± 0.007 % across various initial concentrations (10-60 mg/L). Power output and chemical oxygen demand (COD) removal efficiency showed dose-dependent responses to Gd(III) stress, with maximum power output decreasing from 479.56 mV to 260.43 mV as Gd(III) increased from 0 to 60 mg/L. COD removal efficiency declined from 96.49 ± 1.2 % to 90.23 ± 1.6 % over the same range. Microbial community analysis revealed selective enrichment of exoelectrogens at lower Gd(III) concentrations, with Geobacter relative abundance decreasing from 11.14 % to 1.82 %. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analyses demonstrated that elevated Gd(III) concentrations reduced electrochemically active bacterial colonization in anode biofilms. Fourier-transform infrared spectroscopy (FTIR) identified specific functional groups associated with Gd(III) biosorption, while predictive functional profiling indicated upregulation of metal resistance genes under Gd(III) exposure. These findings demonstrate the effectiveness of SCMFCs in Gd(III) removal from wastewater while elucidating microbial adaptation mechanisms to rare earth element exposure, providing insights for developing sustainable treatment solutions for emerging contaminants.
Collapse
Affiliation(s)
- Nyambane Clive Ontita
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Yanchu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | | | - Xiao Shanshan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Hyline N Nyangweso
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yilin Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Nour El Houda Bouroubi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
4
|
Charen C, Waturangi DE. Assessment of antibiofilm and quorum quenching potencies of environmental bacteria in controlling biofilm of food spoilage bacteria. BMC Res Notes 2025; 18:71. [PMID: 39962543 PMCID: PMC11834272 DOI: 10.1186/s13104-025-07141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVES This research aims to investigate anti-quorum sensing and antibiofilm activity of supernatants from environmental bacteria against the biofilm formed by food spoilage bacteria such as Bacillus cereus, Bacillus subtilis, and Shewanella putrefaciens. RESULTS Supernatants were generated from ten environmental bacteria isolates (A19, A30, A32, A40, B10, B212, C1, J70, J73, and T152), with four isolates (A19, A32, A40, B212) showed anti-quorum sensing activity against Chromobacterium violaceum wild type as indicator bacteria. In inhibition and destruction assays, the highest percentage inhibition of 81.42% and 81.33% by B10 and B212, respectively, against B. cereus and J73 against B. subtilis was recorded at 87.45%. While A32, T152, and C1 performed the highest destruction against B. cereus, B. subtilis, and S. putrefaciens with percentages of 45.4%, 83.81%, 74.81%, respectively. Observation using light microscopy and Scanning Electron Microscopy (SEM) revealed C, O, Na, Mg, Al, Si, K, and Ca elements were detected which might play role in biofilm formation. Based on 16s rRNA sequencing, the environmental bacteria isolates were identified as Enterobacter, Acinetobacter, Acinetobacter, Pantoea genera, C1, and T152. These results imply that these bacteria have destructing and inhibiting potential against Bacillus cereus, Bacillus subtillis, Shewanella putrefaciens.
Collapse
Affiliation(s)
- Christine Charen
- Department of Biotechnology, School of Bioscience, Technology, and Innovation, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Biotechnology, School of Bioscience, Technology, and Innovation, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| |
Collapse
|
5
|
Yao P, Mohd Esah E, Zhao C. Regulatory mechanisms and applications of Lactobacillus biofilms in the food industry. Front Microbiol 2025; 15:1465373. [PMID: 39845052 PMCID: PMC11753222 DOI: 10.3389/fmicb.2024.1465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Lactobacillus is widely recognized for its probiotic benefits and has been widely used in food production. While biofilms are typically associated with pathogenic bacteria, they also served as a self-protective mechanism formed by microorganisms in an adverse environments. In recent years, relevant studies have revealed the excellent characteristics of Lactobacillus biofilms, offering new insights into their potential applications in the food industry. The Lactobacillus biofilms is important in improving fermentation processes and enhancing the resilience of Lactobacillus in various conditions. This paper reviews how quorum sensing regulates the formation of Lactobacillus biofilms and explores their roles in stress resistance, bacteriostasis and food production. Additionally, it highlights the emerging concept of fourth-generation probiotics, developed through biofilm technology, as a novel approach to probiotic applications.
Collapse
Affiliation(s)
- Peilin Yao
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| | - Effarizah Mohd Esah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Chuanping Zhao
- School of Biotechnology and Food Engineering, Suzhou University, Suzhou, China
| |
Collapse
|
6
|
Azeem K, Fatima S, Ali A, Ubaid A, Husain FM, Abid M. Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention. Life (Basel) 2025; 15:49. [PMID: 39859989 PMCID: PMC11767195 DOI: 10.3390/life15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication. A comprehensive understanding of these resistance mechanisms provides a for exploring innovative therapeutic interventions. This study explores promising avenues for future research, emphasizing the necessity of uncovering the specific genetic and phenotypic adaptations occurring within biofilms. The identification of vulnerabilities in biofilm architecture and the elucidation of key biofilm-specific targets emerge as crucial focal points for the development of targeted therapeutic strategies. In addressing the limitations of traditional antibiotics, this review discusses innovative therapeutic approaches. Nanomaterials with inherent antimicrobial properties, quorum-sensing inhibitors disrupting bacterial communication, and bacteriophages as biofilm-specific viral agents are highlighted as potential alternatives. The exploration of combination therapies, involving antimicrobial agents, biofilm-disrupting enzymes, and immunomodulators, is emphasized to enhance the efficacy of existing treatments and overcome biofilm resilience.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Sadaf Fatima
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| |
Collapse
|
7
|
Sengupta B, Alrubayan M, Wang Y, Mallet E, Torres A, Solis R, Wang H, Pradhan P. An AI-directed analytical study on the optical transmission microscopic images of Pseudomonas aeruginosa in planktonic and biofilm states. ARXIV 2024:arXiv:2412.18205v1. [PMID: 39764404 PMCID: PMC11703328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Biofilms are resistant microbial cell aggregates that pose risks to health and food industries and produce environmental contamination. Accurate and efficient detection and prevention of biofilms are challenging and demand interdisciplinary approaches. This multidisciplinary research reports the application of a deep learning-based artificial intelligence (AI) model for detecting biofilms produced by Pseudomonas aeruginosa with high accuracy. Aptamer DNA templated silver nanocluster (Ag-NC) was used to prevent biofilm formation, which produced images of the planktonic states of the bacteria. Large-volume bright field images of bacterial biofilms were used to design the AI model. In particular, we used U-Net with ResNet encoder enhancement to segment biofilm images for AI analysis. Different degrees of biofilm structures can be efficiently detected using ResNet18 and ResNet34 backbones. The potential applications of this technique are also discussed.
Collapse
Affiliation(s)
- Bidisha Sengupta
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, 75962
- These authors have equal contributions
| | - Mousa Alrubayan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762
- These authors have equal contributions
| | - Yibin Wang
- Department of Industrial Engineering, Mississippi State University, Mississippi State, MS 39762
- These authors have equal contributions
| | - Esther Mallet
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, 75962
| | - Angel Torres
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, 75962
| | - Ravyn Solis
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, 75962
| | - Haifeng Wang
- Department of Industrial Engineering, Mississippi State University, Mississippi State, MS 39762
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
8
|
Zhang J, Hao J, Wang J, Li H, Zhao D. Strategic manipulation of biofilm dispersion for controlling Listeria monocytogenes infections. Crit Rev Food Sci Nutr 2024:1-10. [PMID: 39367886 DOI: 10.1080/10408398.2024.2409340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Listeria monocytogenes (L. monocytogenes), a gram-positive foodborne pathogen that can easily cause listeriosis. It secretes extracellular polymers and forms biofilms that are highly resistant to disinfection methods, such as UV light and germicides, posing risks to food processing equipment and food quality. Dispersion of biofilm is the cycle of its formation in which the bacteria return to planktonic state and become susceptible to antimicrobials, the strategic manipulation of biofilm dispersion is thus heralded as a novel and promising approach for the effective control of biofilm-related infections. Compared to the traditional methods, it is more effective to start with the composition of biofilms, cut off the production of their constituent substances, and genetically reduce the probability of biofilm formation. Meanwhile, the dispersion of bacteria can be supplemented with exogenous substances, making long-term control possible. This paper provides a brief but comprehensive overview of the mechanisms of L. monocytogenes biofilms or cross-contamination and their resistance properties, and facilitates our understanding and control of the prevention and containment of L. monocytogenes biofilm contamination based on the biofilm's active and passive diffusion strategies. This work provides practical guidelines for the food industry to guard against the enduring threat to food safety due to L. monocytogenes biofilms.
Collapse
Affiliation(s)
- Junyi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jingyi Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huiying Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
9
|
Hindieh P, Yaghi J, Assaf JC, Chokr A, Atoui A, Louka N, Khoury AE. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express 2024; 14:112. [PMID: 39361085 PMCID: PMC11450114 DOI: 10.1186/s13568-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.
Collapse
Affiliation(s)
- Pamela Hindieh
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
- Ecole Doctorale "Sciences et Santé", Université Saint-Joseph de Beyrouth, Campus des Sciences Médicales et Infirmières, Riad El Solh, Beirut, Lebanon
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Atoui
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| |
Collapse
|
10
|
Edo GI, Nwachukwu SC, Ali AB, Yousif E, Jikah AN, Zainulabdeen K, Ekokotu HA, Isoje EF, Igbuku UA, Opiti RA, Akpoghelie PO, Owheruo JO, Essaghah AEA. A review on the composition, extraction and applications of phenolic compounds. ECOLOGICAL FRONTIERS 2024. [DOI: 10.1016/j.ecofro.2024.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Abbas SH, Khan S, Shah M, Aslam J, Nawaz H, Ilyas N, Gamaryani A, Afridi SQ, Khan I, Shah B, Shah K, Rashid A, Khan D, Khan S. Public Health Threats Posed by Biofilms and Innovative Strategies for their Control. Discoveries (Craiova) 2024; 12:e197. [PMID: 40124593 PMCID: PMC11929596 DOI: 10.15190/d.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 03/25/2025] Open
Abstract
Biofilms are communities of microorganisms that adhere to surfaces within a self-produced protective matrix. The structural complexity of biofilms and their inherent resistance to conventional antimicrobial treatments make them a significant public health challenge. These microbial communities, embedded within a self-produced extracellular matrix, are associated with numerous persistent infections, especially those occurring in healthcare settings where they colonize medical devices and chronic wounds. The effects of biofilms go beyond healthcare environments and persist in water treatment facilities, food processing plants, and nature, in which biofilms aid in pollution and transmission of disease. This review article discusses multifaceted public health complications related to biofilms and the search for existing control strategies, the process of biofilm formation, mechanisms of persistence, and limitations of traditional antimicrobial approaches. Additionally, this article explores new innovative solutions, such as bacteriophage therapy, matrix-degrading enzymes, and quorum sensing inhibitors. The potential of a combination of antimicrobial agents with biofilm-disrupting compounds for the improvement of efficacy is also paid special attention. This review seeks to contribute to these ongoing efforts by presenting an overview of biofilm biology and assessing the efficacy of a variety of possible control strategies. Subsequently, the insights derived from this study may be used to inform future research directions and aid in the development of more effective interventions for biofilm-associated infections and contamination in various settings.
Collapse
Affiliation(s)
- Syed Hamza Abbas
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shahzar Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Majid Shah
- Saidu Medical College, Saidu Sharif, Pakistan
- Saidu Group of Teaching Hospital, Saidu Sharif, Pakistan
| | - Jawad Aslam
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Humaira Nawaz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadia Ilyas
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim Gamaryani
- School of Health and society, University of Wollongong, Australia
| | - Saba Qadir Afridi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Izaz Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Brekhna Shah
- Khyber Medical College, Peshawar, Pakistan
- Khyber Teaching Hospital, Peshawar, Pakistan
| | - Kashmala Shah
- Khyber Medical College, Peshawar, Pakistan
- Khyber Teaching Hospital, Peshawar, Pakistan
| | - Abdul Rashid
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Dilawaiz Khan
- Department of Animal Sciences, Quaid -i-Azam University, Islamabad, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Muniyasamy R, Manjubala I. Synergistic combination of baicalein and rifampicin against Staphylococcus aureus biofilms. Front Microbiol 2024; 15:1458267. [PMID: 39165570 PMCID: PMC11333347 DOI: 10.3389/fmicb.2024.1458267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Staphylococcus aureus, a Gram-positive bacterium, is a predominant pathogen associated with various infections. The rapid emergence of antibiotic resistance has intensified the challenge of managing fracture-related infections in severe osteoporotic patients. Rifampicin, a potent antimicrobial agent employed against fracture and implant-related infections, necessitates combination therapies due to its susceptibility to antibiotic resistance. In this study, we explored the potential of baicalein, a bioactive flavonoid from Oroxylum indicum and Scutellaria baicalensis, in combination with rifampicin against S. aureus biofilms invitro. The minimum inhibitory concentration of baicalein and rifampicin were determined as 500 μg/mL and 12.5 ng/mL respectively. The synergistic activity of baicalein and rifampicin was determined by the fractional inhibitory concentration index (FICI) using checkerboard assay. The results showed the FICI of baicalein and rifampicin was lesser than 0.5, demonstrating synergistic effect. Furthermore, the efficacy of baicalein and rifampicin, both individually and in combination, was evaluated for biofilm inhibition and eradication. Scanning electron microscopy and confocal laser microscopy also confirmed that the synergistic combinations effectively removed most of the biofilms and partially killed pre-formed biofilms. In conclusion, the findings demonstrate that baicalein is as effective as rifampicin in inhibiting and eradicating S. aureus biofilms. Their combination exhibits synergistic effect, enhancing their bactericidal effect in completely eradicating S. aureus biofilms. The findings of this research underscore the research potential of combining baicalein and rifampicin as a novel therapeutic strategy against S. aureus biofilms, offering a promising direction for future research in the treatment of fracture-related S. aureus infections.
Collapse
Affiliation(s)
| | - I. Manjubala
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
13
|
Fortes BN, Wirth F, dos Santos AM, Chorilli M, Freitas VM, Farias J, Chambergo FS, Nunes C Dantas VA, Ishida K. Three-dimensional lung parenchyma model for studies of Aspergillus fumigatus infection and antifungal treatment. Future Microbiol 2024; 19:1203-1216. [PMID: 39011856 PMCID: PMC11633397 DOI: 10.1080/17460913.2024.2371926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: This work aims to standardize the three-dimensional hydroxyethyl-alginate-gelatin (HAG) scaffold as a model to evaluate Aspergillus fumigatus biofilm and antifungal treatments.Methods: The scaffold was characterized by physical, rheological and microscopic analyses; the antibiofilm action was evaluated by determination of cfu and metabolic activity.Results: The scaffold was non-toxic showing stability in aqueous media, swelling capacity, elasticity and had homogeneously distributed pores averaging 190 μm. The A. fumigatus biofilm established itself very well on the scaffold and treatment with amphotericin B and voriconazole reduced viable cells and metabolic activity.Conclusion: The HAG scaffold proved to be a model to mimic lung parenchyma, suitable for establishing a 3D biofilm culture of A. fumigatus and evaluating the efficacy of antifungals.
Collapse
Affiliation(s)
- Bruna Nakanishi Fortes
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| | - Fernanda Wirth
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| | - Aline Martins dos Santos
- School of Pharmaceutical Sciences, São Paulo State University – Jaú Highway, Km 1, 14800-903, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University – Jaú Highway, Km 1, 14800-903, Araraquara, Brazil
| | - Vanessa Morais Freitas
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| | - Jennifer Farias
- School of Arts, Sciences & Humanities, University of São Paulo, Arlindo Bettio Avenue, 1000, 03828-000, São Paulo, Brazil
| | - Felipe S Chambergo
- School of Arts, Sciences & Humanities, University of São Paulo, Arlindo Bettio Avenue, 1000, 03828-000, São Paulo, Brazil
| | - Viviane Abreu Nunes C Dantas
- School of Arts, Sciences & Humanities, University of São Paulo, Arlindo Bettio Avenue, 1000, 03828-000, São Paulo, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374, 05508-000, São Paulo, Brazil
| |
Collapse
|
14
|
David A, Louis M, Tahrioui A, Rodrigues S, Labbé C, Maillot O, Barreau M, Lesouhaitier O, Cornelis P, Chevalier S, Bouffartigues E. cmpX overexpression in Pseudomonas aeruginosa affects biofilm formation and cell morphology in response to shear stress. Biofilm 2024; 7:100191. [PMID: 38544741 PMCID: PMC10965496 DOI: 10.1016/j.bioflm.2024.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.
Collapse
Affiliation(s)
- Audrey David
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Mélissande Louis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, 56100, Lorient, France
| | - Clarisse Labbé
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Maillot
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000, Rouen, France
| |
Collapse
|
15
|
Er-Rahmani S, Errabiti B, Matencio A, Trotta F, Latrache H, Koraichi SI, Elabed S. Plant-derived bioactive compounds for the inhibition of biofilm formation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34859-34880. [PMID: 38744766 DOI: 10.1007/s11356-024-33532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Biofilm formation is a widespread phenomenon that impacts different fields, including the food industry, agriculture, health care and the environment. Accordingly, there is a serious need for new methods of managing the problem of biofilm formation. Natural products have historically been a rich source of varied compounds with a wide variety of biological functions, including antibiofilm agents. In this review, we critically highlight and discuss the recent progress in understanding the antibiofilm effects of several bioactive compounds isolated from different plants, and in elucidating the underlying mechanisms of action and the factors influencing their adhesion. The literature shows that bioactive compounds have promising antibiofilm potential against both Gram-negative and Gram-positive bacterial and fungal strains, via several mechanisms of action, such as suppressing the formation of the polymer matrix, limiting O2 consumption, inhibiting microbial DNA replication, decreasing hydrophobicity of cell surfaces and blocking the quorum sensing network. This antibiofilm activity is influenced by several environmental factors, such as nutritional cues, pH values, O2 availability and temperature. This review demonstrates that several bioactive compounds could mitigate the problem of biofilm production. However, toxicological assessment and pharmacokinetic investigations of these molecules are strongly required to validate their safety.
Collapse
Affiliation(s)
- Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Badr Errabiti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Adrián Matencio
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Hassan Latrache
- Laboratory of Bioprocesses and Bio-Interfaces, Faculty of Science and Technology, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco.
| |
Collapse
|
16
|
Ji Y, Han J, Moses M, Wang D, Wu L, Xue W, Sun L, Xu B, Chen C, Xiang Y, Huang X. The antimicrobial property of JY-1, a complex mixture of Traditional Chinese Medicine, is linked to it abilities to suppress biofilm formation and disrupt membrane permeability. Microb Pathog 2024; 189:106573. [PMID: 38354989 DOI: 10.1016/j.micpath.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The substantial increase of infections, caused by novel, sudden, and drug-resistant pathogens, poses a significant threat to human health. While numerous studies have demonstrated the antibacterial and antiviral effects of Traditional Chinese Medicine, the potential of a complex mixture of traditional Chinese Medicine with a broad-spectrum antimicrobial property remains underexplored. This study aimed to develop a complex mixture of Traditional Chinese Medicine (TCM), JY-1, and investigate its antimicrobial properties, along with its potential mechanism of action against pathogenic microorganisms. Antimicrobial activity was assessed using a zone of inhibition assay and the drop plate method. Hyphal induction of Candida albicans was conducted using RPMI1640 medium containing 10% FBS, followed by microscopic visualization. Quantitative real-time PCR (RT-qPCR) was employed to quantify the transcript levels of hyphal-specific genes such as HWP1 and ALS3. The impact of JY-1 on biofilm formation was evaluated using both the XTT reduction assay and scanning electron microscopy (SEM). Furthermore, the cell membrane integrity was assessed by protein and nucleic acid leakage assays. Our results clearly showed that JY-1 significantly inhibits the vegetative growth of Candida spp. and Cryptococcus spp. In addition, this complex mixture is effectively against a wide range of pathogenic bacteria, including Staphylococcus aureus, Vancomycin-resistant enterococci, Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae. More interestingly, JY-1 plays a direct anti-viral role against the mammalian viral pathogen vesicular stomatitis virus (VSV). Further mechanistic studies indicate that JY-1 acts to reduce the expression of hyphal specific genes HWP1 and ALS3, resulting in the suppression of the hyphal formation of C. albicans. The antimicrobial property of JY-1 could be attributed to its ability to reduce biofilm formation and disrupt the cell membrane permeability, a process resulting in microbial cell death and the release of cellular contents. Taken together, our work identified a potent broad-spectrum antimicrobial agent, a complex mixture of TCM which might be developed as a potential antimicrobial drug.
Collapse
Affiliation(s)
- Ying Ji
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ji Han
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Munika Moses
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- Laboratory of Microbiology and Parasitology of Guizhou & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Wu
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Xue
- Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China
| | - Lu Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China.
| | - Yanwei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xinhua Huang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
Shi Y, Wen T, Zhao F, Hu J. Bacteriostasis of nisin against planktonic and biofilm bacteria: Its mechanism and application. J Food Sci 2024; 89:1894-1916. [PMID: 38477236 DOI: 10.1111/1750-3841.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Food safety incidents caused by bacterial contamination have always been one of the public safety issues of social concern. Planktonic cells, viable but non-culturable (VBNC) cells, and biofilm cells of bacteria can coexist in food or food processing, posing more serious challenges to public health and safety by increasing bacterial survival and difficulty in detection. As a non-toxic, no side effect, and highly effective bacteriostatic substance, nisin has received wide attention from researchers. In this review, we summarized the species and biosynthesis of nisin, the effects of nisin alone or in combination with other treatments on planktonic and biofilm cells, and its applications in the fields of food, feed, and medicine by consulting numerous studies. Meanwhile, the mechanism of nisin on planktonic and biofilm cells was proposed based on existing researches. Nisin not only has antibacterial activity against most G+ bacteria but also exhibits a bacteriostatic effect on G- bacteria when combined with other antibacterial treatments. In addition to planktonic cells, nisin also has significant effects on bacterial cells in biofilms by changing the thickness, density, and composition of biofilms. Based on the three action processes of nisin on biofilms, we summarized the changes of bacteria in biofilms, including the causes of bacterial death and the formation of the VBNC state. We consider that research on the relationship between nisin and VBNC state should be strengthened.
Collapse
Affiliation(s)
- Ying Shi
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Tao Wen
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Jia Hu
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| |
Collapse
|
18
|
Abejew AA, Wubetu GY, Fenta TG. Relationship between Antibiotic Consumption and Resistance: A Systematic Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:9958678. [PMID: 38476862 PMCID: PMC10932619 DOI: 10.1155/2024/9958678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/20/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Background Unreserved use of antibiotics exerted selective pressure on susceptible bacteria, resulting in the survival of resistant strains. Despite this, the relationship between antibiotic resistance (ABR) and antibiotic consumption (ABC) is rarely studied. This systematic review aims to review the relationship between ABC and ABR from 2016 to 2022. Methods Articles published over 7 years (2016-2022) were searched from December 23 to 31, 2022. The search strategy was developed by using keywords for ABC and ABR. From 3367 articles, 58 eligible articles were included in the final review. Results The pooled ABC was 948017.9 DPDs and 4108.6 DIDs where over 70% of antibiotics were from the Watch and Reserve category based on the WHO AWaRe classification. The average pooled prevalence of ABR was 38.4%. Enterococcus faecium (59.4%), A. baumannii (52.6%), and P. aeruginosa (48.6%) were the most common antibiotic-resistant bacteria. Cephalosporins (76.8%), penicillin (58.3%), and aminoglycosides (52%) were commonly involved antibiotics in ABR. The positive correlation between ABR and consumption accounted for 311 (81%). The correlation between ABR P. aeruginosa and ABC accounted for 87 (22.7%), followed by 78 (20.3%) and 77 (20.1%) for ABR E. coli and K. pneumoniae with ABCs, respectively. Consumption of carbapenems and fluoroquinolones was most commonly correlated with resistance rates of P. aeruginosa, K. pneumoniae, E. coli, and A. baumannii. Conclusion There is a positive correlation between ABC and the rate of ABR. The review also revealed a cross-resistance between the consumption of different antibiotics and ABR. Optimizing antibiotic therapy and reducing unnecessary ABC will prevent the emergence and spread of ABR. Thus, advocating the implementation of stewardship programs plays a pivotal role in containing ABR.
Collapse
Affiliation(s)
- Asrat Agalu Abejew
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Teferi Gedif Fenta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Araújo GDS, Brilhante RSN, Rocha MGD, Aguiar LD, Castelo-Branco DDSCM, Guedes GMDM, Sidrim JJC, Pereira Neto WA, Rocha MFG. Anthraquinones against Cryptococcus neoformans sensu stricto: antifungal interaction, biofilm inhibition and pathogenicity in the Caenorhabditis elegans model. J Med Microbiol 2024; 73. [PMID: 38530134 DOI: 10.1099/jmm.0.001815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Introduction. Cryptococcal biofilms have been associated with persistent infections and antifungal resistance. Therefore, strategies, such as the association of natural compounds and antifungal drugs, have been applied for the prevention of biofilm growth. Moreover, the Caenorhabditis elegans pathogenicity model has been used to investigate the capacity to inhibit the pathogenicity of Cryptococcus neoformans sensu stricto.Hypothesis. Anthraquinones and antifungals are associated with preventing C. neoformans sensu stricto biofilm formation and disrupting these communities. Antraquinones reduced the C. neoformans sensu stricto pathogenicity in the C. elegans model.Aim. This study aimed to evaluate the in vitro interaction between aloe emodin, barbaloin or chrysophanol and itraconazole or amphotericin B against growing and mature biofilms of C. neoformans sensu stricto.Methodology. Compounds and antifungal drugs were added during biofilm formation or after 72 h of growth. Then, the metabolic activity was evaluated by the MTT reduction assay, the biomass by crystal-violet staining and the biofilm morphology by confocal laser scanning microscopy. C. neoformans sensu stricto's pathogenicity was investigated using the nematode C. elegans. Finally, pathogenicity inhibition by aloe emodin, barbarloin and chrysophanol was investigated using this model.Results. Anthraquinone-antifungal combinations affected the development of biofilms with a reduction of over 60 % in metabolic activity and above 50 % in biomass. Aloe emodin and barbaloin increased the anti-biofilm activity of antifungal drugs. Chrysophanol potentiated the effect of itraconazole against C. neoformans sensu stricto biofilms. The C. elegans mortality rate reached 76.7 % after the worms were exposed to C. neoformans sensu stricto for 96 h. Aloe emodin, barbaloin and chrysophanol reduced the C. elegans pathogenicity with mortality rates of 61.12 %, 65 % and 53.34 %, respectively, after the worms were exposed for 96 h to C. neoformans sensu stricto and these compounds at same time.Conclusion. These results highlight the potential activity of anthraquinones to increase the effectiveness of antifungal drugs against cryptococcal biofilms.
Collapse
Affiliation(s)
- Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Maria Gleiciane da Rocha
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Lara de Aguiar
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Waldemiro Aquino Pereira Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Coronel Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
20
|
Xu LC, Booth JL, Lanza M, Ozdemir T, Huffer A, Chen C, Khursheed A, Sun D, Allcock HR, Siedlecki CA. In Vitro and In Vivo Assessment of the Infection Resistance and Biocompatibility of Small-Molecule-Modified Polyurethane Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8474-8483. [PMID: 38330222 DOI: 10.1021/acsami.3c18231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Bacterial intracellular nucleotide second messenger signaling is involved in biofilm formation and regulates biofilm development. Interference with the bacterial nucleotide second messenger signaling provides a novel approach to control biofilm formation and limit microbial infection in medical devices. In this study, we tethered small-molecule derivatives of 4-arylazo-3,5-diamino-1H-pyrazole on polyurethane biomaterial surfaces and measured the biofilm resistance and initial biocompatibility of modified biomaterials in in vitro and in vivo settings. Results showed that small-molecule-modified surfaces significantly reduced the Staphylococcal epidermidis biofilm formation compared to unmodified surfaces and decreased the nucleotide levels of c-di-AMP in biofilm cells, suggesting that the tethered small molecules interfere with intracellular nucleotide signaling and inhibit biofilm formation. The hemocompatibility assay showed that the modified polyurethane films did not induce platelet activation or red blood cell hemolysis but significantly reduced plasma coagulation and platelet adhesion. The cytocompatibility assay with fibroblast cells showed that small-molecule-modified surfaces were noncytotoxic and cells appeared to be proliferating and growing on modified surfaces. In a 7-day subcutaneous infection rat model, the polymer samples were implanted in Wistar rats and inoculated with bacteria or PBS. Results show that modified polyurethane significantly reduced bacteria by ∼2.5 log units over unmodified films, and the modified polymers did not lead to additional irritation/toxicity to the animal tissues. Taken together, the results demonstrated that small molecules tethered on polymer surfaces remain active, and the modified polymers are biocompatible and resistant to microbial infection in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Tugba Ozdemir
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Amelia Huffer
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
| | - Chen Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | - Harry R Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
21
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Dorcioman G, Gherasim O, Holban AM, Gălățeanu B, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections. Int J Mol Sci 2024; 25:2389. [PMID: 38397066 PMCID: PMC10889398 DOI: 10.3390/ijms25042389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
22
|
Holubnycha V, Husak Y, Korniienko V, Bolshanina S, Tveresovska O, Myronov P, Holubnycha M, Butsyk A, Borén T, Banasiuk R, Ramanavicius A, Pogorielov M. Antimicrobial Activity of Two Different Types of Silver Nanoparticles against Wide Range of Pathogenic Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:137. [PMID: 38251102 PMCID: PMC10818322 DOI: 10.3390/nano14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
The emergence of antibiotic-resistant bacteria, particularly the most hazardous pathogens, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE)-pathogens pose a significant threat to global health. Current antimicrobial therapies, including those targeting biofilms, have shown limited effectiveness against these superbugs. Nanoparticles, specifically silver nanoparticles (AgNPs), have emerged as a promising alternative for combating bacterial infections. In this study, two types of AgNPs with different physic-chemical properties were evaluated for their antimicrobial and antibiofilm activities against clinical ESKAPE strains. Two types of silver nanoparticles were assessed: spherical silver nanoparticles (AgNPs-1) and cubic-shaped silver nanoparticles (AgNPs-2). AgNPs-2, characterized by a cubic shape and higher surface-area-to-volume ratio, exhibited superior antimicrobial activity compared to spherical AgNPs-1. Both types of AgNPs demonstrated the ability to inhibit biofilm formation and disrupt established biofilms, leading to membrane damage and reduced viability of the bacteria. These findings highlight the potential of AgNPs as effective antibacterial agents against ESKAPE pathogens, emphasizing the importance of nanoparticle characteristics in determining their antimicrobial properties. Further research is warranted to explore the underlying mechanisms and optimize nanoparticle-based therapies for the management of infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Viktoriia Holubnycha
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Yevheniia Husak
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Viktoriia Korniienko
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Svetlana Bolshanina
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Olesia Tveresovska
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Petro Myronov
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Marharyta Holubnycha
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
| | - Anna Butsyk
- Department Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (A.B.); (T.B.)
| | - Thomas Borén
- Department Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden; (A.B.); (T.B.)
| | - Rafal Banasiuk
- NanoWave, 02-676 Warsaw, Poland;
- Mechanical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Medical Institute, Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy, Ukraine; (Y.H.); (V.K.); (S.B.); (O.T.); (P.M.); (M.H.); (M.P.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| |
Collapse
|
23
|
Srirengaraj V, Razafindralambo HL, Rabetafika HN, Nguyen HT, Sun YZ. Synbiotic Agents and Their Active Components for Sustainable Aquaculture: Concepts, Action Mechanisms, and Applications. BIOLOGY 2023; 12:1498. [PMID: 38132324 PMCID: PMC10740583 DOI: 10.3390/biology12121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional and nature-based feed ingredients such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic animals are largely unclear. This review discusses basic and current research advancements to fill research gaps and promote effective and healthy aquaculture production.
Collapse
Affiliation(s)
| | - Hary L. Razafindralambo
- ProBioLab, 5004 Namur, Belgium;
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Sustainable Management of Bio-Agressors & Microbial Technologies, Gembloux Agro-Bio Tech—Université de Liège, 5030 Gembloux, Belgium
| | | | - Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Long Xuyen City 90000, Vietnam;
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen 361021, China;
| |
Collapse
|
24
|
Weber DJ, Rutala WA, Anderson DJ, Sickbert-Bennett EE. Biofilms on medical instruments and surfaces: Do they interfere with instrument reprocessing and surface disinfection. Am J Infect Control 2023; 51:A114-A119. [PMID: 37890940 DOI: 10.1016/j.ajic.2023.04.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Biofilms are surface-attached communities of bacteria embedded in an extracellular matrix. This matrix shields the resident cells from desiccation, chemical perturbation, invasion by other bacteria, and confers reduced susceptibility to antibiotics and disinfectants. There is growing evidence that biofilms on medical instruments (especially endoscopes) and environmental surfaces interfere with cleaning and disinfection. METHODS The English literature on the impact of biofilms in medicine was reviewed with a focus on the impact of biofilms on reusable semicritical medical instruments and hospital environmental surfaces. RESULTS Biofilms are frequently present on hospital environmental surfaces and reusable medical equipment. Important health care...associated pathogens that readily form biofilms on environmental surfaces include Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris. Evidence has demonstrated that biofilms interfere with cleaning and disinfection. DISCUSSION New technologies such as ..úself-disinfecting..Ñ surfaces or continuous room disinfection systems may reduce or disrupt biofilm formation and are under study to reduce the impact of the contaminated surface environment on health care...associated infections. CONCLUSIONS Future research is urgently needed to develop methods to reduce or eliminate biofilms from forming on implantable medical devices, reusable medical equipment, and hospital surfaces.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Deverick J Anderson
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC
| | - Emily E Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC
| |
Collapse
|
25
|
Kumar S, Kumar S, Mir MA, Vishnoi VK, Pandey A, Pandey A. Bioefficacy of Sida cordifolia L. phytoextract against foodborne bacteria: optimization and bioactive compound analysis. Future Microbiol 2023; 18:1235-1249. [PMID: 37750761 DOI: 10.2217/fmb-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023] Open
Abstract
Aim: To elucidate the antibacterial activity of Sida cordifolia L. phytoextract, evaluate its polyphenol profile and optimize conditions against certain common foodborne bacteria. Methods: After polarity-based sequential extraction, S. cordifolia phytoextracts were tested for antibacterial potential against antibiotic-resistant bacteria. Box-Behnken design was used to optimize several process parameters and ultra-performance liquid chromatography confirmed the phenolic composition of the best possible outcome. Results: Agar well diffusion and MIC/MBC assay confirmed a strong bactericidal effect of ethanolic (SC04-ET) extract against ampicillin and colistin-resistant Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. The direct interactive effect of optimized conditions showed maximum antibacterial performance and ultra-performance liquid chromatography revealed a high amount of phenolic compounds. Conclusion: The results confirmed that ethanolic extract of S. cordifolia has potent bactericidal action against foodborne bacteria.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - Sandeep Kumar
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - M Amin Mir
- Department of Chemistry, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
| | - Vineet Kumar Vishnoi
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Akanksha Pandey
- Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, India
| |
Collapse
|
26
|
Li L, Xu Z, Cao R, Li J, Wu CJ, Wang Y, Zhu H. Effects of hydroxyl group in cyclo(Pro-Tyr)-like cyclic dipeptides on their anti-QS activity and self-assembly. iScience 2023; 26:107048. [PMID: 37360689 PMCID: PMC10285644 DOI: 10.1016/j.isci.2023.107048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
We investigated the influence of hydroxyl groups on the anti-quorum-sensing (anti-QS) and anti-biofilm activity of structurally similar cyclic dipeptides, namely cyclo(L-Pro-L-Tyr), cyclo(L-Hyp-L-Tyr), and cyclo(L-Pro-L-Phe), against Pseudomonas aeruginosa PAO1. Cyclo(L-Pro-L-Phe), lacking hydroxyl groups, displayed higher virulence factor inhibition and cytotoxicity, but showed less inhibitory ability in biofilm formation. Cyclo(L-Pro-L-Tyr) and cyclo(L-Hyp-L-Tyr) suppressed genes in both the las and rhl systems, whereas cyclo(L-Pro-L-Phe) mainly downregulated rhlI and pqsR expression. These cyclic dipeptides interacted with the QS-related protein LasR, with similar binding efficiency to the autoinducer 3OC12-HSL, except for cyclo(L-Pro-L-Phe) which had lower affinity. In addition, the introduction of hydroxyl groups significantly improved the self-assembly ability of these peptides. Both cyclo(L-Pro-L-Tyr) and cyclo(L-Hyp-L-Tyr) formed assembly particles at the highest tested concentration. The findings revealed the structure-function relationship of this kind of cyclic dipeptides and provided basis for our follow-up research in the design and modification of anti-QS compounds.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
27
|
Chen W, Wu Z, Liu C, Zhang Z, Liu X. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114509. [PMID: 36621032 DOI: 10.1016/j.ecoenv.2023.114509] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Bacillus subtilis as microbial fertilizers contribute to avoiding the harmful effects of traditional agricultural fertilizers and pesticides. However, there are many restrictions on the practical application of fertilizers. In this study, microbial biochar formulations (BCMs) were prepared by loading biochar with B. subtilis SL-44. Pot experiments were conducted to evaluate the effects of the BCMs on soil fertility, Fusarium wilt control, and radish plant growth. The application of BCMs dramatically improved soil properties and favored plant growth. Compared with SL-44 and biochar treatments, the BCMs treatments increased radish plant physical-chemical properties and activities of several enzymes in the soil. What's more, Fusarium wilt incidence had decreased by 59.88%. In addition, the BCMs treatments exhibited a significant increase in the abundance of bacterial genera in the rhizosphere soil of radish. Therefore, this study demonstrated that BCMs may be an eco-friendly strategy for improving soil fertility, reducing Fusarium wilt, and promoting radish plant growth.
Collapse
Affiliation(s)
- Wumei Chen
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Changhao Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Ziyan Zhang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| |
Collapse
|
28
|
Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. DIVERSITY 2023. [DOI: 10.3390/d15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plant growth-promoting bacteria (PGPB) enhance plant growth, as well as protect plants from several biotic and abiotic stresses through a variety of mechanisms. Therefore, the exploitation of PGPB in agriculture is feasible as it offers sustainable and eco-friendly approaches to maintaining soil health while increasing crop productivity. The vital key of PGPB application in agriculture is its effectiveness in colonizing plant roots and the phyllosphere, and in developing a protective umbrella through the formation of microcolonies and biofilms. Biofilms offer several benefits to PGPB, such as enhancing resistance to adverse environmental conditions, protecting against pathogens, improving the acquisition of nutrients released in the plant environment, and facilitating beneficial bacteria–plant interactions. Therefore, bacterial biofilms can successfully compete with other microorganisms found on plant surfaces. In addition, plant-associated PGPB biofilms are capable of protecting colonization sites, cycling nutrients, enhancing pathogen defenses, and increasing tolerance to abiotic stresses, thereby increasing agricultural productivity and crop yields. This review highlights the role of biofilms in bacterial colonization of plant surfaces and the strategies used by biofilm-forming PGPB. Moreover, the factors influencing PGPB biofilm formation at plant root and shoot interfaces are critically discussed. This will pave the role of PGPB biofilms in developing bacterial formulations and addressing the challenges related to their efficacy and competence in agriculture for sustainability.
Collapse
|
29
|
Stoitsova S, Paunova-Krasteva T, Dimitrova PD, Damyanova T. The concept for the antivirulence therapeutics approach as alternative to antibiotics: hope or still a fiction? BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Stoyanka Stoitsova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetelina Paunova-Krasteva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petya D. Dimitrova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetozara Damyanova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
30
|
Huang Y, Qin F, Li S, Yin J, Hu L, Zheng S, He L, Xia H, Liu J, Hu W. The mechanisms of biofilm antibiotic resistance in chronic rhinosinusitis: A review. Medicine (Baltimore) 2022; 101:e32168. [PMID: 36626427 PMCID: PMC9750636 DOI: 10.1097/md.0000000000032168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a common but burdensome ailment that is still poorly understood in terms of its pathogenesis. The existence of biofilms on the sinonasal mucosa of individuals with CRS has been proven by current biofilm identification methods. Current treatments for CRS generally include functional endoscopic sinus surgery, biofilm-removing strategies, and limited therapies that target quorum sensing (QS), patients with CRS are often resistant to antimicrobial therapy at degrees achievable by oral or intravenous administration, and even a subset of patients fail to react to either medical or surgical intervention. Multidrug-resistant Pseudomonas aeruginosa, Staphylococcus aureus, especially methicillin-resistant S. aureus, Streptococcus pneumoniae, and Haemophilus influenzae are the most commonly implicated bacteria in CRS patients, which may lead to the persistence and severity of CRS and antibiotic treatment failure via the formation of biofilms. Resistance to antibiotics is attributed to the 3-dimensional structure and QS of biofilms, and the latter describes the communication of bacteria within biofilms. A better understanding of biofilms in CRS and their contribution to the antibiotic resistance of CRS is critical for novel treatment strategies. This review mainly discusses the special structure of biofilms, QS, and their mechanisms of antibiotic resistance in order to investigate prospective anti-biofilm therapies, suggest future directions for study, and potentially refine the CRS prevention paradigm.
Collapse
Affiliation(s)
- Yanlin Huang
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Fengfeng Qin
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ji Yin
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Lanxin Hu
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sihan Zheng
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Lu He
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hui Xia
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jing Liu
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenjian Hu
- Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- * Correspondence: Wenjian Hu, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China (e-mail: )
| |
Collapse
|
31
|
Cho JA, Roh YJ, Son HR, Choi H, Lee JW, Kim SJ, Lee CH. Assessment of the biofilm-forming ability on solid surfaces of periprosthetic infection-associated pathogens. Sci Rep 2022; 12:18669. [PMID: 36333517 PMCID: PMC9636376 DOI: 10.1038/s41598-022-22929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is one of the leading causes of complications after surgery in clinical settings. In this study, we profiled the biofilm-forming ability of various periprosthetic infection-associated pathogens on medically relevant surfaces, polystyrene (PS) and titanium (Ti). We also explored how a specific environmental stressor, epigallocatechin gallate (EGCG), affected biofilm formation. First, Congo red tests revealed that all microorganisms formed biofilms within 72 h. Then, the amounts of biofilm formation on PS at 24, 48 and 72 h and also on a Ti plate for 72 h were determined. Some microbes preferred one surface over the other, whereas other microbes formed consistent levels of biofilm regardless of the surface material. Staphylococcus lugdunenensis was the most potent, while Enterococcus faecalis and Staphylococcus aureus were the weakest. Bacterial adhesion to hydrocarbon (BATH) tests indicated that the biofilm-forming abilities were not directly correlated with cell surface hydrophobicity (CSH). Finally, an external signal, EGCG, was applied to challenge the biofilm formation of each microorganism. EGCG regulated each microorganism's ability differently, though the change was consistent across surfaces for most pathogens. This study can help a better understanding of a broad spectrum of periprosthetic infection-associated pathogens by relative comparison of their biofilm-forming abilities.
Collapse
Affiliation(s)
- Jung-Ah Cho
- grid.417736.00000 0004 0438 6721School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Yoo Jin Roh
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hye Rim Son
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| | - Hojung Choi
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.49606.3d0000 0001 1364 9317Department of Chemistry, Hanyang University, Seoul, 04762 Republic of Korea
| | - Jeong-Won Lee
- grid.254187.d0000 0000 9475 8840Department of Mechanical Engineering, Chosun University, Gwangju, 61452 Republic of Korea
| | - Sung Jae Kim
- grid.256753.00000 0004 0470 5964Department of Orthopedic Surgery, Dongtan Sacred Hospital, Hallym University, Hwasung, 18450 Republic of Korea
| | - Chang-Hun Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988 Republic of Korea
| |
Collapse
|
32
|
He D, Fu C, Ning M, Hu X, Li S, Chen Y. Biofilms possibly harbor occult SARS-CoV-2 may explain lung cavity, re-positive and long-term positive results. Front Cell Infect Microbiol 2022; 12:971933. [PMID: 36250053 PMCID: PMC9554432 DOI: 10.3389/fcimb.2022.971933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
During the COVID-19 pandemic, there have been an increasing number of COVID-19 patients with cavitary or cystic lung lesions, re-positive or long-term positive nucleic acid tests, but the mechanism is still unclear. Lung cavities may appear at long time interval from initial onset of coronavirus infection, generally during the absorption phase of the disease. The main histopathological characteristic is diffuse alveolar damage and may have more severe symptoms after initial recovery from COVID-19 and an increased mortality rate. There are many possible etiologies of pulmonary cavities in COVID-19 patients and we hypothesize that occult SARS-CoV-2, in the form of biofilm, is harbored in the airway lacuna with other pathogenic microorganisms, which may be the cause of pulmonary cavities and repeated and long-term positive nucleic acid tests.
Collapse
Affiliation(s)
- Daqian He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Chaojiang Fu
- Emergency Department (Outpatient Chemotherapy Center), The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Mingjie Ning
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Xianglin Hu
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Shanshan Li
- Department of Anesthesiology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
- *Correspondence: Ying Chen, ; Shanshan Li,
| |
Collapse
|
33
|
Xu Y, Zhou W, Xiao L, Lan Q, Li M, Liu Y, Song L, Li L. Bacitracin-Engineered BSA/ICG Nanocomplex with Enhanced Photothermal and Photodynamic Antibacterial Activity. ACS OMEGA 2022; 7:33821-33829. [PMID: 36188296 PMCID: PMC9520541 DOI: 10.1021/acsomega.2c02470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
To reduce the drug resistance of bacteria and enhance the antibacterial ability in bacterial infection therapy, we designed a new antibacterial nanoagent. In this system, a photosensitizer (indocyanine green, ICG) was loaded in bovine serum albumin (BSA) through hydrophobic-interaction-induced self-assembly to form stable BSA@ICG nanoparticles. Furthermore, a positively charged antibacterial peptide bacitracin (Bac) was physically immobilized onto the surface of BSA@ICG to generate a bacterial-targeted nanomedicine BSA@ICG@Bac through electrostatic interactions. Afterward, its photodynamic and photothermal activities were intensely evaluated. Moreover, its bactericidal efficiency was assessed via in vitro antibacterial assays and bacterial biofilm destruction tests. First, the obtained BSA@ICG@Bac showed both good singlet oxygen generation property and high photothermal conversion efficiency. In addition, it showed enhanced photodynamic and photothermal antibacterial capacities and biofilm-removing ability in vitro due to Bac modification. To sum up, our research provided an economic and less-time-consuming approach to preparing antibacterial nanomedicines with excellent antibacterial ability. Therefore, the prepared antibacterial nanomedicines have great potential to be utilized in clinical trials in the future.
Collapse
|
34
|
Sena KXFR, Mendes RFV, Bôtelho EX, Araújo-Melo RO, Silva CJA, Costa Júnior HNP, Amorim-Carmo B, Damasceno IZ, Fernandes-Pedrosa MF, Aguiar JS, Silva TG, Lima GMS, Albuquerque JFC, Ximenes RM. Antibacterial and antibiofilm activities of thiazolidine-2,4-dione and 4-thioxo-thiazolidin-2-one derivatives against multidrug-resistant Staphylococcus aureus clinical isolates. J Appl Microbiol 2022; 133:3558-3572. [PMID: 36000385 DOI: 10.1111/jam.15790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
AIMS Antimicrobial resistance is one of the highest priorities in global public health with Staphylococcus aureus among the most important microorganisms due to its rapidly evolving antimicrobial resistance. Despite all the efforts of antimicrobial stewardship, research and development of new antimicrobials are still imperative. The thiazolidine ring is considered a privileged structure for the development of new antimicrobials. This study aimed to compare the antibacterial effects of two analog series of thiazolidine-2,4-dione and 4-thioxo-thiazolidin-2-one against multidrug-resistant Staphylococcus aureus clinical isolates. METHODS AND RESULTS The derivatives 1a, 2a, and 2b exhibited MIC between 1-32 μg.mL-1 , with time-to-kill curves showing a bactericidal effect up to 24 h. In the antibiofilm assay, the most active derivatives were able to inhibit about 90% of biofilm formation. The 4-thioxo-thiazolidine-2-one derivatives were more active against planktonic cells, while the thiazolidine-2,4-dione derivatives were able to disrupt about 50% of the preformed biofilm. In the in vivo infection model using Caenorhabditis elegans as a host, the derivatives 1a, 2a, and 2b increased nematode survival with a concentration-dependent effect. Exposure of S. aureus to the derivatives 2a and 2b induced surface changes and decrease cell size. None of the derivatives was cytotoxic for human peripheral blood mononuclear cells (PBMC) but showed moderate cytotoxicity for L929 fibroblasts. CONCLUSION The 5-(3,4-dichlorobenzylidene)-4-thioxothiazolidin-2-one (2b) was the most active derivative against S. aureus and showed the higher selective indexes. SIGNIFICANCE AND IMPACT OF STUDY 4-thioxo-thiazolidin-2-one are a promising scaffold for the research and development of new antimicrobial drugs against multidrug-resistant S. aureus.
Collapse
Affiliation(s)
- Kêsia X F R Sena
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Raudiney F V Mendes
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Evillyn X Bôtelho
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Camila J A Silva
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Bruno Amorim-Carmo
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Igor Z Damasceno
- Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Jaciana S Aguiar
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Teresinha G Silva
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | - Gláucia M S Lima
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Rafael M Ximenes
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
35
|
Li Y, Wang H, Zheng X, Li Z, Wang M, Luo K, Zhang C, Xia X, Wang Y, Shi C. Didecyldimethylammonium bromide: Application to control biofilms of Staphylococcus aureus and Pseudomonas aeruginosa alone and in combination with slightly acidic electrolyzed water. Food Res Int 2022; 157:111236. [DOI: 10.1016/j.foodres.2022.111236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/15/2022]
|
36
|
Chanaj-Kaczmarek J, Rosiak N, Szymanowska D, Rajewski M, Wender-Ozegowska E, Cielecka-Piontek J. The Chitosan-Based System with Scutellariae baicalensis radix Extract for the Local Treatment of Vaginal Infections. Pharmaceutics 2022; 14:740. [PMID: 35456574 PMCID: PMC9028937 DOI: 10.3390/pharmaceutics14040740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Scutellarie baicalensis radix, as a flavone-rich source, exhibits antibacterial, antifungal, antioxidant, and anti-inflammatory activity. It may be used as a therapeutic agent to treat various diseases, including vaginal infections. In this study, six binary mixtures of chitosan with stable S. baicalensis radix lyophilized extract were obtained and identified by spectral (ATR-FTIR, XRPD) and thermal (TG and DSC) methods. The changes in dissolution rates of active compounds and the significant increase in the biological properties towards metal chelating activity were observed, as well as the inhibition of hyaluronic acid degradation after mixing plant extract with chitosan. Moreover, the combination of S. baicalensis radix lyophilized extract with a carrier allowed us to obtain the binary systems with a higher antifungal activity than the pure extract, which may be effective in developing new strategies in the vaginal infections treatment, particularly vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Justyna Chanaj-Kaczmarek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland;
| | - Marcin Rajewski
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (M.R.); (E.W.-O.)
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (M.R.); (E.W.-O.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| |
Collapse
|
37
|
Targeting Acyl Homoserine Lactones (AHLs) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi J Biol Sci 2022; 29:1673-1682. [PMID: 35280554 PMCID: PMC8913397 DOI: 10.1016/j.sjbs.2021.10.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/12/2023] Open
Abstract
Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.
Collapse
|
38
|
Ilyas M, Mian SA, Rauf A, Ahmed E, Rahman G, Sannyal A, Jang J. Stimulated reversal of the strong adhesion of catechol onto a silica surface. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Ilyas
- Department of Physics University of Peshawar Peshawar Pakistan
| | | | - Abdur Rauf
- Department of Physics Islamia College University Peshawar Pakistan
| | - Ejaz Ahmed
- Department of Physics Abdul Wali Khan University Mardan Pakistan
| | - Gul Rahman
- Institute of Chemical Sciences University of Peshawar Peshawar Pakistan
| | - Arindam Sannyal
- Department of Nanoenergy Engineering Pusan National University Busan South Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering Pusan National University Busan South Korea
| |
Collapse
|
39
|
Dadi NCT, Bujdák J, Medvecká V, Pálková H, Barlog M, Bujdáková H. Surface Characterization and Anti-Biofilm Effectiveness of Hybrid Films of Polyurethane Functionalized with Saponite and Phloxine B. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7583. [PMID: 34947179 PMCID: PMC8703816 DOI: 10.3390/ma14247583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
The main objective of this work was to synthesize composites of polyurethane (PU) with organoclays (OC) exhibiting antimicrobial properties. Layered silicate (saponite) was modified with octadecyltrimethylammonium cations (ODTMA) and functionalized with phloxine B (PhB) and used as a filler in the composites. A unique property of composite materials is the increased concentration of modifier particles on the surface of the composite membranes. Materials of different compositions were tested and investigated using physico-chemical methods, such as infrared spectroscopy, X-ray diffraction, contact angle measurements, absorption, and fluorescence spectroscopy in the visible region. The composition of an optimal material was as follows: nODTMA/mSap = 0.8 mmol g-1 and nPhB/mSap = 0.1 mmol g-1. Only about 1.5% of present PhB was released in a cultivation medium for bacteria within 24 h, which proved good stability of the composite. Anti-biofilm properties of the composite membranes were proven in experiments with resistant Staphylococcus aureus. The composites without PhB reduced the biofilm growth 100-fold compared to the control sample (non-modified PU). The composite containing PhB in combination with the photodynamic inactivation (PDI) reduced cell growth by about 10,000-fold, thus proving the significant photosensitizing effect of the membranes. Cell damage was confirmed by scanning electron microscopy. A new method of the synthesis of composite materials presented in this work opens up new possibilities for targeted modification of polymers by focusing on their surfaces. Such composite materials retain the properties of the unmodified polymer inside the matrix and only the surface of the material is changed. Although these unique materials presented in this work are based on PU, the method of surface modification can also be applied to other polymers. Such modified polymers could be useful for various applications in which special surface properties are required, for example, for materials used in medical practice.
Collapse
Affiliation(s)
- Nitin Chandra Teja Dadi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Juraj Bujdák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia;
| | - Helena Pálková
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Martin Barlog
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 36 Bratislava, Slovakia; (H.P.); (M.B.)
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|