1
|
Wang X, Liu J, Liu T, Fang C, Ding L, Li Q, Yang K, Wu X. Discovery of the pharmacodynamic material basis of Danggui Buxue Decoction in the treatment of diabetic kidney disease based on lipidomics regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156643. [PMID: 40215813 DOI: 10.1016/j.phymed.2025.156643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Danggui Buxue Decoction (DBD) is a formula used for treating diabetic kidney disease (DKD). However, the pharmacodynamic material basis of DBD in DKD therapy remains unclear, hindering its industrial development and innovation in drug formulations. PURPOSE Lipid metabolism disorder is a key pathological mechanism in DKD progression. This study employs lipidomics to elucidate and validate the pharmacodynamic material basis of DBD in treating DKD. METHODS Forty-eight male SD rats were used in the experiment, with 8 rats per group. The DKD model was constructed with a diet high in fat and sugar, together with intraperitoneal administration of low-dose STZ and unilateral nephrectomy. DBD was administered continuously for 10 weeks to assess its therapeutic efficacy on DKD. Lipid biomarkers in the DKD models were analyzed using lipidomics, while the transitional components in the blood of DBD-treated rats were characterized through UPLC-QE-Orbitrap MS. Potential pharmacodynamic substances were identified by correlating lipid biomarkers with active ingredients in vivo, followed by molecular docking and in vitro experiments to validate key pharmacodynamic components. RESULTS DBD significantly improved blood glucose, blood lipid levels, and renal function in DKD model rats. Lipidomics identified 37 lipid biomarkers in the DKD models, and DBD demonstrated a marked corrective effect on these biomarkers. In the therapeutically effective state, 91 blood transitional components of DBD were identified. Correlation analysis revealed 44 pharmacodynamic substances associated with DKD treatment, with ferulic acid, calycosin, astragaloside IV, and ligustilide being the key components. These substances acted by increasing the levels of SIRT1, PPARG, and ABCA1 proteins in lipid-deposited podocytes. CONCLUSION In conclusion, this study explained the scientific connotation of DBD treatment of DKD with modern scientific language from three aspects: pharmacodynamic evaluation, pharmacodynamic material basis and mechanism of action from the perspective of lipid metabolism balance for the first time, and provided an empirical basis for the modern application of traditional Chinese medicinal prescriptions.
Collapse
Affiliation(s)
- Xu Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jing Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tingting Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Cheng Fang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lin Ding
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Qiqihar Medical University, Qiqihar 161006, China
| | - Qiyao Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Kaidi Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuhong Wu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
2
|
Batir-Marin D, Ștefan CS, Boev M, Gurău G, Popa GV, Matei MN, Ursu M, Nechita A, Maftei NM. A Multidisciplinary Approach of Type 1 Diabetes: The Intersection of Technology, Immunotherapy, and Personalized Medicine. J Clin Med 2025; 14:2144. [PMID: 40217595 PMCID: PMC11989447 DOI: 10.3390/jcm14072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by the destruction of pancreatic β-cells, leading to absolute insulin deficiency. Despite advancements in insulin therapy and glucose monitoring, achieving optimal glycemic control remains a challenge. Emerging technologies and novel therapeutic strategies are transforming the landscape of T1D management, offering new opportunities for improved outcomes. Methods: This review synthesizes recent advancements in T1D treatment, focusing on innovations in continuous glucose monitoring (CGM), automated insulin delivery systems, smart insulin formulations, telemedicine, and artificial intelligence (AI). Additionally, we explore biomedical approaches such as stem cell therapy, gene editing, immunotherapy, gut microbiota modulation, nanomedicine-based interventions, and trace element-based therapies. Results: Advances in digital health, including CGM integration with hybrid closed-loop insulin pumps and AI-driven predictive analytics, have significantly improved real-time glucose management. AI and telemedicine have enhanced personalized diabetes care and patient engagement. Furthermore, regenerative medicine strategies, including β-cell replacement, CRISPR-based gene editing, and immunomodulatory therapies, hold potential for disease modification. Probiotics and microbiome-targeted therapies have demonstrated promising effects in maintaining metabolic homeostasis, while nanomedicine-based trace elements provide additional strategies to regulate insulin sensitivity and oxidative stress. Conclusions: The future of T1D management is shifting toward precision medicine and integrated technological solutions. While these advancements present promising therapeutic avenues, challenges such as long-term efficacy, safety, accessibility, and clinical validation must be addressed. A multidisciplinary approach, combining biomedical research, artificial intelligence, and nanotechnology, will be essential to translate these innovations into clinical practice, ultimately improving the quality of life for individuals with T1D.
Collapse
Affiliation(s)
- Denisa Batir-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (D.B.-M.); (N.-M.M.)
| | - Claudia Simona Ștefan
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (D.B.-M.); (N.-M.M.)
| | - Gabriela Gurău
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania;
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
| | - Gabriel Valeriu Popa
- Department of Dental Medicine, Faculty of Medicine and Pharmacy Galați, “Dunărea de Jos” University, 800008 Galati, Romania; (G.V.P.); (M.N.M.)
| | - Mădălina Nicoleta Matei
- Department of Dental Medicine, Faculty of Medicine and Pharmacy Galați, “Dunărea de Jos” University, 800008 Galati, Romania; (G.V.P.); (M.N.M.)
| | - Maria Ursu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (M.U.); (A.N.)
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (M.U.); (A.N.)
| | - Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (D.B.-M.); (N.-M.M.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
| |
Collapse
|
3
|
Ranasinghe R, Mathai M, Alshawsh MA, Zulli A, Ranasinghe R. Predictive markers of early endothelial dysregulation in type-1 diabetes: a meta-analysis. Acta Diabetol 2024:10.1007/s00592-024-02401-2. [PMID: 39527296 DOI: 10.1007/s00592-024-02401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND This study identifies a new set of salient risk factors that may trigger danger signals of vascular dysregulation in T1D. Vascular abnormalities and impairment of CVD is a major adverse effect of T1D, particularly affecting children, adolescents and young adults. METHODS The patients of T1D were compared with the healthy control (HC) for the risk factors of vascular dysregulation in published studies from year 2013 to 2023. The PubMed, Web of Science and Google Scholar databases were searched from 1/1/2013 to 1/9/2023. The risk of bias was assessed with the Cochrane (ROBINS-I ) tool, relevant to clinical subjects. A random effects model was followed and analysed by RevMan 5.4 and GraphPad Prism software. RESULTS 80 relevant case-control studies having 7492 T1D patients and 5293 HC were included. The age and sex-matched HC consisted of persons free of disease and not under any medication while clinical subjects of < 40 years were included. 28 risk factors were grouped into six primary outcome models, all of which favoured the T1D synonymous with a high risk of CVD. CONCLUSION Our findings have strong implications for improving the quality of life and health economics related to vascular disease in T1D. HbA1c% is the most effective biomarker, followed by FBG, LDL-c, AI%, sICAM-1, and FMD% which could be evaluated with a simple blood test or non-invasive techniques. These may serve dual purposes as biomarkers of rapid diagnosis that could offer prospective tailor-made therapeutics for T1D. (Protocol registered at https://www.crd.york.ac.uk/prospero/CRD42022384636 ).
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, VIC, Australia
| | - Michael Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, VIC, Australia
| | - Mohammed Abdullah Alshawsh
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, VIC, Australia
| | | |
Collapse
|
4
|
Alsharairi NA. Diagnostic Biomarkers of Microvascular Complications in Children and Adolescents with Type 1 Diabetes Mellitus-An Updated Review. Pediatr Rep 2024; 16:763-778. [PMID: 39311327 PMCID: PMC11417801 DOI: 10.3390/pediatric16030064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is regarded as the most chronic autoimmune disease affecting children and adolescents that results from a destruction of pancreatic β-cell and leads to insulin insufficiency and persistent hyperglycemia (HG). Children and adolescents with T1DM are at an increased risk of developing microvascular complications, including diabetic nephropathy (DNE), diabetic retinopathy (DR), and diabetic neuropathy (DNU). The risk factors and prevalence of these complications differ greatly in pediatric studies. Screening for T1DM microvascular complications undergoes different stages and it is recommended to identify early symptoms and clinical signs. The identification of biomarkers in T1DM microvascular complications is needed to provide optimal treatment. Despite several studies on early biomarkers for DNE in children, the potential biomarkers for predicting DR and DNU have not been completely illustrated. This review fills this gap by identifying biomarkers of T1DM microvascular complications in children and adolescents through searches in the PubMed/Medline database.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
5
|
Nilsson C, Dereke J. Cystatin C as an adjunct to HbA1c may prove useful in predicting the development of diabetic complications in children and adolescents with type 1 diabetes. J Diabetes Metab Disord 2024; 23:1251-1257. [PMID: 38932813 PMCID: PMC11196488 DOI: 10.1007/s40200-024-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose Complications from diabetes mellitus can occur over time and although glycosylated hemoglobin (HbA1c) is a good biomarker for glycaemic control, other factors also contribute to the development of complications in type 1 diabetes. More markers able to identify the risk of complications are needed. This study aimed to investigate plasma levels of FGF21, Cystatin C, lipocalin-2, and MMP-9 in children and adolescents with different duration of type 1 diabetes and possible correlation to HbA1c to identify potential biomarkers of future complication development. Methods Patients (n = 244, 0-18 years) with type 1 diabetes, at Helsingborg's Hospital, Sweden, were included in this study. Circulating levels of FGF21, Cystatin C, lipocalin-2, and MMP-9 were investigated in plasma using automated ELISA with the ELLA™ system and standardised controls. Results Cystatin C levels were elevated in patients with diabetes duration longer than 5 years (P < 0.001). HbA1c and Cystatin C levels were inversely correlated for all participants (rs = - 0.23, CI95: -0.35--0.10; P < 0.001). A stepwise multiple regression analysis showed that HbA1c (P < 0.001) and Cystatin C (P = 0.03) were associated to the duration of diabetes at sampling while MMP-9, lipocalin-2, and FGF21 did not reach statistical significance. Conclusion In conclusion, Cystatin C levels were higher in patients with diabetes duration longer than 5 years, and inverse correlation was found between HbA1c and Cystatin C levels as well as duration of diabetes. Cystatin C may prove useful as an adjunct to HbA1c in predicting eventual development of diabetic complications. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01419-1.
Collapse
Affiliation(s)
- Charlotta Nilsson
- Department of Pediatrics, Department of Clinical Sciences, Helsingborg Hospital, Lund University, Helsingborg, Sweden
| | - Jonatan Dereke
- Department of Clinical Sciences, Diabetes Research Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Elian V, Popovici V, Ozon EA, Musuc AM, Fița AC, Rusu E, Radulian G, Lupuliasa D. Current Technologies for Managing Type 1 Diabetes Mellitus and Their Impact on Quality of Life-A Narrative Review. Life (Basel) 2023; 13:1663. [PMID: 37629520 PMCID: PMC10456000 DOI: 10.3390/life13081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Type 1 diabetes mellitus is a chronic autoimmune disease that affects millions of people and generates high healthcare costs due to frequent complications when inappropriately managed. Our paper aimed to review the latest technologies used in T1DM management for better glycemic control and their impact on daily life for people with diabetes. Continuous glucose monitoring systems provide a better understanding of daily glycemic variations for children and adults and can be easily used. These systems diminish diabetes distress and improve diabetes control by decreasing hypoglycemia. Continuous subcutaneous insulin infusions have proven their benefits in selected patients. There is a tendency to use more complex systems, such as hybrid closed-loop systems that can modulate insulin infusion based on glycemic readings and artificial intelligence-based algorithms. It can help people manage the burdens associated with T1DM management, such as fear of hypoglycemia, exercising, and long-term complications. The future is promising and aims to develop more complex ways of automated control of glycemic levels to diminish the distress of individuals living with diabetes.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Emma-Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Adina Magdalena Musuc
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Ancuța Cătălina Fița
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Emilia Rusu
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, N. Malaxa Clinical Hospital, 12 Vergului Street, 022441 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| |
Collapse
|
7
|
Ren X, Wang W, Cao H, Shao F. Diagnostic value of serum cathepsin S in type 2 diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1180338. [PMID: 37305031 PMCID: PMC10248518 DOI: 10.3389/fendo.2023.1180338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background Identification of risk factors that have causal effects on the occurrence of diabetic kidney disease (DKD), is of great significance in early screening and intervening for DKD, and in delaying the progression of DKD to end-stage renal disease. Cathepsin S (Cat-S), a novel non-invasive diagnostic marker, mediates vascular endothelial dysfunction. The diagnostic value of Cat-S for DKD has rarely been reported in clinical studies. Objective To analyze whether Cat-S is a risk factor for DKD and evaluate the diagnostic value of serum Cat-S for DKD. Methods Forty-three healthy subjects and 200 type 2 diabetes mellitus (T2DM) patients were enrolled. T2DM patients were divided into subgroups according to various criteria. Enzyme-linked immunosorbent assay was used to detect serum Cat-S levels among different subgroups. Spearman correlation analysis was used to analyze correlations between serum Cat-S and clinical indicators. Multivariate logistic regression analysis was performed to analyze risk factors for the occurrence of DKD and decreased renal function in T2DM patients. Results Spearman analysis showed that serum Cat-S level was positively correlated with urine albumin creatinine ratio (r=0.76, P<0.05) and negatively correlated with estimated glomerular filtration rate (r=-0.54, P<0.01). Logistic regression analysis showed that increased serum Cat-S and cystatin C(CysC) were independent risk factors for DKD and decreased renal function in T2DM patients (P<0.05). The area under the receiver operating characteristic (ROC) curve was 0.900 of serum Cat-S for diagnosing DKD, and when the best cut-off value was 827.42 pg/mL the sensitivity and specificity were 71.6% and 98.8%, respectively. Thus, serum Cat-S was better than CysC for diagnosing DKD (for CysC, the area under the ROC curve was 0.791, and when the cut-off value was 1.16 mg/L the sensitivity and specificity of CysC were 47.4% and 98.8%, respectively). Conclusion Increased serum Cat-S were associated with the progression of albuminuria and decreased renal function in T2DM patients. The diagnostic value of serum Cat-S was better than that of CysC for DKD. Monitoring of serum Cat-S levels could be helpful for early screening DKD and assessing the severity of DKD and could provide a new strategy for diagnosing DKD.
Collapse
Affiliation(s)
- Xuejing Ren
- Henan Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Wanqing Wang
- Health Management Centre, People’s Hospital of Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, Henan, China
| | - Huixia Cao
- Henan Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Fengmin Shao
- Henan Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Dejenie TA, Abebe EC, Mengstie MA, Seid MA, Gebeyehu NA, Adella GA, Kassie GA, Gebrekidan AY, Gesese MM, Tegegne KD, Anley DT, Feleke SF, Zemene MA, Dessie AM, Moges N, Kebede YS, Bantie B, Adugna DG. Dyslipidemia and serum cystatin C levels as biomarker of diabetic nephropathy in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1124367. [PMID: 37082121 PMCID: PMC10112538 DOI: 10.3389/fendo.2023.1124367] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundDiabetic nephropathy is a leading cause of end-stage renal disease. The diagnostic markers of nephropathy, including the presence of albuminuria and/or a reduced estimated glomerular filtration rate, are not clinically ideal, and most of them are raised after a significant reduction in renal function. Therefore, it is crucial to seek more sensitive and non-invasive biomarkers for the diagnosis of diabetic nephropathy.Objective of the studyThis study aimed to investigate the serum cystatin C levels and dyslipidemia for the detection of diabetic nephropathy in patients with type 2 diabetes mellitus.MethodologyA hospital-based comparative cross-sectional study was conducted from December 2021 to August 2022 in Tikur, Anbessa specialized teaching hospital with a sample size of 140 patients with type2 diabetes mellitus. Socio-demographic data was collected using a structured questionnaire, and 5 mL of blood was collected from each participant following overnight fasting for biochemical analyses.ResultsIn type 2 diabetes patients with nephropathy, we found significant lipoprotein abnormalities and an increase in serum cystatin C (P < 0.001) compared to those without nephropathy. Serum cystatin C, systolic blood pressure, fasting blood glucose, total cholesterol, triglyceride, low density lipoprotein, very low-density lipoprotein, high density lipoprotein, and duration of diabetes were identified as being significantly associated with diabetic nephropathy (P < 0.05) in multivariable logistic regression analysis. The mean values of total cholesterol levels, triglyceride levels, and high-density lipoprotein cholesterol levels were also found to be significantly higher (P < 0.05) in females as compared to male type-2 diabetic patients. The fasting blood glucose levels and lipid profiles of the participants were found to be significantly associated with serum cystatin C levels.ConclusionThe present study found significant serum cystatin C and lipoprotein abnormalities in T2DM patients with diabetic nephropathy when compared with those without diabetic nephropathy, and these lipoprotein abnormalities were significantly associated with serum cystatin C levels.
Collapse
Affiliation(s)
- Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- *Correspondence: Tadesse Asmamaw Dejenie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mohammed Abdu Seid
- Department of Physiology, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Atnafu Gebeyehu
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Getachew Asmare Adella
- Department of Reproductive Health and Nutrition, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Gizchew Ambaw Kassie
- Department of Epidemiology and Biostatistics, School of Public Health, Woliata Sodo University, Sodo, Ethiopia
| | - Amanuel Yosef Gebrekidan
- Department of Public Health, School of Public Health, College of Health Sciences and Medicine, Wolaita Sodo University, Sodo, Ethiopia
| | - Molalegn Mesele Gesese
- Department of Midwifery, College of Medicine and Health Science, Wolaita Sodo University, Sodo, Ethiopia
| | - Kirubel Dagnaw Tegegne
- Department of Nursing, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Denekew Tenaw Anley
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Sefineh Fenta Feleke
- Department of Public Health, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Melkamu Aderajew Zemene
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anteneh Mengist Dessie
- Department of Public Health, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Natnael Moges
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yenealem Solomon Kebede
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Berihun Bantie
- Department of Comprehensive Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Dagnew Getnet Adugna
- Department of Anatomy, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Taha MM, Mahdy-Abdallah H, Shahy EM, Helmy MA, ElLaithy LS. Diagnostic efficacy of cystatin-c in association with different ACE genes predicting renal insufficiency in T2DM. Sci Rep 2023; 13:5288. [PMID: 37002266 PMCID: PMC10066320 DOI: 10.1038/s41598-023-32012-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
Diabetic nephropathy (DN) seems to be the major cause of chronic kidney disease that may finally lead to End Stage Renal Disease. So, renal function assessment in type 2 diabetes mellitus (T2DM) individuals is very important. Clearly, DN pathogenesis is multifactorial and different proteins, genes and environmental factors can contribute to the onset of the disease. We assessed sensitive and specific biomarkers (in blood and urine) which can predict kidney disease susceptibility among T2DM patients. Serum cystatin-c (cyst-c) in blood and urinary hemeoxygenase (HO-1) in addition to ACE I/D polymorphism and ACE G2350A genotypes. Hundred and eight T2DM patients and 85 controls were enrolled. Serum cystatin-c and urinary (HO-1) were tested by ELISA. Genetic determination of both ACE I/D polymorphism and ACE G2350A genotypes was performed by PCR for all participants. Significant rise in serum cystatin-c and urinary HO-1 levels were shown in diabetic groups compared with control group. Moreover, GG genotype of ACE G2350A gene in diabetic group was associated with rise in serum cystatin-c and urinary HO-1 compared with control group. Mutant AA genotype demonstrated increase in urinary HO-1. DD polymorphism was associated with rise in serum creatinine and cyst-c in diabetic group. Positive correlation was seen between duration of diabetes and serum cyst-c and between serum glucose and urinary (HO-1) in diabetic group. The results from this study indicated an association of serum cystatin-c with GG genotype of ACE G2350A in conjugation with DD polymorphism of ACE I/D which could be an early predictor of tubular injury in T2DM diabetic patients.
Collapse
Affiliation(s)
- Mona Mohamed Taha
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Cairo, Egypt.
| | - Heba Mahdy-Abdallah
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Cairo, Egypt
| | - Eman Mohamed Shahy
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Cairo, Egypt
| | - Mona Adel Helmy
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Cairo, Egypt
| | - Lamia Samir ElLaithy
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
10
|
Trutin I, Bajic Z, Turudic D, Cvitkovic-Roic A, Milosevic D. Cystatin C, renal resistance index, and kidney injury molecule-1 are potential early predictors of diabetic kidney disease in children with type 1 diabetes. Front Pediatr 2022; 10:962048. [PMID: 35967553 PMCID: PMC9372344 DOI: 10.3389/fped.2022.962048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the main cause of end-stage renal disease in patients with diabetes mellitus type I (DM-T1). Microalbuminuria and estimated glomerular filtration rate (eGFR) are standard predictors of DKD. However, these predictors have serious weaknesses. Our study aimed to analyze cystatin C, renal resistance index, and urinary kidney injury molecule-1 (KIM-1) as predictors of DKD. METHODS We conducted a cross-sectional study in 2019 on a consecutive sample of children and adolescents (10-18 years) diagnosed with DM-T1. The outcome was a risk for DKD estimated using standard predictors: age, urinary albumin, eGFR, serum creatinine, DM-T1 duration, HbA1c, blood pressure, and body mass index (BMI). We conducted the analysis using structural equation modeling. RESULTS We enrolled 75 children, 36 girls and 39 boys with the median interquartile range (IQR) age of 14 (11-16) years and a median (IQR) duration of DM-T1 of 6 (4-9) years. The three focal predictors (cystatin C, resistance index, and urinary KIM-1) were significantly associated with the estimated risk for DKD. Raw path coefficients for cystatin C were 3.16 [95% CI 0.78; 5.53; p = 0.009, false discovery rate (FDR) < 5%], for renal resistance index were -8.14 (95% CI -15.36; -0.92; p = 0.027; FDR < 5%), and for urinary KIM-1 were 0.47 (95% CI 0.02; 0.93; p = 0.040; FDR < 5%). CONCLUSION Cystatin C, renal resistance index, and KIM-1 may be associated with the risk for DKD in children and adolescents diagnosed with DM-T1. We encourage further prospective cohort studies to test our results.
Collapse
Affiliation(s)
- Ivana Trutin
- Department of Pediatrics, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Zarko Bajic
- Research Unit "Dr. Mirko Grmek", University Psychiatric Hospital "Sveti Ivan", Zagreb, Croatia
| | - Daniel Turudic
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Andrea Cvitkovic-Roic
- Helena Clinic for Pediatric Medicine, Zagreb, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Danko Milosevic
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pediatrics, General Hospital Zabok and Hospital of Croatian Veterans, Bracak, Croatia
| |
Collapse
|