1
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Joshua A, Allen KE, Orsi NM. An Overview of Artificial Intelligence in Gynaecological Pathology Diagnostics. Cancers (Basel) 2025; 17:1343. [PMID: 40282519 PMCID: PMC12025868 DOI: 10.3390/cancers17081343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The advent of artificial intelligence (AI) has revolutionised many fields in healthcare. More recently, it has garnered interest in terms of its potential applications in histopathology, where algorithms are increasingly being explored as adjunct technologies that can support pathologists in diagnosis, molecular typing and prognostication. While many research endeavours have focused on solid tumours, gynaecological malignancies have nevertheless been relatively overlooked. The aim of this review was therefore to provide a summary of the status quo in the field of AI in gynaecological pathology by encompassing malignancies throughout the entirety of the female reproductive tract rather than focusing on individual cancers. Methods: This narrative/scoping review explores the potential application of AI in whole slide image analysis in gynaecological histopathology, drawing on both findings from the research setting (where such technologies largely remain confined), and highlights any findings and/or applications identified and developed in other cancers that could be translated to this arena. Results: A particular focus is given to ovarian, endometrial, cervical and vulval/vaginal tumours. This review discusses different algorithms, their performance and potential applications. Conclusions: The effective application of AI tools is only possible through multidisciplinary co-operation and training.
Collapse
Affiliation(s)
- Anna Joshua
- Christian Medical College, Vellore 632004, Tamil Nadu, India;
| | - Katie E. Allen
- Women’s Health Research Group, Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK;
| | - Nicolas M. Orsi
- Women’s Health Research Group, Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK;
| |
Collapse
|
3
|
Kulkarni S, Seneviratne N, Tosun Ç, Madhusudan S. PARP inhibitors in ovarian cancer: Mechanisms of resistance and implications to therapy. DNA Repair (Amst) 2025; 149:103830. [PMID: 40203475 DOI: 10.1016/j.dnarep.2025.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Advanced epithelial ovarian cancer of the high-grade serous subtype (HGSOC) remains a significant clinical challenge due to the development of resistance to current platinum-based chemotherapies. PARP1/2 inhibitors (PARPi) exploit the well-characterised homologous recombination repair deficiency (HRD) in HGSOC and offer an effective targeted approach to treatment. Several clinical trials demonstrated that PARPi (olaparib, rucaparib, niraparib) significantly improved progression-free survival (PFS) in HGSOC in the recurrent maintenance setting. However, 40-70 % of patients develop Resistance to PARPi presenting an ongoing challenge in the clinic. Therefore, there is an unmet need for novel targeted therapies and biomarkers to identify intrinsic or acquired resistance to PARPi in ovarian cancer. Understanding the mechanisms of resistance to PARPi is crucial for identifying molecular vulnerabilities, developing effective biomarkers for patient stratification and guiding treatment decisions. Here, we summarise the current landscape of mechanisms associated with PARPi resistance such as restored homologous recombination repair functionality, replication fork stability and alterations to PARP1 and PARP2 and the DNA damage response. We highlight the role of circulating tumour DNA (ctDNA) in identifying acquired resistance biomarkers and its potential in guiding 'real-time' treatment decisions. Moreover, we explore other innovative treatment strategies aimed at overcoming specific resistance mechanisms, including the inhibition of ATR, WEE1 and POLQ. We also examine the role of PARPi rechallenge in patients with acquired resistance.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | - Çağla Tosun
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Srinivasan Madhusudan
- Naaz-Coker Ovarian Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
4
|
Polajžer S, Černe K. Precision Medicine in High-Grade Serous Ovarian Cancer: Targeted Therapies and the Challenge of Chemoresistance. Int J Mol Sci 2025; 26:2545. [PMID: 40141188 PMCID: PMC11942020 DOI: 10.3390/ijms26062545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The poor prognosis for high-grade serous ovarian cancer (HGSOC), the dominant subtype of ovarian cancer, reflects its aggressive nature, late diagnosis, and the highest mortality rate among all gynaecologic cancers. Apart from late diagnosis, the main reason for the poor prognosis and its unsuccessful treatment is primarily the emergence of chemoresistance to carboplatin. Although there is a good response to primary treatment, the disease recurs in 80% of cases, at which point it is largely resistant to carboplatin. The introduction of novel targeted therapies in the second decade of the 21st century has begun to transform the treatment of HGSOC, although their impact on overall survival remains unsatisfactory. Targeting the specific pathways known to be abnormally activated in HGSOC is especially difficult due to the molecular diversity of its subtypes. Moreover, a range of molecular changes are associated with acquired chemoresistance, e.g., reversion of BRCA1 and BRCA2 germline alleles. In this review, we examine the advantages and disadvantages of approved targeted therapies, including bevacizumab, PARP inhibitors (PARPis), and treatments targeting cells with neurotrophic tyrosine receptor kinase (NTRK), B-rapidly accelerated fibrosarcoma (BRAF), and rearranged during transfection (RET) gene alterations, as well as antibody-drug conjugates. Additionally, we explore promising new targets under investigation in ongoing clinical trials, such as immune checkpoint inhibitors, anti-angiogenic agents, phosphatidylinositol-3-kinase (PI3K) inhibitors, Wee1 kinase inhibitors, and ataxia telangiectasia and Rad3-related protein (ATR) inhibitors for platinum-resistant disease. Despite the development of new targeted therapies, carboplatin remains the fundamental medicine in HGSOC therapy. The correct choice of treatment strategy for better survival of patients with advanced HGSOC should therefore include a prediction of patients' risks of developing chemoresistance to platinum-based chemotherapy. Moreover, effective targeted therapy requires the selection of patients who are likely to derive clinical benefit while minimizing potential adverse effects, underscoring the essence of precision medicine.
Collapse
Affiliation(s)
| | - Katarina Černe
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Dragomir RD, Negru AG, Mercioni MA, Popovici D, Săftescu S, Blidari AR, Curcă RO, Sas I. The Role of Initial Neutropenia and Neutrophil Dynamics in Personalizing Chemotherapy for Platinum-Resistant Ovarian Cancer. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:470. [PMID: 40142281 PMCID: PMC11944004 DOI: 10.3390/medicina61030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: Platinum-resistant ovarian cancer (PROC) is associated with limited treatment options and poor outcomes, with median progression-free survival (PFS) and overall survival (OS) remaining suboptimal. Neutropenia, a common chemotherapy-related toxicity, has shown potential as a predictive biomarker for treatment efficacy in several malignancies, including ovarian cancer. However, its role as a prognostic marker, particularly baseline neutropenia, remains underexplored. This study aimed to evaluate the prognostic and predictive value of initial neutropenia and neutrophil dynamics in PROC patients undergoing chemotherapy. Materials and Methods: A retrospective cohort study was conducted on 250 PROC patients treated between 2018 and 2022 at the OncoHelp Medical Center, Timișoara, Romania. Patients were stratified into two groups based on baseline absolute neutrophil count (ANC), as those with initial neutropenia (ANC < 2000/mm3) and without initial neutropenia (ANC ≥ 2000/mm3). Clinical outcomes, including tumor response, PFS, and OS, were assessed using RECIST 1.1 criteria. Hematological toxicities and neutrophil dynamics across three chemotherapy cycles were analyzed. Results: Patients with baseline neutropenia demonstrated significantly higher tumor response rates (47.05% vs. 27.27%; p = 0.002), longer median PFS (8.2 vs. 6.3 months; p = 0.008), and extended median OS (14.5 vs. 11.2 months; p = 0.002). Hematological toxicities, including Grade ≥3 neutropenia and febrile neutropenia, were more frequent in the neutropenic group (p < 0.001). Baseline ANC thresholds effectively predicted clinical outcomes, with an AUC of 0.79 for OS. Conclusions: Baseline neutropenia is a significant prognostic marker in PROC, correlating with improved tumor response and survival outcomes despite increased hematological toxicities. These findings support incorporating baseline ANC into treatment personalization strategies for PROC.
Collapse
Affiliation(s)
- Radu-Dumitru Dragomir
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (R.-D.D.); (I.S.)
| | - Alina-Gabriela Negru
- Department of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Marina-Adriana Mercioni
- Faculty of Electronics, Telecommunications and Information Technologies, Politehnica University Timisoara, 300223 Timișoara, Romania;
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Dorel Popovici
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.P.); (S.S.)
| | - Sorin Săftescu
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.P.); (S.S.)
| | - Andiana Roxana Blidari
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | | | - Ioan Sas
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (R.-D.D.); (I.S.)
| |
Collapse
|
6
|
Li Z, Wu YH, Guo YQ, Min XJ, Lin Y. Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:191-204. [PMID: 39539173 PMCID: PMC11842298 DOI: 10.4196/kjpp.24.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms. RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
Collapse
Affiliation(s)
- Zhao Li
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ya-Hong Wu
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ye-Qing Guo
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Xiao-Jia Min
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ying Lin
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| |
Collapse
|
7
|
Alvarez Secord A, Lewin SN, Murphy CG, Cecere SC, Barquín A, Gálvez-Montosa F, Mathews CA, Konecny GE, Ray-Coquard I, Oaknin A, Rubio Pérez MJ, Bonaventura A, Diver EJ, Ayuk SM, Wang Y, Corr BR, Salutari V. The efficacy and safety of mirvetuximab soravtansine in FRα-positive, third-line and later, recurrent platinum-sensitive ovarian cancer: the single-arm phase II PICCOLO trial. Ann Oncol 2025; 36:321-330. [PMID: 39617145 DOI: 10.1016/j.annonc.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Mirvetuximab soravtansine-gynx (MIRV) is a first-in-class, folate receptor alpha (FRα)-targeting antibody-drug conjugate with United States Food and Drug Administration approval for FRα-positive platinum-resistant ovarian cancer. PICCOLO is a phase II, global, open-label, single-arm trial of MIRV as third-line or greater (≥3L) treatment in patients with FRα-positive (≥75% of cells with ≥2+ staining intensity) recurrent platinum-sensitive ovarian cancer (PSOC). PATIENTS AND METHODS Participants received MIRV (6 mg/kg adjusted ideal body weight every 3 weeks) until progressive disease (PD), unacceptable toxicity, withdrawal of consent, or death. Primary endpoint was investigator-assessed objective response rate (ORR). Key secondary endpoint was investigator-assessed duration of response (DOR). Additional endpoints included investigator-assessed progression-free survival (PFS), overall survival (OS), and safety. Analyses of subgroups by disease characteristics (e.g. platinum-free interval) and treatment history [e.g. prior bevacizumab and poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitor (PARPi) treatment] were exploratory. RESULTS Seventy-nine participants were enrolled and efficacy assessable. The primary endpoint was met; ORR was 51.9% [95% confidence interval (CI) 40.4% to 63.3%]. Median DOR was 8.25 months (95% CI 5.55-10.78 months) and median PFS was 6.93 months (95% CI 5.85-9.59 months). OS was not mature at data cut-off. ORR was 45.8% (95% CI 32.7% to 59.2%) in participants with PD while on/within 30 days of prior PARPi (n = 59) and 60.0% (95% CI 14.7% to 94.7%) in those without PD with prior PARPi (n = 5). No new safety signals occurred; most common treatment-emergent adverse events (TEAEs) were gastrointestinal, neurosensory, and resolvable ocular events. TEAEs led to discontinuation in 13 participants (16%) and death in 2 participants (3%). CONCLUSIONS MIRV as ≥3L treatment in heavily pretreated recurrent FRα-positive PSOC demonstrated notable efficacy and tolerable safety, including among those with prior PD on or within 30 days of PARPi (NCT05041257).
Collapse
MESH Headings
- Humans
- Female
- Middle Aged
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/metabolism
- Folate Receptor 1/metabolism
- Folate Receptor 1/antagonists & inhibitors
- Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Immunoconjugates/adverse effects
- Immunoconjugates/therapeutic use
- Immunoconjugates/administration & dosage
- Maytansine/analogs & derivatives
- Maytansine/adverse effects
- Maytansine/therapeutic use
- Maytansine/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Adult
- Drug Resistance, Neoplasm/drug effects
- Progression-Free Survival
- Aged, 80 and over
Collapse
Affiliation(s)
- A Alvarez Secord
- Duke Cancer Institute, Duke University School of Medicine, Durham, USA.
| | - S N Lewin
- Holy Name Medical Center Regional Cancer Center, Teaneck, USA
| | - C G Murphy
- Bon Secours Hospital Cork, Cork, Ireland; Cancer Trials Ireland, Dublin, Ireland
| | - S C Cecere
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy; Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Naples, Italy
| | - A Barquín
- Gynecological, Genitourinary, and Skin Cancer Unit, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - F Gálvez-Montosa
- Medical Oncology Department, Hospital Universitario de Jaén, Jaén, Spain
| | - C A Mathews
- Women & Infants Hospital, Legorreta Cancer Center, The Warren Alpert Medical School of Brown University, Providence, USA
| | - G E Konecny
- Department of Medical Oncology, University of California Los Angeles Medical Center, Santa Monica, USA
| | - I Ray-Coquard
- Leon Berard Center, Lyon, France; GINECO Group, Lyon, France
| | - A Oaknin
- Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - M J Rubio Pérez
- Grupo Español de Investigación en Cáncer de Ovario (GEICO), Madrid, Spain; Department of Medical Oncology, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - A Bonaventura
- Newcastle Private Hospital, New Lambton Heights, Australia
| | | | | | - Y Wang
- ImmunoGen, Inc, Waltham, USA
| | - B R Corr
- Division of Gynecologic Oncology, University of Colorado Cancer Center, Aurora, USA
| | - V Salutari
- Policlinico Universitario Fondazione Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
8
|
Bates AC, Klugh KL, Galaeva AO, Patch RA, Manganaro JF, Markham SA, Scurek E, Levina A, Lay PA, Crans DC. Optimizing Therapeutics for Intratumoral Cancer Treatments: Antiproliferative Vanadium Complexes in Glioblastoma. Int J Mol Sci 2025; 26:994. [PMID: 39940763 PMCID: PMC11817060 DOI: 10.3390/ijms26030994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Glioblastoma, an aggressive cancer, is difficult to treat due to its location, late detection, drug resistance, and poor absorption of chemotherapeutics. Intratumoral drug administration offers a promising potential treatment alternative with localized delivery and minimal systemic toxicity. Vanadium(V) coordination complexes, incorporating Schiff base and catecholate ligands, have shown effects as antiproliferative agents with tunable efficacy and reactivity, stability, steric bulk, hydrophobicity, uptake, and toxicity optimized for the intratumoral administration vehicle. A new series of oxovanadium(V) Schiff base-catecholate complexes were synthesized and characterized using nuclear magnetic resonance (NMR), UV-Vis, and infrared spectroscopy and mass spectrometry. Stability under physiological conditions was assessed via UV-Vis spectroscopy, and the antiproliferative activity was evaluated in T98G glioblastoma and SVG p12 normal glial cells using viability assays. The newly synthesized [VO(3-tBuHSHED)(TIPCAT)] complex was more stable (t1/2 ~4.5 h) and had strong antiproliferative activity (IC50 ~1.5 µM), comparing favorably with the current lead compound, [VO(HSHED)(DTB)]. The structural modifications enhanced stability, hydrophobicity, and steric bulk through substitution with iso-propyl and tert-butyl groups. The improved properties were attributed to steric hindrance associated with the new Schiff base and catecholato ligands, as well as the formation of non-toxic byproducts upon degradation. The [VO(3-tBuHSHED)(TIPCAT)] complex emerges as a promising candidate for glioblastoma therapy by demonstrating enhanced stability and a greater selectivity, which highlights the role of strategic ligand design in developing localized therapies for the treatment of resistant cancers. In reporting the new class of compounds effective against T98G glioblastoma cells, we describe the generally desirable properties that potential drugs being developed for intratumoral administration should have.
Collapse
Affiliation(s)
- Andrew C. Bates
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Kameron L. Klugh
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Anna O. Galaeva
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Raley A. Patch
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - John F. Manganaro
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Skyler A. Markham
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Emma Scurek
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (A.C.B.); (K.L.K.); (A.O.G.); (R.A.P.); (J.F.M.); (S.A.M.); (E.S.)
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Liu M, Zheng L, Zhang Y, Tian J. Mechanistic insights into pachymic acid's action on triple-negative breast Cancer through TOP2A targeting. Sci Rep 2025; 15:2856. [PMID: 39843552 PMCID: PMC11754797 DOI: 10.1038/s41598-025-87286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen and progesterone receptors, and lack of human epidermal growth factor receptor 2 (HER2) expression. Traditional Chinese medicine (TCM) has demonstrated promising efficacy in treating TNBC. This study explored the mechanisms of pachymic acid (PA) on TNBC by merging network pharmacology with experimental validation. We acquired Microarray data of TNBC from the Gene Expression Omnibus (GEO). The related targets of PA were predicted and screened using the following 6 databases: Swiss Target Prediction, HERB (Herbal Medicine Database), ETCM (Encyclopedia of Traditional Chinese Medicine), BATMAN (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine), HIT (Herb Ingredients' Targets Database), and PharmMapper. The STRING interaction network analysis tool was used to create Protein-Protein Interaction (PPI) networks. Enrichment analysis included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We conducted a pan-cancer analysis, tumor immune microenvironment analysis, and molecular docking. We performed cell experimental, included cytotoxicity assay, apoptosis analysis, proliferation assay, and migration and invasion assays. PA has potential for treating TNBC with the target of TOP2A, and platinum drug resistance possibly serving as the KEGG pathway through which PA exerts its therapeutic effects. PA is involved in processes such as nuclear division, chromosome segregation, mitotic nuclear division, condensed chromosome formation, and protein C-terminus binding. PA probably exert its therapeutic effects through the tumor immune microenvironment, involving elements such as Dendritic cells activated, Eosinophils, Macrophages M0, Macrophages M1, and T cells CD4 memory activated. The therapeutic effects of PA may vary across different subtypes of TNBC such as TNBC-BL1, TNBC-Metaplastic, and TNBC-BL2. This study provides compelling evidence that PA holds significant promise as a therapeutic agent for TNBC, primarily through its action on TOP2A and its influence on the TNBC.
Collapse
Affiliation(s)
- Ming Liu
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yang Zhang
- Department of Traditional Chinese medicine, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Jinhui Tian
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China.
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou City, Gansu Province, China.
| |
Collapse
|
10
|
Dragomir RD, Mercioni MA, Negru Ș, Popovici D, Săftescu S, Blidari AR, Sas I. Comparison of Hepatic Function and Chemotherapy-Induced Side Effects Between Pegylated Liposomal Doxorubicin (PLD), Topotecan (TOPO), and Gemcitabine in Platinum-Resistant Ovarian Cancer (PROC). J Pers Med 2025; 15:39. [PMID: 39852231 PMCID: PMC11766750 DOI: 10.3390/jpm15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Platinum-resistant ovarian cancer (PROC) is a major therapeutic challenge, as it responds poorly to standard platinum-based treatment, has limited treatment options, and offers a generally unfavorable prognosis. Chemotherapeutic agents like pegylated liposomal doxorubicin (PLD), topotecan (TOPO), and gemcitabine (GEM) are used for this setting, but with varying efficacy and toxicity profiles, leading to an increasing need to understand the optimal balance between treatment effectiveness and tolerability for improving patient outcomes. This study evaluates the efficacy and side effects of PLD, TOPO, and GEM, focusing on progression-free survival (PFS), overall survival (OS), and safety profiles. Methods: We conducted a retrospective observational study that included 856 PROC patients treated with PLD (n = 383), TOPO (n = 352), or GEM (n = 121) at the OncoHelp Oncology Center from January 2018 to December 2023. Inclusion criteria encompass diagnosis, prior platinum therapy, and Eastern Cooperative Oncology Group (ECOG) status (0-2). Treatment protocols followed standard dosing, with adjustments for toxicity. Primary endpoints included PFS and OS, with safety assessed by incidence of grade 3 and 4 toxicities per CTCAE v5.0. Kaplan-Meier analysis and Cox regression were used to compare survival, and statistical significance was set at p < 0.05. Results: TOPO showed higher toxicity than PLD and GEM, including liver damage, hematological and non-hematological side effects, while PLD induced more skin toxicity. In terms of survival, minor differences were seen between the three chemotherapeutic agents, with a slight advantage for PLD for better disease control. Conclusions: Given the comparable results in OS across the regimens, treatment decisions should be based on other factors such as patient tolerance and quality of life.
Collapse
Affiliation(s)
- Radu-Dumitru Dragomir
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (R.-D.D.); (I.S.)
| | - Marina Adriana Mercioni
- Faculty of Electronics, Telecommunications and Information Technologies, Politehnica University, 300223 Timișoara, Romania
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Șerban Negru
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (Ș.N.); (D.P.); (S.S.)
| | - Dorel Popovici
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (Ș.N.); (D.P.); (S.S.)
| | - Sorin Săftescu
- Department of Oncology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (Ș.N.); (D.P.); (S.S.)
| | - Andiana Roxana Blidari
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ioan Sas
- Department of Obstetrics and Gynecology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (R.-D.D.); (I.S.)
| |
Collapse
|
11
|
Thirsangu P, Jin L, Ray U, Zhao A, Wu X, Hou X, VanBlaricom JL, Aalam SMM, Oberg A, Kannan N, Weroha J, Chien J, Kaufmann SH, Bakkum-Gamez JN, Shridhar V. Role of drug induced nuclear CTSL (nCTSL) in DNA damage response in cancer- therapeutic implications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632284. [PMID: 39868276 PMCID: PMC11761444 DOI: 10.1101/2025.01.09.632284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
In our efforts to enhance sensitivity to PARP inhibitors, we identified clofarabine (CLF) as a potential therapy for drug-resistant ovarian cancer and nuclear trafficking of Cathepsin L (CTSL) as a treatment- responsive biomarker. Using PARP inhibitor-sensitive and -resistant OC cell lines, ex vivo cultures of patient-derived ovarian ascites (OVA), primary ovarian tumors, and xenografts (PDX), we found that CLF monotherapy induces nuclear CTSL (nCTSL) in CLF-responsive cells (CLF-r) and sensitizes them to PARP inhibitors olaparib and rucaparib. In CLF non-responsive cells (CLF-nr), a combination of CLF with olaparib is necessary for nCTSL trafficking and synergy. CLF+olaparib synergy was observed in 47% of CLF-r and 24% of CLF-nr OVA samples. Drug-induced nCTSL is crucial for DNA damage response, including cell cycle arrest and apoptosis. Knockdown of CTSL in both CLF-r and CLF-nr cells conferred resistance to the CLF+olaparib combination, emphasizing nCTSL's role in the DNA damage response pathway (DDR). Mechanistically, CLF facilitates CTSL nuclear import via KPNB1 in CLF-r cells. In CLF-nr cells, both olaparib and CLF are needed to facilitate CTSL nuclear import. Additionally, CLF downregulates the nuclear export protein CRM1 (XPO1) in both cohorts. Interestingly, CLF does not downregulate CRM1 in a subset of OVAs (29%), and they were classified as CLF-resistant (CLF- Res). In these samples, inhibiting CRM1 with KPT8602 restored synergy between CLF and PARP inhibitors. In vivo, CLF-r and CLF-nr PDX models exhibited enhanced DDR, reduced tumor burden, and prolonged survival with the CLF+olaparib combination. These findings suggest the CLF+olaparib combination is a promising therapeutic strategy for drug-resistant OC by inducing DDR through CTSL nuclear localization.
Collapse
|
12
|
Wang C, Peng C, Xie C. Unveiling novel biomarkers for platinum chemoresistance in ovarian cancer. Open Med (Wars) 2025; 20:20241084. [PMID: 39822989 PMCID: PMC11737368 DOI: 10.1515/med-2024-1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 01/19/2025] Open
Abstract
Primary chemoresistance to platinum-based treatment is observed in approximately 33% of individuals diagnosed with ovarian cancer; however, conventional clinical markers exhibit limited predictive value for chemoresistance. This study aimed to discover new genetic markers that can predict primary resistance to platinum-based chemotherapy. Through the analysis of three GEO datasets (GSE114206, GSE51373, and GSE63885) utilizing bioinformatics methodologies, we identified two specific genes, MFAP4 and EFEMP1. The findings revealed that the areas under the receiver operating characteristic curves for MFAP4 and EFEMP1 were 0.716 and 0.657 in the training cohort, and 0.629 and 0.746 in the testing cohort, respectively. In all cases or in cases treated with platin, high expression of MFAP4 and EFEMP1 was linked to shortened overall survival and progression-free survival. MFAP4 and EFEMP1 were positively correlated with epithelial-mesenchymal transition, TGF-β signaling, KRAS signaling, and so on. The high expression groups of MFAP4 and EFEMP1 exhibited elevated stromal, immune, and ESTIMATE scores. Finally, we constructed a regulatory network involving lncRNA-miRNA-mRNA interactions. In summary, MFAP4 and EFEMP1 have the potential to serve as predictive indicators for both response to platinum-based chemotherapy and survival rates, and might be regarded as innovative biomarkers and therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Changsheng Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Chuan Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Philips TJ, Erickson BK, Thomas SN. Opportunities for predictive proteogenomic biomarkers of drug treatment sensitivity in epithelial ovarian cancer. Front Oncol 2025; 14:1503107. [PMID: 39839766 PMCID: PMC11746003 DOI: 10.3389/fonc.2024.1503107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Genomic analysis has played a significant role in the identification of driver mutations that are linked to disease progression and response to drug treatment in ovarian cancer. A prominent example is the stratification of epithelial ovarian cancer (EOC) patients with homologous recombination deficiency (HRD) characterized by mutations in DNA damage repair genes such as BRCA1/2 for treatment with PARP inhibitors. However, recent studies have shown that some epithelial ovarian tumors respond to PARP inhibitors irrespective of their HRD or BRCA mutation status. An exclusive focus on the genome overlooks the significant insight that can be gained from other biological analytes, including proteins, which carry out cellular functions. Proteogenomics is the integration of genomics, transcriptomics, epigenomics and proteomics data. This review paper provides novel insight into the role of proteogenomics as an analytical approach to identify predictive biomarkers of drug treatment response in epithelial ovarian cancer. Proteogenomic analysis can facilitate the identification of predictive biomarkers of drug treatment response, consequently greatly improving the stratification of patients with EOC for treatment towards a goal of personalized medicine.
Collapse
Affiliation(s)
- Trudy J. Philips
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Britt K. Erickson
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Stefani N. Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
14
|
Mendez-Arriaga JM. Platinum Group Metals against Parasites: State of the Art and Future Perspectives. Med Chem 2025; 21:2-10. [PMID: 39916434 DOI: 10.2174/0115734064324855240806052735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 05/08/2025]
Abstract
BACKGROUND Globally, parasitic diseases are considered among the neglected diseases. Clinically, several drugs are used in treatment, however due to drug resistance and multidrug resistance and the low investment in new research lines, there has been a failure in the treatment of parasitic illnesses. OBJECTIVES The present mini-review is a comprehensive review of the use of platinum group metals as biological agents. It aims to establish the actual state of the art of these metal elements in the antiparasitic activity-specific area and define the future possibilities of action. METHODS The review comprises more than 100 research works done in this field. The differences between platinum group metals chemistry and their use as metal complexes with biological activity have been discussed. RESULTS This review highlighted the platinum group metal's potential as an antiparasitic agent for different diseases. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for parasitic disease therapy.
Collapse
Affiliation(s)
- Jose Manuel Mendez-Arriaga
- Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
15
|
Li H, Xiao J, Tian M. Efficacy and safety of antiangiogenic therapy (bevacizumab or apatinib) plus chemotherapy in patients with platinum‑resistant recurrent ovarian cancer: A retrospective study. Oncol Lett 2025; 29:44. [PMID: 39554535 PMCID: PMC11565270 DOI: 10.3892/ol.2024.14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 11/19/2024] Open
Abstract
The majority of patients with ovarian cancer will relapse and subsequently develop platinum-resistant recurrent ovarian cancer (PRROC). Antiangiogenic therapy plus chemotherapy may be a potential treatment option in patients with PRROC. However, further evidence is required to facilitate clinical application. The present study aimed to investigate the efficacy and safety of antiangiogenic therapy (bevacizumab or apatinib) plus chemotherapy in patients with PRROC. Data from 86 patients with PRROC receiving antiangiogenic therapy (bevacizumab or apatinib) plus chemotherapy (pegylated liposomal doxorubicin, weekly-paclitaxel or gemcitabine) were reviewed retrospectively. Data for treatment response, progression-free survival (PFS), overall survival (OS) and adverse events were obtained. Complete response, partial response, stable disease and progressive disease rates were 0.0, 33.7, 44.2 and 22.1%, respectively. Objective response and disease control rates were 33.7 and 77.9%, respectively. Median (and 95% confidence intervals) PFS and OS values were 6.5 (4.7-8.2) and 20.3 (14.1-26.5) months, respectively. PFS (P=0.016) and OS (P=0.005) durations were longer in patients that received the antiangiogenic plus chemotherapy regimen as a second-line treatment vs. patients that received it as a third-line or above treatment. Ascites (yes vs. no) and current treatment lines (third or above vs. second) were independently associated with shorter PFS and OS (all P<0.05). The most frequent treatment-induced adverse events were leukopenia (34.9%), hypertension (30.2%) and fatigue (30.2%). All adverse events were considered acceptable and only previously reported adverse events were observed. The findings of the present study may provide further clinical evidence for the application of antiangiogenic therapy plus chemotherapy in patients with PRROC.
Collapse
Affiliation(s)
- Huifen Li
- Department of Medical Oncology, People's Hospital of Zhongshan City, Zhongshan, Guangdong 528403, P.R. China
| | - Jianjun Xiao
- Department of Medical Oncology, People's Hospital of Zhongshan City, Zhongshan, Guangdong 528403, P.R. China
| | - Muyou Tian
- Department of Medical Oncology, People's Hospital of Zhongshan City, Zhongshan, Guangdong 528403, P.R. China
| |
Collapse
|
16
|
Previs RA, Strickland KC, Wallen Z, Ko H, Green M, Cooper M, Lyon E, Biorn M, Armetta J, Quarles R, Watson CH, Ring K, Klein JL, Caveney B, Severson EA, Ramkissoon S. Analysis of real world FRα testing in ovarian, fallopian tube, and primary peritoneal cancers. Gynecol Oncol 2025; 192:102-110. [PMID: 39631181 DOI: 10.1016/j.ygyno.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) remains a significant challenge in gynecologic oncology, particularly in the context of platinum-resistant disease. Mirvetuximab soravtansine (MIRV), was approved after trials revealed favorable response and survival outcomes. MIRV targets folate receptor alpha (FRα), a cell-surface receptor that is overexpressed in EOC and has been associated with aggressive disease phenotypes. METHODS This retrospective study analyzed 425 patient samples tested for FRα using the VENTANA® FOLR1 RxDx immunohistochemical assay. The patient cohort included cases with high grade serous carcinoma predominantly, tested across various anatomical sites. Statistical analysis examined the correlation between FRα positivity and clinical parameters such as tumor site and histology. RESULTS FRα was highly expressed in 36.3 % of the cases, with a significant association between FRα positivity and high grade serous ovarian histology. Tumor samples from the ovary, fallopian tube, adnexa, and dominant pelvic masses showed higher FRα positivity compared to metastatic sites (positive rates of 44.4 % vs 32.5 %, p = 0.02), highlighting the potential influence of tumor origin on expression of FRα. Time between sample collection and testing did not impact FRα expression, with sample testing spread over a median of 19.5 months post-collection. Eight patients had more than one specimen tested, of which 3 (37.5 %) had discordant results when a subsequent specimen was tested. CONCLUSION Our results highlight a need for standardized protocols for FRα testing to ensure accurate biomarker evaluation across varied clinical settings. The heterogeneity in FRα expression, influenced by tumor histology and anatomical origin, warrant further investigation to optimize therapeutic outcomes. PRIOR PRESENTATION Preliminary findings from this study were previously presented in poster format at the Society of Gynecologic Oncology 2024 Annual Metting. We confirm that the submission complies with the journal requirements.
Collapse
Affiliation(s)
- Rebecca A Previs
- Labcorp, Durham, NC, USA; Duke University Medical Center, Duke Cancer Institute, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Durham, NC, USA.
| | - Kyle C Strickland
- Labcorp, Durham, NC, USA; Duke University Medical Center, Duke Cancer Institute, Department of Pathology, Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | - Kari Ring
- University of Virginia, Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, Charlottesville, VA, USA
| | | | | | | | - Shakti Ramkissoon
- Labcorp, Durham, NC, USA; Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
17
|
Moffitt LR, Karimnia N, Wilson AL, Stephens AN, Ho GY, Bilandzic M. Challenges in Implementing Comprehensive Precision Medicine Screening for Ovarian Cancer. Curr Oncol 2024; 31:8023-8038. [PMID: 39727715 PMCID: PMC11674382 DOI: 10.3390/curroncol31120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Precision medicine has revolutionised targeted cancer treatments; however, its implementation in ovarian cancer remains challenging. Diverse tumour biology and extensive heterogeneity in ovarian cancer can limit the translatability of genetic profiling and contribute to a lack of biomarkers of treatment response. This review addresses the barriers in precision medicine for ovarian cancer, including obtaining adequate and representative tissue samples for analysis, developing functional and standardised screening methods, and navigating data infrastructure and management. Ethical concerns related to patient consent, data privacy and health equity are also explored. We highlight the socio-economic complexities for precision medicine and propose strategies to overcome these challenges with an emphasis on accessibility and education amongst patients and health professionals and the development of regulatory frameworks to support clinical integration. Interdisciplinary collaboration is essential to drive progress in precision medicine to improve disease management and ovarian cancer patient outcomes.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Nazanin Karimnia
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Gwo-Yaw Ho
- School of Clinical Sciences, Monash University, Clayton 3168, Australia;
- Department of Oncology, Monash Health, Bentleigh 3165, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (L.R.M.); (N.K.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
18
|
Xu Q, Kowalski J. Non-B DNA-informed mutation burden as a marker of treatment response and outcome in cancer. Br J Cancer 2024; 131:1825-1832. [PMID: 39427051 PMCID: PMC11589871 DOI: 10.1038/s41416-024-02873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Genomic instability is crucial in tumorigenesis, with Tumour Mutation Burden (TMB) being a biomarker to indicate therapeutic effectiveness, particularly in immunotherapy. However, TMB is not always a reliable predictor and displays heterogeneity. Non-B DNA, susceptible to mutations, play a significant role in cancer development, indicating their potential merit when combined with mutation for enhanced markers in cancer. METHODS We assessed mutations and non-B DNA interplay as biomarkers. Our methodology quantifies tumour mutations and their co-localization with non-B DNA, using survival and drug sensitivity assessments for clinical relevance. RESULTS We introduce two novel markers, 'nbTMB' (non-B-informed tumour mutation burden) and 'mlTNB' (mutation-localised tumour non-B burden). In case studies: (1) nbTMB informs on survival heterogeneity among TMB-high patients undergoing immunotherapy whereas TMB is unable to further differentiate; (2) nbTMB informs on altered cisplatin sensitivity among ovarian cancer cell lines whereas TMB is unable to differentiate; and (3) mlTNB informs on survival heterogeneity among early-stage pancreatic cancer progressors in whom other markers of genomic instability fail to differentiate. CONCLUSIONS These novel markers offer a nuanced approach to enhance our understanding of treatment responses and outcomes in cancer, underscoring the need for a comprehensive exploration of the interplay between non-B and B-DNA features.
Collapse
Affiliation(s)
- Qi Xu
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Efthymiou E, Kelekis NL. Editorial for "Peritumoral MRI Radiomics Features Increase the Evaluation Efficiency for Response to Chemotherapy in Patients With Epithelial Ovarian Cancer". J Magn Reson Imaging 2024; 60:2728-2729. [PMID: 38599797 DOI: 10.1002/jmri.29360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Evgenia Efthymiou
- Second Department of Radiology, General University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos L Kelekis
- Second Department of Radiology, General University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Liu S, Zhou S, Wang B, Jia Z. Effects of curcumin nanoparticles on the proliferation and migration of human ovarian cancer cells assessed through the NF-κB/PRL-3 signaling pathway. Int Immunopharmacol 2024; 141:112964. [PMID: 39168025 DOI: 10.1016/j.intimp.2024.112964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Curcumin (CUR) exhibits potential inhibitory effects on tumor growth; however, its hydrophobicity and instability limit its clinical applications. In the present study, we developed CUR nanoparticles (CUR-NPs) and evaluated their biochemical characteristics. Cell uptake and proliferation were assessed using scratch and Transwell assays, respectively. Western blotting was performed to investigate the expression levels of proteins related to the NF-κB/PRL-3 signaling pathway, inflammatory response, cell proliferation, and cell migration in SKOV3 cells. Our findings showed that the blank vector was not cytotoxic to cells, allowing us to disregard any effects caused by the vector itself. CUR-NPs exhibited concentration- and time-dependent inhibitory effects on cell proliferation, surpassing those of CUR alone. Increasing the concentration of CUR-NPs resulted in a reduced cell scratch-healing ability and lower chamber migration capacity. Compared to the control group, expression levels of proteins associated with NF-κB/PRL-3 signaling pathway, inflammatory response (TNF-α and IL-6), cell proliferation (cyclin E1 and cyclin A1), as well as cell migration (N-cadherin and vimentin) were significantly elevated in the lipopolysaccharide (LPS) stimulation and NF-κB p65 overexpression groups. Conversely, E-cadherin expression was significantly decreased under these conditions. However, treatment with high concentrations of CUR-NPs effectively reversed these changes. These results highlight the significant ability of CUR-NPs to inhibit human ovarian cancer cell proliferation and migration, while suppressing inflammatory responses through the regulation of the NF-κB/PRL-3 signaling pathway.
Collapse
Affiliation(s)
- Shuyan Liu
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shunqing Zhou
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zanhui Jia
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
21
|
Uchikura E, Fukuda T, Sengiku T, Noda T, Awazu Y, Wada T, Tasaka R, Yamauchi M, Yasui T, Sumi T. Role of Fyn expression in predicting the sensitivity to platinum‑based chemotherapy in patients with ovarian serous carcinoma. Oncol Lett 2024; 28:525. [PMID: 39268168 PMCID: PMC11391251 DOI: 10.3892/ol.2024.14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Ovarian serous carcinoma is a gynecological malignancy associated with a high mortality rate, which is commonly diagnosed in the first instance at a late stage and has a propensity to develop resistance to platinum-based chemotherapy. Identifying reliable biomarkers for platinum sensitivity is critical for improving patient outcomes. The present retrospective study included 64 patients with high-grade serous ovarian carcinoma (Federation of Gynecology and Obstetrics stages III or IV). Patients were classified as platinum-sensitive (no relapse within 6 months of the last platinum administration) or platinum-resistant (relapse within 6 months). Immunohistochemical analysis was performed to evaluate Fyn expression in tumor tissues, and Fyn knockdown experiments were performed using the OVSAHO ovarian cancer cell line to assess carboplatin sensitivity. Fyn expression was significantly higher in platinum-resistant patients compared with in platinum-sensitive patients (P<0.01). A weighted Fyn expression score was developed and a cutoff score of 6 was determined to predict platinum sensitivity with a specificity of 65.5% and a sensitivity of 62.9%. Patients with low Fyn expression (score ≤6) exhibited higher platinum sensitivity and longer overall survival (P<0.05). Multivariate analysis identified Fyn expression and postoperative residual tumor size as independent predictors of platinum sensitivity (P=0.033 and P=0.023, respectively). In vitro, Fyn knockdown significantly increased carboplatin sensitivity in ovarian cancer cells (P<0.05). Fyn, a member of the Src family of kinases, serves a crucial role in various cellular functions and has been implicated in chemotherapy resistance. The results demonstrated a notable association between Fyn expression and platinum sensitivity in ovarian serous carcinoma. The findings suggested that Fyn may serve as a predictive biomarker for response to platinum-based chemotherapy, offering the potential for more personalized treatment strategies. To the best of our knowledge, the present study is the first to establish an association between Fyn expression and platinum sensitivity in advanced ovarian serous carcinoma. Prospective studies with larger, multi-center cohorts and comprehensive biomarker analyses are recommended to validate and extend these results, ultimately improving therapeutic strategies and patient prognosis.
Collapse
Affiliation(s)
- Eijiro Uchikura
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Takeshi Fukuda
- Department of Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Tomoki Sengiku
- Department of Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Takuya Noda
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Yuichiro Awazu
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Takuma Wada
- Department of Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Reiko Tasaka
- Department of Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Makoto Yamauchi
- Department of Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Tomoyo Yasui
- Department of Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka 5454-8585, Japan
| | - Toshiyuki Sumi
- Department of Obstetrics and Gynecology, Osaka Metropolitan University Graduate School of Medicine, Osaka 5454-8585, Japan
| |
Collapse
|
22
|
Li J, Feng L, Yuan Y, He T, Zou X, Su B, Liu K, Yang X. Inhibition of HOXC11 by artesunate induces ferroptosis and suppresses ovarian cancer progression through transcriptional regulation of the PROM2/PI3K/AKT pathway. World J Surg Oncol 2024; 22:268. [PMID: 39380001 PMCID: PMC11460135 DOI: 10.1186/s12957-024-03544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Ferroptosis, a non-apoptotic form of regulated cell death, plays a critical role in the suppression of various tumor types, including ovarian cancer. Artesunate (ART), a derivative of artemisinin, exhibits extensive antitumor effects and is associated with ferroptosis. This study aimed to investigate the mechanisms through which ART induces ferroptosis to inhibit ovarian cancer. METHODS RNA sequencing was conducted to identify differentially expressed genes associated with ART-induced ferroptosis. Dual-luciferase reporter assays and electrophoretic mobility shift assays were performed to confirm the interaction between Homeobox C11 (HOXC11) and the Prominin 2 (PROM2) promoter. Cell Counting Kit-8 (CCK-8) assays, flow cytometry, and wound healing assays were used to analyze the antitumor effects of ART. Western blot, biochemical assays and transmission electron microscope were utilized to further characterize ART-induced ferroptosis. In vivo, the effects of ART on ferroptosis were examined using a xenograft mouse model. RESULTS RNA sequencing analysis revealed that the HOXC11, PROM2 and Phosphatidylinositol 3-Kinase/ Protein Kinase B (PI3K/AKT) pathways were downregulated by ART. HOXC11 was found to regulate PROM2 expression by binding to its promoter directly. HOXC11 overexpression reversed ART-induced effects on ovarian cancer cell proliferation, migration, apoptosis and ferroptosis by activating the PROM2/PI3K/AKT signaling axis. Conversely, silencing PROM2 in HOXC11-overexpressing cells restored ART-induced ferroptosis and its associated antitumor effects by inhibiting the PI3K/AKT pathway. Consistently, in vivo studies using a xenograft mouse model confirmed that ART-induced tumor inhibition was mediated by ferroptosis through the suppression of the HOXC11/PROM2/PI3K/AKT pathway. CONCLUSION This study identifies the HOXC11/PROM2/PI3K/AKT axis as a novel regulatory mechanism underlying ART-induced ferroptosis in ovarian cancer. Targeting the HOXC11/PROM2 axis may represent a promising therapeutic strategy for enhancing ferroptosis, offering new insights for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jun Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
- Department of Obstetrics and Gynecology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Lu Feng
- Department of Obstetrics and Gynecology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yijun Yuan
- Department of Obstetrics and Gynecology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Tianwen He
- Department of Obstetrics and Gynecology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Xinru Zou
- Department of Obstetrics and Gynecology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Bin Su
- Department of Obstetrics and Gynecology, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cell, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China.
| |
Collapse
|
23
|
Beretta GL, Costantino M, Mirra L, Pettinari P, Perego P. Deubiquitinases in Ovarian Cancer: Role in Drug Resistance and Tumor Aggressiveness. Int J Biol Sci 2024; 20:5208-5222. [PMID: 39430244 PMCID: PMC11489175 DOI: 10.7150/ijbs.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is a lethal disease due to late diagnosis and occurrence of drug resistance that limits the efficacy of platinum-based therapy. Drug resistance mechanisms include both tumor intrinsic and tumor microenvironment-related factors. A role for deubiquitinases (DUBs) is starting to emerge in ovarian cancer. DUBs are a large family of enzymes that remove ubiquitin from target proteins and participate in processes affecting drug resistance such as DNA damage repair and apoptosis. Besides, DUBs modulate the functions of T cell populations favoring an immune suppressed microenvironment. Three DUBs are proteasome-associated, whereas the large majority are not. Among the former DUBs, USP14 has been proposed to modulate transcription factors such as Bcl6 and BACH1. In addition, RPN11/PSMD14 interferes with various processes including epithelial mesenchymal transition, also favored by non-proteasomal DUBs such as USP1 by acting on Snail. Besides, USP8 by stabilizing HER family receptors can confer drug resistance. Overall, DUBs appear to be druggable, with several inhibitors under development. Based on DUBs biological role, DUBs targeting appears promising in view of combination strategies involving different therapeutic approaches. Here, we summarize the relevance of DUBs in ovarian carcinoma and provide insights into future challenges for the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
24
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
25
|
Zhao Y, Wang C, Deng W, Li L, Liu J, Shi Y, Tao X, Zhang J, Cao Q, Cai C, Han X. Patient-derived ovarian cancer organoid carries immune microenvironment and blood vessel keeping high response to cisplatin. MedComm (Beijing) 2024; 5:e697. [PMID: 39206413 PMCID: PMC11351687 DOI: 10.1002/mco2.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is high recurrence and mortality malignant tumor. The most common ovarian cancer was High-Grade Serous Ovarian Cancer. However, High-Grade Serous Ovarian Cancer organoid is rare, which organoid with patient immune microenvironment and blood vessels even absence. Here, we report a novel High-Grade Serous Ovarian Cancer organoid system derived from patient ovarian cancer samples. These organoids recapitulate High-Grade Serous Ovarian Cancer organoids' histological and molecular heterogeneity while preserving the critical immune microenvironment and blood vessels, as evidenced by the presence of CD34 + endothelial cells. Whole exome sequencing identifies key mutations (CSMD3, TP53, GABRA6). Organoids show promise in testing cisplatin sensitivity for patients resistant to carboplatin and paclitaxel, with notable responses in cancer proteoglycans and p53 (TP53) signaling, like ACTG/ACTB1/AKT2 genes and BBC3/MDM2/PERP. Integration of immune microenvironment and blood vessels enhances potential for novel therapies like immunotherapies and angiogenesis inhibitors. Our work may provide a new detection system and theoretical basis for ovarian cancer research and individual therapy.
Collapse
Affiliation(s)
- Yuqing Zhao
- Obstetrics & Gynecology HospitalFudan UniversityShanghaiChina
| | - Chen Wang
- Department of ResearchShanghai LiSheng BiotechShanghaiChina
| | - Wei Deng
- LongHua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lanyang Li
- Department of ResearchShanghai LiSheng BiotechShanghaiChina
| | - Jiping Liu
- Department of ResearchShanghai LiSheng BiotechShanghaiChina
| | - Yanghua Shi
- Department of ResearchShanghai LiSheng BiotechShanghaiChina
| | - Xiang Tao
- Obstetrics & Gynecology HospitalFudan UniversityShanghaiChina
| | - Jian Zhang
- Department of ResearchShanghai LiSheng BiotechShanghaiChina
| | - Qi Cao
- Obstetrics & Gynecology HospitalFudan UniversityShanghaiChina
| | - Chunhui Cai
- Department of ResearchShanghai LiSheng BiotechShanghaiChina
| | - Xinxin Han
- Department of ResearchShanghai LiSheng BiotechShanghaiChina
- Organ Regeneration X LabLiSheng East China Institute of BiotechnologyPeking UniversityJiangsuChina
| |
Collapse
|
26
|
Dinkins K, Barton W, Wheeler L, Smith HJ, Mythreye K, Arend RC. Targeted therapy in high grade serous ovarian Cancer: A literature review. Gynecol Oncol Rep 2024; 54:101450. [PMID: 39092168 PMCID: PMC11292514 DOI: 10.1016/j.gore.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Ovarian cancer continues to have a high mortality rate despite therapeutic advances. Traditionally, treatment has focused on surgery followed by systemic platinum- based chemotherapy. Unfortunately, most patients develop resistance to platinum agents, highlighting the need for targeted therapies. PARP inhibitors and anti-angiogenic agents, such as bevacizumab, have more recently changed upfront therapy. Unfortunately, other targeted therapies including immunotherapy have not seen the same success. Emerging therapeutic targets and modalities such as small molecule tyrosine kinase inhibitors, lipid metabolism targeting agents, gene therapy, ribosome targeted drugs as well as several other therapeutic classes have been and are currently under investigation. In this review, we discuss targeted therapies in high grade serous ovarian cancer from preclinical studies to phase III clinical trials.
Collapse
Affiliation(s)
- Kaitlyn Dinkins
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Wade Barton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren Wheeler
- Lister Hill Library, University of Alabama at Birmingham, Birmingham, AL
| | - Haller J. Smith
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Karthikeyan Mythreye
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
27
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
28
|
Olawaiye AB, Kim JW, Bagameri A, Bishop E, Chudecka-Głaz A, Devaux A, Gladieff L, Gordinier ME, Korach J, McCollum ME, Mileshkin L, Monk BJ, Nicum S, Nogueira-Rodrigues A, Oaknin A, O'Malley DM, Orlando M, Dreiling L, Tudor IC, Lorusso D. Clinical Trial Protocol for ROSELLA: a phase 3 study of relacorilant in combination with nab-paclitaxel versus nab-paclitaxel monotherapy in advanced platinum-resistant ovarian cancer. J Gynecol Oncol 2024; 35:e111. [PMID: 39032926 PMCID: PMC11262895 DOI: 10.3802/jgo.2024.35.e111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Ovarian cancer has the highest mortality among gynecologic cancers, primarily because it typically is diagnosed at a late stage and because of the development of chemoresistance in recurrent disease. Improving outcomes in women with platinum-resistant ovarian cancer is a substantial unmet need. Activation of the glucocorticoid receptor (GR) by cortisol has been shown to suppress the apoptotic pathways used by cytotoxic agents, limiting their efficacy. Selective GR modulation may be able to counteract cortisol's antiapoptotic effects, enhancing chemotherapy's efficacy. A previous phase 2 study has shown that adding intermittently dosed relacorilant, a selective GR modulator, to nab-paclitaxel improved outcomes, including progression-free survival (PFS) and overall survival (OS), with minimal added toxicity, in women with recurrent platinum-resistant ovarian cancer. The ROSELLA study aims to confirm and expand on these findings in a larger population. METHODS ROSELLA is a phase 3, randomized, 2-arm, open-label, global multicenter study in women with recurrent, platinum-resistant, high-grade serous epithelial ovarian, primary peritoneal, or fallopian tube cancer. Eligible participants have received 1 to 3 lines of prior systemic anticancer therapy, including ≥1 prior line of platinum therapy and prior treatment with bevacizumab, with documented progressive disease or intolerance to the most recent therapy. There is no biomarker-based requirement for participant selection. Participants are randomized 1:1 to receive intermittently dosed relacorilant in combination with nab-paclitaxel or nab-paclitaxel monotherapy. The study's primary efficacy endpoint is PFS as assessed by blinded independent central review. Secondary efficacy endpoints include OS, investigator-assessed PFS, objective response rate, best overall response, duration of response, clinical benefit rate at 24 weeks, and cancer antigen 125 response. The study is also evaluating safety and patient-reported outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05257408; European Union Drug Regulating Authorities Clinical Trials Database Identifier: 2022-000662-18.
Collapse
Affiliation(s)
- Alexander B Olawaiye
- University of Pittsburgh School of Medicine and Magee-Womens Hospital, Gynecologic Oncology Group, Pittsburgh, PA, USA.
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea
| | | | - Erin Bishop
- Medical College of Wisconsin, Gynecologic Oncology Group, Milwaukee, WI, USA
| | - Anita Chudecka-Głaz
- Pomeranian Medical University, Polish Gynecologic Oncology Group, Szczecin, Poland
| | - Alix Devaux
- Oncology Department of Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Laurence Gladieff
- Institut Claudius Regaud-Institut Universitaire du Cancer de Toulouse Oncopole, Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens, Toulouse, France
| | | | - Jacob Korach
- Sheba Medical Center, School of Medicine, Tel Aviv University, Israeli Society of Gynecologic Oncology, Tel Aviv, Israel
| | | | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Bradley J Monk
- Gynecologic Oncology Group Foundation; Florida Cancer Specialists and Research Institute, West Palm Beach, FL, USA
| | - Shibani Nicum
- University College London Cancer Institute, National Cancer Research Institute, London, UK
| | | | - Ana Oaknin
- Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - David M O'Malley
- The Ohio State University and the James Cancer Center, Gynecologic Oncology Group, Columbus, OH, USA
| | - Mauro Orlando
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | | | - Iulia C Tudor
- Corcept Therapeutics Incorporated, Menlo Park, CA, USA
| | - Domenica Lorusso
- Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico and Catholic University of the Sacred Heart, Multicentre Italian Trials in Ovarian Cancer and Gynecologic Malignancies, Rome, Italy
| |
Collapse
|
29
|
Asante DB, Tierno D, Woode M, Scaggiante B. Angiogenesis and Ovarian Cancer: What Potential Do Different Subtypes of Circulating Endothelial Cells Have for Clinical Application? Int J Mol Sci 2024; 25:6283. [PMID: 38892471 PMCID: PMC11172689 DOI: 10.3390/ijms25116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynaecologic malignant tumours. The neovasculature in the tumour microenvironment principally comprises endothelial cells. Haematogenous cancer metastases are significantly impacted by tumour neovascularisation, which predominantly depends on the tumour-derived endothelial vasculogenesis. There is an urgent need for biomarkers for the diagnosis, prognosis and prediction of drug response. Endothelial cells play a key role in angiogenesis and other forms of tumour vascularisation. Subtypes of circulating endothelial cells may provide interesting non-invasive biomarkers of advanced OC that might have the potential to be included in clinical analysis for patients' stratification and therapeutic management. In this review, we summarise the reported studies on circulating endothelial subtypes in OC, detailing their isolation methods as well as their potential diagnostic, prognostic, predictive and therapeutic utility for clinical application. We highlight key biomarkers for the identification of circulating endothelial cell subtypes and their targets for therapies and critically point out future challenges.
Collapse
Affiliation(s)
- Du-Bois Asante
- Department of Biomedical and Forensic Sciences, University of Cape Coast, Cape Coast P.O. Box CCLN 33, Ghana; (D.-B.A.); (M.W.)
| | - Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy;
| | - Michael Woode
- Department of Biomedical and Forensic Sciences, University of Cape Coast, Cape Coast P.O. Box CCLN 33, Ghana; (D.-B.A.); (M.W.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
30
|
Liu C, Li J, Xu F, Chen L, Ni M, Wu J, Zhao H, Wu Y, Li J, Wu X, Chen X. PARP1-DOT1L transcription axis drives acquired resistance to PARP inhibitor in ovarian cancer. Mol Cancer 2024; 23:111. [PMID: 38778348 PMCID: PMC11110363 DOI: 10.1186/s12943-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitor (PARPi) resistance poses a significant challenge in ovarian carcinoma (OC). While the role of DOT1L in cancer and chemoresistance is acknowledged, its specific role in PARPi resistance remains unclear. This study aims to elucidate the molecular mechanism of DOT1L in PARPi resistance in OC patients. METHODS This study analyzed the expression of DOT1L in PARPi-resistant cell lines compared to sensitive ones and correlated it with clinical outcomes in OC patients. Comprehensive in vitro and in vivo functional experiments were conducted using cellular and mouse models. Molecular investigations, including RNA sequencing, chromatin immunoprecipitation (ChIP) and Cleavage Under Targets and Tagmentation (CUT&Tag) assays, were employed to unravel the molecular mechanisms of DOT1L-mediated PARPi resistance. RESULTS Our investigation revealed a robust correlation between DOT1L expression and clinical PARPi resistance in non-BRCA mutated OC cells. Upregulated DOT1L expression in PARPi-resistant tissues was associated with diminished survival in OC patients. Mechanistically, we identified that PARP1 directly binds to the DOT1L gene promoter, promoting transcription independently of its enzyme activity. PARP1 trapping induced by PARPi treatment amplified this binding, enhancing DOT1L transcription and contributing to drug resistance. Sequencing analysis revealed that DOT1L plays a crucial role in the transcriptional regulation of PLCG2 and ABCB1 via H3K79me2. This established the PARP1-DOT1L-PLCG2/ABCB1 axis as a key contributor to PARPi resistance. Furthermore, we discovered that combining a DOT1L inhibitor with PARPi demonstrated a synergistic effect in both cell line-derived xenograft mouse models (CDXs) and patient-derived organoids (PDOs). CONCLUSIONS Our results demonstrate that DOT1L is an independent prognostic marker for OC patients. The PARP1-DOT1L/H3K79me2-PLCG2/ABCB1 axis is identified as a pivotal contributor to PARPi resistance. Targeted inhibition of DOT1L emerges as a promising therapeutic strategy for enhancing PARPi treatment outcomes in OC patients.
Collapse
Affiliation(s)
- Chaohua Liu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiana Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihua Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangchun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangjun Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Lee J, Mashima T, Kawata N, Yamamoto N, Morino S, Inaba S, Nakamura A, Kumagai K, Wakatsuki T, Takeuchi K, Yamaguchi K, Seimiya H. Pharmacologic Targeting of Histone H3K27 Acetylation/BRD4-dependent Induction of ALDH1A3 for Early-phase Drug Tolerance of Gastric Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1307-1320. [PMID: 38669046 PMCID: PMC11104289 DOI: 10.1158/2767-9764.crc-23-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Anticancer drug-tolerant persister (DTP) cells at an early phase of chemotherapy reshape refractory tumors. Aldehyde dehydrogenase 1 family member A3 (ALDH1A3) is commonly upregulated by various anticancer drugs in gastric cancer patient-derived cells (PDC) and promotes tumor growth. However, the mechanism underlying the generation of ALDH1A3-positive DTP cells remains elusive. Here, we investigated the mechanism of ALDH1A3 expression and a combination therapy targeting gastric cancer DTP cells. We found that gastric cancer tissues treated with neoadjuvant chemotherapy showed high ALDH1A3 expression. Chromatin immunoprecipitation (ChIP)-PCR and ChIP sequencing analyses revealed that histone H3 lysine 27 acetylation was enriched in the ALDH1A3 promoter in 5-fluorouracil (5-FU)-tolerant persister PDCs. By chemical library screening, we found that the bromodomain and extraterminal (BET) inhibitors OTX015/birabresib and I-BET-762/molibresib suppressed DTP-related ALDH1A3 expression and preferentially inhibited DTP cell growth. In DTP cells, BRD4, but not BRD2/3, was recruited to the ALDH1A3 promoter and BRD4 knockdown decreased drug-induced ALDH1A3 upregulation. Combination therapy with 5-FU and OTX015 significantly suppressed in vivo tumor growth. These observations suggest that BET inhibitors are efficient DTP cell-targeting agents for gastric cancer treatment. SIGNIFICANCE Drug resistance hampers the cure of patients with cancer. To prevent stable drug resistance, DTP cancer cells are rational therapeutic targets that emerge during the early phase of chemotherapy. This study proposes that the epigenetic regulation by BET inhibitors may be a rational therapeutic strategy to eliminate DTP cells.
Collapse
Affiliation(s)
- Jin Lee
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naomi Kawata
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yamamoto
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shun Morino
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Saori Inaba
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ayane Nakamura
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Life and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| | - Koshi Kumagai
- Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeru Wakatsuki
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Department of Life and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
32
|
Kluz-Barłowska M, Kluz T, Paja W, Pancerz K, Łączyńska-Madera M, Miziak P, Cebulski J, Depciuch J. FT-Raman and FTIR spectroscopy as a tools showing marker of platinum-resistant phenomena in women suffering from ovarian cancer. Sci Rep 2024; 14:11025. [PMID: 38744861 PMCID: PMC11094164 DOI: 10.1038/s41598-024-61775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Platinum-resistant phenomena in ovarian cancer is very dangerous for women suffering from this disease, because reduces the chances of complete recovery. Unfortunately, until now there are no methods to verify whether a woman with ovarian cancer is platinum-resistant. Importantly, histopathology images also were not shown differences in the ovarian cancer between platinum-resistant and platinum-sensitive tissues. Therefore, in this study, Fourier Transform InfraRed (FTIR) and FT-Raman spectroscopy techniques were used to find chemical differences between platinum-resistant and platinum-sensitive ovarian cancer tissues. Furthermore, Principal Component Analysis (PCA) and machine learning methods were performed to show if it possible to differentiate these two kind of tissues as well as to propose spectroscopy marker of platinum-resistant. Indeed, obtained results showed, that in platinum-resistant ovarian cancer tissues higher amount of phospholipids, proteins and lipids were visible, however when the ratio between intensities of peaks at 1637 cm-1 (FTIR) and at 2944 cm-1 (Raman) and every peaks in spectra was calculated, difference between groups of samples were not noticed. Moreover, structural changes visible as a shift of peaks were noticed for C-O-C, C-H bending and amide II bonds. PCA clearly showed, that PC1 can be used to differentiate platinum-resistant and platinum-sensitive ovarian cancer tissues, while two-trace two-dimensional correlation spectra (2T2D-COS) showed, that only in amide II, amide I and asymmetric CH lipids vibrations correlation between two analyzed types of tissues were noticed. Finally, machine learning algorithms showed, that values of accuracy, sensitivity and specificity were near to 100% for FTIR and around 95% for FT-Raman spectroscopy. Using decision tree peaks at 1777 cm-1, 2974 cm-1 (FTIR) and 1714 cm-1, 2817 cm-1 (FT-Raman) were proposed as spectroscopy marker of platinum-resistant.
Collapse
Affiliation(s)
- Marta Kluz-Barłowska
- Department of Pathology, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055, Rzeszow, Poland.
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055, Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959, Rzeszow, Poland
| | - Wiesław Paja
- Institute of Computer Science, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Krzysztof Pancerz
- Institute of Philosophy, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Monika Łączyńska-Madera
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055, Rzeszow, Poland
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Jozef Cebulski
- Institute of Physics, College of Natural Sciences, University of Rzeszow, 35959, Rzeszow, Poland
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Krakow, Poland.
| |
Collapse
|
33
|
Song B, Jiang Y, Lin Y, Liu J, Jiang Y. Contribution of sphingomyelin phosphodiesterase acid-like 3B to the proliferation, migration, and invasion of ovarian cancer cells. Transl Cancer Res 2024; 13:1954-1968. [PMID: 38737677 PMCID: PMC11082662 DOI: 10.21037/tcr-24-309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Background Cancer has the highest mortality rate among gynecological cancers and poses a serious threat to women's lives. However, the treatment options for ovarian cancer are still limited, and exploring effective targeted biomarkers is particularly important for predicting and treating ovarian cancer. Therefore, it is necessary to explore the molecular mechanisms of the occurrence and development of ovarian cancer. Methods This investigation encompassed the analysis of gene expression profiles, measurement of transcription levels of potential target genes in peripheral blood samples from ovarian cancer patients and characterization of the ovarian cancer-related secretory protein sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Through bioinformatics analysis, potential target genes were identified, and their association with overall survival (OS) and progression-free survival (PFS) in ovarian cancer patients was assessed utilizing relevant databases. Subsequently, differences in target gene expression in ovarian cancer tissue samples were validated through protein blotting and quantitative real-time PCR (qRT-qPCR). Cell proliferation assays using the cell count kit-8 (CCK-8) method, as well as transwell chamber assay and pre coated matrix gel chamber assay were employed to elucidate the role of SMPDL3B in ovarian cancer cell migration and invasion. Results This study revealed a substantial upregulation of SMPDL3B in the serum of ovarian cancer patients, correlating with an unfavorable prognosis. High SMPDL3B expression was linked not only to increased proliferation of ovarian cancer cells, but also enhanced migration and invasion. Remarkably, the knockdown the human alkaline ceramidase 2 (ACER2) gene in cancer cells with heightened SMPDL3B expression significantly inhibited cell proliferation, migration, and invasion induced by SMPDL3B activation (P<0.05), highlighting the functional interplay between ACER2 and SMPDL3B in ovarian cancer. Conclusions In summary, this study proposes SMPDL3B as a prognostic marker for ovarian cancer, with implications for potential therapeutic intervention targeting the ACER2-SMPDL3B axis.
Collapse
Affiliation(s)
- Baozhi Song
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Yu Jiang
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Ying Lin
- Department of Pathology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Jiahua Liu
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| | - Yatao Jiang
- Department of Obstetrics, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
34
|
Han X, Gao Y, Jiang M, Li Z, Guo J, Li Y, Yi J, Hou L, Cheng J, Feng L, Jin Y, Zhao X, Yue W. Single-cell and spatial transcriptome sequencing uncover a platinum-resistant cluster overexpressed TACSTD2 in high-grade serous ovarian cancer. J Cancer 2024; 15:3427-3440. [PMID: 38817863 PMCID: PMC11134433 DOI: 10.7150/jca.95269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/20/2024] [Indexed: 06/01/2024] Open
Abstract
Purpose: Platinum-based chemotherapy is effective but limited by resistance in high-grade serous ovarian cancer (HGSOC). Single-cell RNA sequencing (scRNA-seq) can reveal tumour cell heterogeneity and subclonal differentiation. We aimed to analyze resistance mechanisms and potential targets in HGSOC using scRNA-seq. Methods: We performed 10× genomics scRNA-seq sequencing on tumour tissues from 3 platinum-sensitive and 3 platinum-resistant HGSOC patients. We analyzed cell subcluster communication networks and spatial distribution using cellchat. We performed RNA-seq analysis on TACSTD2, a representative resistance gene in the E0 subcluster, to explore its molecular mechanism. Results: Epithelial cells, characterized by distinct chemotherapy resistance traits and highest gene copy number variations, revealed a specific cisplatin-resistant cluster (E0) associated with poor prognosis. E0 exhibited malignant features related to resistance, fostering growth through communication with fibroblasts and endothelial cells. Spatially, E0 promoted fibroblasts to protect tumour cells and impede immune cells infiltration. Furthermore, TACSTD2 was identified as a representative gene of the E0 subcluster, elucidating its role in platinum resistance through the Rap1/PI3K/AKT pathway. Conclusions: Our study reveals a platinum-resistant epithelial cell subcluster E0 and its association with TACSTD2 in HGSOC, uncovers new insights and evidence for the platinum resistance mechanism, and provides new ideas and targets for the development of therapeutic strategies against TACSTD2+ epithelial cancer cells.
Collapse
Affiliation(s)
- Xiaoyang Han
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Mei Jiang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiahao Guo
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yue Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Junjie Yi
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lisha Hou
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jin Cheng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lei Feng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yulan Jin
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
35
|
Harutyunyan L, Manvelyan E, Karapetyan N, Bardakhchyan S, Jilavyan A, Tamamyan G, Avagyan A, Safaryan L, Zohrabyan D, Movsisyan N, Avinyan A, Galoyan A, Sargsyan M, Harutyunyan M, Nersoyan H, Stepanyan A, Galstyan A, Danielyan S, Muradyan A, Jilavyan G. A Survival Analysis of Patients with Recurrent Epithelial Ovarian Cancer Based on Relapse Type: A Multi-Institutional Retrospective Study in Armenia. Curr Oncol 2024; 31:1323-1334. [PMID: 38534933 PMCID: PMC10968888 DOI: 10.3390/curroncol31030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Annually, approximately 200 new ovarian cancer cases are diagnosed in Armenia, which is considered an upper-middle-income country. This study aimed to summarize the survival outcomes of patients with relapsed ovarian cancer in Armenia based on the type of recurrence, risk factors, and choice of systemic treatment. METHODS This retrospective case-control study included 228 patients with relapsed ovarian cancer from three different institutions. RESULTS The median age of the patients was 55. The median follow-up times from relapse and primary diagnosis were 21 and 48 months, respectively. The incidence of platinum-sensitive relapse was 81.6% (186), while platinum-resistant relapse was observed in only 18.4% (42) of patients. The median post-progression survival of the platinum-sensitive group compared to the platinum-resistant group was 54 vs. 25 months (p < 0.001), respectively, while the median survival after relapse was 25 vs. 13 months, respectively; three- and five-year post-progression survival rates in these groups were 31.2% vs. 23.8%, and 15.1% vs. 9.5%, respectively (p = 0.113). CONCLUSIONS Overall, despite new therapeutic approaches, ovarian cancer continues to be one of the deadly malignant diseases affecting women, especially in developing countries with a lack of resources, where chemotherapy remains the primary available systemic treatment for the majority of patients. Low survival rates demonstrate the urgent need for more research focused on this group of patients with poor outcomes.
Collapse
Affiliation(s)
- Lilit Harutyunyan
- Department of General Oncology, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia; (N.K.); (A.A.); (N.M.); (A.M.); (G.J.)
- Oncology Clinic, Mikaelyan Institute of Surgery, Ezras Hasratian 9, Yerevan 0052, Armenia; (A.A.); (A.G.); (M.S.)
| | - Evelina Manvelyan
- Department of Reproductive Biology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Nune Karapetyan
- Department of General Oncology, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia; (N.K.); (A.A.); (N.M.); (A.M.); (G.J.)
- Clinic of Adults’ Oncology and Chemotherapy at Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia; (S.B.); (L.S.); (D.Z.); (M.H.)
- Immune Oncology Research Institute, 7 Nersisyan St., Yerevan 0014, Armenia;
- Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia;
| | - Samvel Bardakhchyan
- Clinic of Adults’ Oncology and Chemotherapy at Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia; (S.B.); (L.S.); (D.Z.); (M.H.)
- Immune Oncology Research Institute, 7 Nersisyan St., Yerevan 0014, Armenia;
- Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia;
| | - Aram Jilavyan
- National Center of Oncology of Armenia, 76 Fanarjyan St., Yerevan 0052, Armenia; (A.J.); (H.N.); (A.S.); (A.G.)
- Department of Gynecologic Oncology, National Center of Oncology of Armenia, 76 Fanarjyan St., Yerevan 0052, Armenia
| | - Gevorg Tamamyan
- Immune Oncology Research Institute, 7 Nersisyan St., Yerevan 0014, Armenia;
- Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia;
- Pediatric Cancer and Blood Disorders Center of Armenia, 7 Nersisyan St., Yerevan 0014, Armenia
- Pediatric Oncology and Hematology Department, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia
| | - Armen Avagyan
- Department of General Oncology, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia; (N.K.); (A.A.); (N.M.); (A.M.); (G.J.)
- Oncology Clinic, Mikaelyan Institute of Surgery, Ezras Hasratian 9, Yerevan 0052, Armenia; (A.A.); (A.G.); (M.S.)
| | - Liana Safaryan
- Clinic of Adults’ Oncology and Chemotherapy at Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia; (S.B.); (L.S.); (D.Z.); (M.H.)
- Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia;
| | - Davit Zohrabyan
- Clinic of Adults’ Oncology and Chemotherapy at Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia; (S.B.); (L.S.); (D.Z.); (M.H.)
- Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia;
| | - Narine Movsisyan
- Department of General Oncology, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia; (N.K.); (A.A.); (N.M.); (A.M.); (G.J.)
- Oncology Clinic, Mikaelyan Institute of Surgery, Ezras Hasratian 9, Yerevan 0052, Armenia; (A.A.); (A.G.); (M.S.)
- Anesthesiology and Intensive Care Department, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia
- Armenian Association for the Study of Pain, 12 Kievyan Str. Apt. 20, Yerevan 0028, Armenia
| | - Anna Avinyan
- Oncology Clinic, Mikaelyan Institute of Surgery, Ezras Hasratian 9, Yerevan 0052, Armenia; (A.A.); (A.G.); (M.S.)
| | - Arevik Galoyan
- Oncology Clinic, Mikaelyan Institute of Surgery, Ezras Hasratian 9, Yerevan 0052, Armenia; (A.A.); (A.G.); (M.S.)
| | - Mariam Sargsyan
- Oncology Clinic, Mikaelyan Institute of Surgery, Ezras Hasratian 9, Yerevan 0052, Armenia; (A.A.); (A.G.); (M.S.)
- Immune Oncology Research Institute, 7 Nersisyan St., Yerevan 0014, Armenia;
| | - Martin Harutyunyan
- Clinic of Adults’ Oncology and Chemotherapy at Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia; (S.B.); (L.S.); (D.Z.); (M.H.)
- Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia;
| | - Hasmik Nersoyan
- National Center of Oncology of Armenia, 76 Fanarjyan St., Yerevan 0052, Armenia; (A.J.); (H.N.); (A.S.); (A.G.)
- Clinical Research and Cancer Registry Department, National Center of Oncology after V.A. Fanarjian, 76 Fanarjyan St., Yerevan 0052, Armenia
| | - Arevik Stepanyan
- National Center of Oncology of Armenia, 76 Fanarjyan St., Yerevan 0052, Armenia; (A.J.); (H.N.); (A.S.); (A.G.)
- Clinical Research and Cancer Registry Department, National Center of Oncology after V.A. Fanarjian, 76 Fanarjyan St., Yerevan 0052, Armenia
| | - Armenuhi Galstyan
- National Center of Oncology of Armenia, 76 Fanarjyan St., Yerevan 0052, Armenia; (A.J.); (H.N.); (A.S.); (A.G.)
- Diagnostic Service of the National Center of Oncology, 76 Fanarjyan St., Yerevan 0052, Armenia
| | - Samvel Danielyan
- Yeolyan Hematology and Oncology Center, 7 Nersisyan St., Yerevan 0014, Armenia;
| | - Armen Muradyan
- Department of General Oncology, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia; (N.K.); (A.A.); (N.M.); (A.M.); (G.J.)
| | - Gagik Jilavyan
- Department of General Oncology, Yerevan State Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia; (N.K.); (A.A.); (N.M.); (A.M.); (G.J.)
- National Center of Oncology of Armenia, 76 Fanarjyan St., Yerevan 0052, Armenia; (A.J.); (H.N.); (A.S.); (A.G.)
- Department of Gynecologic Oncology, National Center of Oncology of Armenia, 76 Fanarjyan St., Yerevan 0052, Armenia
| |
Collapse
|
36
|
Wang J, Zheng Q, Zhao Y, Chen S, Chen L. HMGB1 enhances the migratory and invasive abilities of A2780/DDP cells by facilitating epithelial to mesenchymal transition via GSK‑3β. Exp Ther Med 2024; 27:102. [PMID: 38356665 PMCID: PMC10865443 DOI: 10.3892/etm.2024.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/25/2023] [Indexed: 02/16/2024] Open
Abstract
The aim of the present study was to investigate the impact and mechanism of high mobility group box 1 (HMGB1) on the regulation of cell migration and invasion in A2780/DDP cisplatin-resistant ovarian cancer cells. After transfecting small interfering (si)RNA-HMGB1 into A2780/DDP cells, Transwell migration and invasion assays were conducted to assess alterations in the cell migratory and invasive abilities. Additionally, western blotting analyses were performed to examine changes in HMGB1, phosphorylated (p)-GSK-3β, GSK-3β, E-cadherin and vimentin expression levels. The results of the present study demonstrated that the migratory and invasive abilities of A2780/DDP cells were significantly higher compared with those of A2780 cells. Additionally, the expression levels of HMGB1, p-GSK-3β and the mesenchymal phenotype marker, vimentin, in A2780/DDP cells were significantly elevated relative to the levels in A2780 cells. Conversely, the expression level of the epithelial phenotype marker, E-cadherin, was markedly decreased compared with that in A2780 cells. Following transfection of A2780/DDP cells with siRNA-HMGB1, there was a significant reduction in the rate of cell migration and invasion. Simultaneously, the expression levels of HMGB1, p-GSK-3β and vimentin were downregulated while the level of E-cadherin was upregulated. It was therefore concluded that the high expression of HMGB1 in A2780/DDP cells enhanced the cell migration and invasion abilities by facilitating epithelial to mesenchymal transition via GSK-3β.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanjing Zhao
- Department of Surgery, 92403 Military Hospital, Fuzhou, Fujian 350015, P.R. China
| | - Shaozhan Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
37
|
McFadden M, Singh SK, Kinnel B, Varambally S, Singh R. The effect of paclitaxel- and fisetin-loaded PBM nanoparticles on apoptosis and reversal of drug resistance gene ABCG2 in ovarian cancer. J Ovarian Res 2023; 16:220. [PMID: 37990267 PMCID: PMC10662420 DOI: 10.1186/s13048-023-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (OvCa) is the most common type of epithelial OvCa. It is usually diagnosed in advanced stages, leaving a woman's chance of survival below 50%. Despite traditional chemotherapeutic therapies, there is often a high recurrence rate following initial treatments. Hence, a targeted drug delivery system is needed to attack the cancer cells and induce apoptosis, overcome acquired drug resistance, and protect normal cells from cytotoxicity. The present study shows that targeting folate receptor alpha (FRα) through planetary ball milling (PBM) nanoparticles (NPs) induces apoptosis in OvCa cells. RESULTS Human tissue microarrays (TMAs) show overexpression of FRα in Stage IV OvCa tissues compared to matched normal tissues. They provide a focus for a targeted delivery system. We formulated PBM nanoparticles encapsulated with paclitaxel (PTX) or fisetin (Fis) and conjugated with folic acid (FA). The cytotoxic effect of these PBM NPs reduced the concentration of the toxic chemotherapy drug PTX by five-fold. The combined treatment of PTX-FA NPs and Fis-FA NPs inhibited cell proliferation and induced apoptosis more extensively than the individual drugs alone. Apoptosis of OvCa cells, determined by flow cytometry, showed an increase from 14.4 to 80.4% (OVCAR3 cells) and from 2.69 to 90.0% (CAOV3 cells) in the number of apoptotic cells. Also, expressions of the pro-apoptotic markers, BAK and active caspase-3, were increased after PTX-FA + Fis-FA PBM NP treatment. In addition to looking at targeted treatment effects on apoptosis, drug resistance was investigated. Drug resistance in OvCa cells was reversed by ABCG2, an ABC-transporter marker. CONCLUSIONS Our study shows that PTX-FA and Fis-FA PBM NPs directly target platinum-resistant OvCa cells, induce cytotoxic/apoptotic effects, and reverse multi-drug resistance (MDR). These findings allow us to create new clinical applications using PTX-FA and Fis-FA combination nanoparticles to treat drug-resistant cancers.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | | | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
38
|
Cainap C, Crisan N. Advances in Cancer Therapy from Research to Clinical Practice-Surgical, Molecular or Systemic Management of Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1309. [PMID: 37512120 PMCID: PMC10385133 DOI: 10.3390/medicina59071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Cancer represents one of the most important general health problems of our day [...].
Collapse
Affiliation(s)
- Calin Cainap
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Surgical Specialities, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|