1
|
Rocca MA, Preziosa P, Filippi M. Advances in neuroimaging of multiple sclerosis. Curr Opin Neurol 2025; 38:205-216. [PMID: 40104925 DOI: 10.1097/wco.0000000000001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW To summarize recent advancements in understanding multiple sclerosis (MS) pathophysiology, predicting disease course, and monitoring treatment responses using MRI. RECENT FINDINGS Paramagnetic rim lesions (PRLs) are highly specific to MS and clinically relevant. Detected from the earliest disease phases, PRLs aid in distinguishing MS from other conditions, improving diagnostic accuracy. Moreover, PRLs are associated with more severe disability and measures of brain damage and may predict disease progression. Similarly, slowly expanding lesions (SELs) are associated with more severe disability and predict a more severe disease course. Disease-modifying therapies have limited effectiveness in reducing PRLs or SELs. Choroid plexus (CP) enlargement is associated with structural brain damage and clinical disability and predicts disease evolution. Enlarged perivascular spaces (ePVS) suggest microangiopathic changes rather than direct MS-related inflammation. Glymphatic dysfunction, evaluated using diffusion tensor image analysis along the perivascular space, emerges early in MS and correlates with disability, cognitive impairment, and structural brain damage. Aging and comorbidities exacerbate MS-related damage, complicating diagnosis and treatment. Emerging technologies, such as brain-age paradigms, aim to disentangle aging from MS-specific neurodegeneration. SUMMARY Advances in MRI have highlighted the clinical significance of chronic inflammation and glymphatic dysfunction as early contributors to MS progression as well as the interplay between aging, comorbidities and MS.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience
- Neurology Unit, IRCCS San Raffaele Scientific Institute
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Li H, Chen Y, Qiu Y. Oxytocin lipidation expanding therapeutics for long-term reversal of autistic behaviors in rats. Int J Pharm 2025; 672:125299. [PMID: 39890086 DOI: 10.1016/j.ijpharm.2025.125299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and repetitive, stereotyped behaviors. There is no universally effective pharmacological treatment targeting its core symptoms.Oxytocin, an endogenous polypeptide known as the "social hormone", has shown potential in improving emotional recognition and social interactions in individuals with ASD. However, its clinical application has been limited due to its short half-life and poor blood-brain barrier penetration. To address these challenges, we utilized peptide lipidation technology to enhance the pharmacokinetic properties and brain bioavailability of oxytocin. A series of lipidated oxytocin analogs was designed and synthesized, exhibiting superior brain distribution and pharmacokinetic profiles in valproic acid-induced autistic rat models compared to unmodified oxytocin. Among theseanalogs, C16-modified oxytocin (C16-OT), administered intrathecally, achieved the most extensive brain distribution with limited presence in the blood, resulting in long-lasting improvements in autistic behaviors. These improvements, including enhanced social behaviors and reduced stereotypical actions, were sustained for up to 42 days, contrasting with the brief effects typically reported in previous studies. Furthermore, a comparison of administration routes revealed that intrathecal injection achieved higher brain concentrations and more prolonged social behavioral improvements than intranasal delivery. These findings provide robust preclinical evidence that C16-OT, through optimized lipidation and intrathecal delivery, offers sustained central nervous system activity and significant, long-term reversal of social behavioral deficits in rats with autism.
Collapse
Affiliation(s)
- Honglin Li
- Department of Social Psychology, School of Sociology, Nankai University, Tianjin, China
| | - Ya Chen
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to UESTC, No.55, Block 4, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yue Qiu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to UESTC, No.55, Block 4, Southern Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Song R, Glass JO, Wu S, Li Y, Robinson GW, Gajjar A, Merchant TE, Reddick WE. Perivascular space imaging during therapy for medulloblastoma. PLoS One 2025; 20:e0318278. [PMID: 39919146 PMCID: PMC11805390 DOI: 10.1371/journal.pone.0318278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Perivascular spaces (PVS) are fluid filled compartments surrounding the small blood vessels in the brain. The impact of radiotherapy and chemotherapy on PVS remains unclear. The aim of this study is to investigate treatment effects of radiotherapy and chemotherapy at four time points (TPs) in pediatric medulloblastoma (MB) patients. We examined 778 scans from 241 MB patients at baseline (0M), after 12 weeks (about 3 months) of radiotherapy and rest (3M), after chemotherapy completion (12M), and a follow-up (FollowUp) at 18- or 21-months post-baseline. PVS was segmented by applying Frangi filter on the white matter regions on T1 weighted images acquired at 3T Siemens MRI scanner using MPRAGE. PVS volume and ratio, defined as the ratio of PVS volume to the white matter volume, were measured at the four TPs. The data was first statistically analyzed using a full model where all data were included, then a paired model, which included only patients who completed consecutive measurements under the same anesthesia and shunt conditions. Both the full model and paired model showed that PVS (including ratio and volume) increased at 3M post-radiotherapy compared to baseline. During chemotherapy, PVS decreased significantly from 3M to 12M. Subsequently, from 12M to FollowUp, PVS increased again. MRI exams under anesthesia exhibited significantly lower PVS than those without anesthesia. Patients who had undergone a shunt procedure exhibited a significantly reduced PVS compared to those who had not undergone the procedure. We concluded that craniospinal irradiation led to an elevated PVS. Conversely, chemotherapy or time post-irradiation decreased PVS. Anesthesia and shunt procedures can also influence perivascular space ratio or volume.
Collapse
Affiliation(s)
- Ruitian Song
- Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John O. Glass
- Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Shengjie Wu
- Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yimei Li
- Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Giles W. Robinson
- Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Amar Gajjar
- Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Thomas E. Merchant
- Radiation Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wilburn E. Reddick
- Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
4
|
Tyagi SC, Smolenkova I, Zheng Y, Singh M. Epigenetic Control of Hyperuricemia and Gout by Gene Writer DNMT1 and RNA Editor ADAR1: Mechanism of Gout and Amyloid Dissolution in Down Syndrome. Biochem Genet 2025:10.1007/s10528-025-11038-x. [PMID: 39881080 DOI: 10.1007/s10528-025-11038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025]
Abstract
Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid. We hypothesized that targeting epigenetic regulators and RNA editor, and inhibiting Hcy and adenosine, could alleviate DS phenotype including the congenital heart disease (CHD). DS and wild-type mice were treated with epigallocatechin gallate (EG), inhibitor of Hcy, and adenosine. Specific substrate gel zymography identified matrix metalloproteinases (MMPs)/A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) activities and MMP12/ADAMTS12 and MMP13/ADAMTS13 levels were assessed via gel zymography. Cardiac levels of DNMT1, ADAR, tissue inhibitor of metalloproteinase 1 (TIMP1), SAHH, and ten-eleven translocator (TET2), along with hydroxymethylation (a gene eraser), were measured. Calcium urate deposits in heart tissue suggested gout mechanism in DS. Robust amyloid fibers in DS mouse brain cortex were most likely dissolved by ADAMTS as its levels were elevated in tissues, with a corresponding decrease in TIMP1 in the EG group. It appears that triplication of down syndrome cell adhesion molecule (DSCAM) and cell adhesion molecule 1 (CAM1) fragment also help dissolve amyloid fibers, thus suggesting ADAMTS13/TIMP1 ratio could predict plaque dissolution. Our results indicate that cystathionine-β synthase (CBS) inhibitor as a potential therapy for amyloid dissolution.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Irina Smolenkova
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Center for Predictive Medicine (CPM) for Biodefense and Emerging Infectious Disease, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
5
|
Pan P, Zhang D, Li J, Tang M, Yan X, Zhang X, Wang M, Lei X, Zhang X, Gao J. The enlarged perivascular spaces in the hippocampus is associated with memory function in patients with type 2 diabetes mellitus. Sci Rep 2025; 15:3644. [PMID: 39880912 PMCID: PMC11779836 DOI: 10.1038/s41598-025-87841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Early detection of cognitive dysfunction in patients with type 2 diabetes mellitus (T2DM) is important for preventive measures due to the lack of effective treatments. The purpose of this study is to investigate the relationship between enlarged perivascular space in the hippocampus (H-EPVS) and cognitive performance in patients with T2DM, and to determine whether it can serve as an imaging marker for cognitive dysfunction. 66 T2DM patients with cognitive impairment (T2DM-CI) and 71 T2DM patients with normal cognitive function (T2DM-NC) underwent cranial MRI scans and comprehensive neuropsychological assessments. H-EPVS counts were visually calculated on T2WI imaging according to a previous scale. The differences in the counts of H-EPVS, demographic data, laboratory test results, and cognitive assessment scores between the two groups were compared. The partial correlation analysis was used to explore the relationship between H-EPVS and glymphatic system function (indicated by the DTI-ALPS index), as well as markers of CSVD. Multiple linear regression models were conducted to explore the association between H-EPVS and cognitive functions. Compared with the T2DM-NC group, T2DM-CI exhibited significantly higher counts of H-EPVS in both the total (sum of the left and right side) and left side (P < 0.001). The T2DM-CI group had lower DTI-ALPS index and RAVLT total score. The total H-EPVS counts were significantly correlated with the DTI-ALPS index (r = - 0.240, P = 0.005), BG-EPVS (r = 0.325, P < 0.001), and CSO-EPVS (r = 0.183, P = 0.033). Multiple linear regression showed the total H-EPVS counts exhibited a negative correlation with MMSE (β = - 0.324, 95% CI: - 0.091, - 0.320), immediate memory (β = - 0.380, 95% CI: - 0.673, - 1.766) and delayed recall (β = - 0.252, 95% CI: - 0.052, - 0.463). H-EPVS may serve as a potential neuroimaging biomarker for cognitive impairment in patients with T2DM, warranting further investigation and validation in future studies.
Collapse
Affiliation(s)
- Peichun Pan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
- Department of Graduate, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jing Li
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China.
| |
Collapse
|
6
|
Hayden MR. Brain endothelial cell activation and dysfunction associate with and contribute to the development of enlarged perivascular spaces and cerebral small vessel disease. Histol Histopathol 2024; 39:1565-1586. [PMID: 39051093 DOI: 10.14670/hh-18-792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Multiple injurious stimuli to the brain's endothelium results in brain endothelial cell activation and dysfunction (BECact/dys) with upregulation of inflammatory signaling cascades and a decrease in bioavailable nitric oxide respectively. These injurious stimuli initiate a brain injury and a response to injury wound healing genetically programed cascade of events, which result in cellular remodeling of the neurovascular unit and blood-brain barrier with increased inflammation and permeability. These remodeling changes also include the perivascular spaces that become dilated to form enlarged perivascular spaces (EPVS) that may be identified noninvasively by magnetic resonance imaging. These EPVS are associated with and considered to be a biomarker for cerebral small vessel disease (SVD) and a dysfunctional glymphatic system with impaired removal of neurotoxic waste, which ultimately results in neurodegeneration with impaired cognition and dementia. The penultimate section discusses the understudied role of venous cerebral circulation in relation to EPVS, SVD, and the vascular contribution to cognitive impairment (VCID). The focus of this review will be primarily on BECact/dys that associates with and contributes to the development of EPVS, SVD, and impaired glymphatic system efflux. Importantly, BECact/dys may be a key piece of the puzzle to unlock this complicated story of EPVS and SVD. Multiple transmission electron micrographs and illustrations will be utilized to depict anatomical ultrastructure and allow for the discussion of multiple functional molecular cascades.
Collapse
Affiliation(s)
- Melvin Ray Hayden
- University of Missouri, School of Medicine, Columbia, Missouri, USA.
| |
Collapse
|
7
|
Gui Q, Meng J, Shen M, Feng H, Dong X, Xu D, Zhu W, Cheng Q, Wang L, Wu G, Lu Y. Relationship of Glymphatic Function with Cognitive Impairment, Sleep Disorders, Anxiety and Depression in Patients with Parkinson's Disease. Neuropsychiatr Dis Treat 2024; 20:1809-1821. [PMID: 39346025 PMCID: PMC11439361 DOI: 10.2147/ndt.s480183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Previous studies have predominantly explored the relationship of the glymphatic system with motor symptoms in Parkinson's disease (PD); however, research on non-motor symptoms remains limited. Therefore, this study investigated the association between glymphatic function and non-motor symptoms, including cognitive impairment and sleep disorders, in PD patients. Methods This study recruited 49 PD patients and 38 healthy controls (HC). Glymphatic function was evaluated using enlarged perivascular spaces (EPVS) in the basal ganglia (BG) region and diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. Cognition, sleep, anxiety, and depression scales were assessed in all participants. According to the scale scores, PD patients were further divided into several groups to identify the presence of non-motor symptoms. Differences in EPVS numbers and ALPS index between PD subgroups and HC group were compared. Spearman correlation analysis was performed to investigate the association between the PD non-motor symptoms and ALPS index. Additionally, receiver operating characteristic (ROC) curves analysis was conducted for ALPS index to predict cognitive impairment and insomnia in PD patients. Results PD patients with and without non-motor symptoms all showed more EPVS numbers than the controls, and the EPVS numbers in PD patients with cognitive impairment were also greater than those without. Notably, except for the depression subgroup, PD patients with non-motor symptoms showed significantly lower ALPS index than the controls. The Montreal Cognitive Assessment (MoCA) scores were positively correlated, whereas the Parkinson's Disease Sleep Scale (PDSS)-2 and REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ) scores were negatively correlated with the ALPS index in PD patients (r=0.3618, P=0.0053; r=-0.4146, P=0.0015; r=-0.2655, P=0.0326, respectively). The ALPS index proved to be predictive of cognitive impairment and insomnia in PD patients (AUC=0.7733, P=0.001; AUC=0.7993, P=0.0004, respectively). Conclusion Glymphatic function is closely associated with cognition and sleep of PD patients.
Collapse
Affiliation(s)
- Qian Gui
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Jingcai Meng
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Mingqiang Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Xiaofeng Dong
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Daqiang Xu
- Department of Radiology, the Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Wenxin Zhu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Linhui Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Guanhui Wu
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Yanli Lu
- Department of Radiology, the Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, Jiangsu, 215002, People’s Republic of China
| |
Collapse
|
8
|
Phillips WT, Schwartz JG. Nasal turbinate lymphatic obstruction: a proposed new paradigm in the etiology of essential hypertension. Front Med (Lausanne) 2024; 11:1380632. [PMID: 39219790 PMCID: PMC11362006 DOI: 10.3389/fmed.2024.1380632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Hypertension affects an estimated 1.3 billion people worldwide and is considered the number one contributor to mortality via stroke, heart failure, renal failure, and dementia. Although the physiologic mechanisms leading to the development of essential hypertension are poorly understood, the regulation of cerebral perfusion has been proposed as a primary cause. This article proposes a novel etiology for essential hypertension. Our hypothesis developed from a review of nuclear medicine scans, where the authors observed a significantly abnormal increase in nasal turbinate vasodilation in hypertensive patients using quantitative region of interest analysis. The authors propose that nasal turbinate vasodilation and resultant blood pooling obstruct the flow of cerebrospinal fluid passing through nasal turbinate lymphatics, thereby increasing intracranial pressure. The authors discuss the glymphatic/lymphatic clearance system which is impaired with age, and at which time hypertension also develops. The increased intracranial pressure leads to compensatory hypertension via Cushing's mechanism, i.e., the selfish brain hypothesis. The nasal turbinate vasodilation, due to increased parasympathetic activity, occurs simultaneously along with the well-established increased sympathetic activity of the cardiovascular system. The increased parasympathetic activity is likely due to an autonomic imbalance secondary to the increase in worldwide consumption of processed food. This hypothesis explains the rapid worldwide rise in essential hypertension in the last 50 years and offers a novel mechanism and a new paradigm for the etiology of essential hypertension. This new paradigm offers compelling evidence for the modulation of parasympathetic nervous system activity as a novel treatment strategy, specifically targeting nasal turbinate regulation, to treat diseases such as hypertension, idiopathic intracranial hypertension, and degenerative brain diseases. The proposed mechanism of essential hypertension presented in this paper is a working hypothesis and confirmatory studies will be needed.
Collapse
|
9
|
Andriuta D, Ottoy J, Ruthirakuhan M, Feliciano G, Dilliott AA, Hegele RA, Gao F, McLaughlin PM, Rabin JS, Wood Alexander M, Scott CJM, Yhap V, Berezuk C, Ozzoude M, Swardfager W, Zebarth J, Tartaglia MC, Rogaeva E, Tang‐Wai DF, Casaubon L, Kumar S, Dowlatshahi D, Mandzia J, Sahlas D, Saposnik G, Fischer CE, Borrie M, Hassan A, Binns MA, Freedman M, Chertkow H, Finger E, Frank A, Bartha R, Symons S, Zetterberg H, Swartz RH, Masellis M, Black SE, Ramirez J. Perivascular spaces, plasma GFAP, and speeded executive function in neurodegenerative diseases. Alzheimers Dement 2024; 20:5800-5808. [PMID: 38961774 PMCID: PMC11350014 DOI: 10.1002/alz.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION We investigated the effect of perivascular spaces (PVS) volume on speeded executive function (sEF), as mediated by white matter hyperintensities (WMH) volume and plasma glial fibrillary acidic protein (GFAP) in neurodegenerative diseases. METHODS A mediation analysis was performed to assess the relationship between neuroimaging markers and plasma biomarkers on sEF in 333 participants clinically diagnosed with Alzheimer's disease/mild cognitive impairment, frontotemporal dementia, or cerebrovascular disease from the Ontario Neurodegenerative Disease Research Initiative. RESULTS PVS was significantly associated with sEF (c = -0.125 ± 0.054, 95% bootstrap confidence interval [CI] [-0.2309, -0.0189], p = 0.021). This effect was mediated by both GFAP and WMH. DISCUSSION In this unique clinical cohort of neurodegenerative diseases, we demonstrated that the effect of PVS on sEF was mediated by the presence of elevated plasma GFAP and white matter disease. These findings highlight the potential utility of imaging and plasma biomarkers in the current landscape of therapeutics targeting dementia. HIGHLIGHTS Perivascular spaces (PVS) and white matter hyperintensities (WMH) are imaging markers of small vessel disease. Plasma glial fibrillary protein acidic protein (GFAP) is a biomarker of astroglial injury. PVS, WMH, and GFAP are relevant in executive dysfunction from neurodegeneration. PVS's effect on executive function was mediated by GFAP and white matter disease.
Collapse
Affiliation(s)
- Daniela Andriuta
- Department of NeurologyAmiens University Medical CenterAmiensFrance
- Laboratoire de Neurosciences Fonctionnelles et Pathologies (UR UPJV 4559)Jules Verne University of PicardyAmiensFrance
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Julie Ottoy
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Myuri Ruthirakuhan
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Ginelle Feliciano
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Allison A. Dilliott
- Department of Neurology and NeurosurgeryMontreal Neurological Institute and Hospital, McGill UniversityMontréalQuebecCanada
| | - Robert A. Hegele
- Robarts Research InstituteSchulich School of Medicine and DentistryWestern University, LondonTorontoOntarioCanada
| | - Fuqiang Gao
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | | | - Jennifer S. Rabin
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteTorontoOntarioCanada
- Rehabilitation Sciences InstituteUniversity of TorontoTorontoOntarioCanada
- Division of NeurologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Madeline Wood Alexander
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
- Rehabilitation Sciences InstituteUniversity of TorontoTorontoOntarioCanada
| | - Christopher J. M. Scott
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Vanessa Yhap
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Courtney Berezuk
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Miracle Ozzoude
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Walter Swardfager
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - Julia Zebarth
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
| | - M. Carmela Tartaglia
- Division of NeurologyToronto Western Hospital, University Health Network, University of TorontoTorontoOntarioCanada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - David F. Tang‐Wai
- Division of NeurologyToronto Western Hospital, University Health Network, University of TorontoTorontoOntarioCanada
| | - Leanne Casaubon
- Division of NeurologyToronto Western Hospital, University Health Network, University of TorontoTorontoOntarioCanada
| | - Sanjeev Kumar
- Department of PsychiatryAdult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental HealthTorontoOntarioCanada
| | - Dar Dowlatshahi
- University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Jennifer Mandzia
- Robarts Research InstituteSchulich School of Medicine and DentistryWestern University, LondonTorontoOntarioCanada
| | - Demetrios Sahlas
- Division of NeurologyDepartment of MedicineHamilton Health Sciences, McMaster UniversityHamiltonOntarioCanada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, and Division of NeurologyDepartment of MedicineSt. Michael's Hospital, University of TorontoTorontoOntarioCanada
| | - Corinne E. Fischer
- Li Ka Shing Knowledge Institute, and Division of NeurologyDepartment of MedicineSt. Michael's Hospital, University of TorontoTorontoOntarioCanada
- Keenan Research Centre for Biomedical ScienceSt. Michael's Hospital, University of TorontoTorontoOntarioCanada
| | - Michael Borrie
- Robarts Research InstituteSchulich School of Medicine and DentistryWestern University, LondonTorontoOntarioCanada
| | - Ayman Hassan
- Division of NeurologyDepartment of MedicineHamilton Health Sciences, McMaster UniversityHamiltonOntarioCanada
- Thunder Bay Regional Health Research InstituteThunder BayOntarioCanada
| | - Malcolm A. Binns
- Rotman Research Institute, Baycrest Health SciencesTorontoOntarioCanada
- Division of BiostatisticsDalla Lana School of Public HealthTorontoOntarioCanada
| | - Morris Freedman
- Rotman Research Institute, Baycrest Health SciencesTorontoOntarioCanada
| | - Howard Chertkow
- Division of NeurologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
- Rotman Research Institute, Baycrest Health SciencesTorontoOntarioCanada
| | - Elizabeth Finger
- Robarts Research InstituteSchulich School of Medicine and DentistryWestern University, LondonTorontoOntarioCanada
| | - Andrew Frank
- University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research InstituteOttawaOntarioCanada
- Bruyère Research InstituteOttawaOntarioCanada
| | - Robert Bartha
- Robarts Research InstituteSchulich School of Medicine and DentistryWestern University, LondonTorontoOntarioCanada
| | - Sean Symons
- Department of Medical ImagingSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen Square, UK Dementia Research Institute at UCLLondonUK
| | - Richard H. Swartz
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
- Division of NeurologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of MedicineNeurologySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
- Division of NeurologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of MedicineNeurologySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Sandra E. Black
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
- Division of NeurologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of MedicineNeurologySunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Joel Ramirez
- Dr. Sandra Black Centre for Brain Resilience and RecoveryLC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research InstituteTorontoOntarioCanada
- Graduate Department of Psychological Clinical ScienceUniversity of Toronto ScarboroughTorontoOntarioCanada
| | | |
Collapse
|
10
|
Hayden MR. Cerebral Microbleeds Associate with Brain Endothelial Cell Activation-Dysfunction and Blood-Brain Barrier Dysfunction/Disruption with Increased Risk of Hemorrhagic and Ischemic Stroke. Biomedicines 2024; 12:1463. [PMID: 39062035 PMCID: PMC11274519 DOI: 10.3390/biomedicines12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, cerebral microbleeds (CMBs) are increasingly being viewed not only as a marker for cerebral small vessel disease (SVD) but also as having an increased risk for the development of stroke (hemorrhagic/ischemic) and aging-related dementia. Recently, brain endothelial cell activation and dysfunction and blood-brain barrier dysfunction and/or disruption have been shown to be associated with SVD, enlarged perivascular spaces, and the development and evolution of CMBs. CMBs are a known disorder of cerebral microvessels that are visualized as 3-5 mm, smooth, round, or oval, and hypointense (black) lesions seen only on T2*-weighted gradient recall echo or susceptibility-weighted sequences MRI images. CMBs are known to occur with high prevalence in community-dwelling older individuals. Since our current global population is the oldest recorded in history and is only expected to continue to grow, we can expect the healthcare burdens associated with CMBs to also grow. Increased numbers (≥10) of CMBs should raise a red flag regarding the increased risk of large symptomatic neurologic intracerebral hemorrhages. Importantly, CMBs are also currently regarded as markers of diffuse vascular and neurodegenerative brain damage. Herein author highlights that it is essential to learn as much as we can about CMB development, evolution, and their relation to impaired cognition, dementia, and the exacerbation of neurodegeneration.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Uzoechi SC, Collins BE, Badeaux CJ, Li Y, Kwak SS, Kim DY, Laskowitz DT, Lee JM, Yun Y. Effects of Amyloid Beta (Aβ) Oligomers on Blood-Brain Barrier Using a 3D Microfluidic Vasculature-on-a-Chip Model. APPLIED SCIENCES (BASEL, SWITZERLAND) 2024; 14:3917. [PMID: 39027034 PMCID: PMC11257072 DOI: 10.3390/app14093917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The disruption of the blood-brain barrier (BBB) in Alzheimer's Disease (AD) is largely influenced by amyloid beta (Aβ). In this study, we developed a high-throughput microfluidic BBB model devoid of a physical membrane, featuring endothelial cells interacting with an extracellular matrix (ECM). This paper focuses on the impact of varying concentrations of Aβ1-42 oligomers on BBB dysfunction by treating them in the luminal. Our findings reveal a pronounced accumulation of Aβ1-42 oligomers at the BBB, resulting in the disruption of tight junctions and subsequent leakage evidenced by a barrier integrity assay. Additionally, cytotoxicity assessments indicate a concentration-dependent increase in cell death in response to Aβ1-42 oligomers (LC50 ~ 1 μM). This study underscores the utility of our membrane-free vascular chip in elucidating the dysfunction induced by Aβ with respect to the BBB.
Collapse
Affiliation(s)
- Samuel Chidiebere Uzoechi
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Biomedical Engineering, Federal University of Technology, PMB 1526, Owerri 460114, Nigeria
| | - Boyce Edwin Collins
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Cody Joseph Badeaux
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Yan Li
- Chemical & Biomedical Engineering, College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, Mass General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Mass General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Daniel Todd Laskowitz
- Neurosurgery, Anesthesiology & Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yeoheung Yun
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
12
|
Wu YC, Bogale TA, Koistinaho J, Pizzi M, Rolova T, Bellucci A. The contribution of β-amyloid, Tau and α-synuclein to blood-brain barrier damage in neurodegenerative disorders. Acta Neuropathol 2024; 147:39. [PMID: 38347288 PMCID: PMC10861401 DOI: 10.1007/s00401-024-02696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid β (Aβ), hyperphosphorylated Tau or α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenerative diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aβ, Tau and α-syn species. While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cellular and molecular mechanisms driving Aβ, Tau and α-syn-related brain damage remain to be fully clarified. In the last few years, studies have shown that Aβ, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting blood-brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation and dysfunction. Here, we summarize and critically discuss key findings showing how Aβ, Tau and α-syn can contribute to BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis and treatment of acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tizibt Ashine Bogale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
- Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy.
| |
Collapse
|
13
|
Hayden MR. A Closer Look at the Perivascular Unit in the Development of Enlarged Perivascular Spaces in Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus. Biomedicines 2024; 12:96. [PMID: 38255202 PMCID: PMC10813073 DOI: 10.3390/biomedicines12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The recently described perivascular unit (PVU) resides immediately adjacent to the true capillary neurovascular unit (NVU) in the postcapillary venule and contains the normal-benign perivascular spaces (PVS) and pathological enlarged perivascular spaces (EPVS). The PVS are important in that they have recently been identified to be the construct and the conduit responsible for the delivery of metabolic waste from the interstitial fluid to the ventricular cerebrospinal fluid for disposal into the systemic circulation, termed the glymphatic system. Importantly, the outermost boundary of the PVS is lined by protoplasmic perivascular astrocyte endfeet (pvACef) that communicate with regional neurons. As compared to the well-recognized and described neurovascular unit (NVU) and NVU coupling, the PVU is less well understood and remains an emerging concept. The primary focus of this narrative review is to compare the similarities and differences between these two units and discuss each of their structural and functional relationships and how they relate not only to brain homeostasis but also how they may relate to the development of multiple clinical neurological disease states and specifically how they may relate to obesity, metabolic syndrome, and type 2 diabetes mellitus. Additionally, the concept and importance of a perisynaptic astrocyte coupling to the neuronal synapses with pre- and postsynaptic neurons will also be considered as a perisynaptic unit to provide for the creation of the information transfer in the brain via synaptic transmission and brain homeostasis. Multiple electron microscopic images and illustrations will be utilized in order to help explain these complex units.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Meng JC, Shen MQ, Lu YL, Feng HX, Chen XY, Xu DQ, Wu GH, Cheng QZ, Wang LH, Gui Q. Correlation of glymphatic system abnormalities with Parkinson's disease progression: a clinical study based on non-invasive fMRI. J Neurol 2024; 271:457-471. [PMID: 37755462 DOI: 10.1007/s00415-023-12004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The glymphatic system is reportedly involved in Parkinson's disease (PD). Based on previous studies, we aimed to confirm the correlation between the glymphatic system and PD progression by combining two imaging parameters, diffusion tensor image analysis along the perivascular space (DTI-ALPS), and enlarged perivascular spaces (EPVS). METHODS Fifty-one PD patients and fifty healthy control (HC) were included. Based on the Hoehn-Yahr scale, the PD group was divided into early-stage and medium-to late-stage. All PD patients were scored using the Unified PD Rating Scale (UPDRS). We assessed the DTI-ALPS indices in the bilateral hemispheres and EPVS numbers in bilateral centrum semiovale (CSO), basal ganglia (BG), and midbrain. RESULTS The DTI-ALPS indices were significantly lower bilaterally in PD patients than in the HC group, and EPVS numbers in any of the bilateral CSO, BG, and midbrain were significantly higher, especially for the medium- to late-stage group and the BG region. In PD patients, the DTI-ALPS index was significantly negatively correlated with age, while the BG-EPVS numbers were significantly positively correlated with age. Furthermore, the DTI-ALPS index was negatively correlated with UPDRS II and III scores, while the BG-EPVS numbers were positively correlated with UPDRS II and III scores. Similarly, the correlation was more pronounced in the medium- to late-stage group. CONCLUSION The DTI-ALPS index and EPVS numbers (especially in the BG region) are closely related to age and PD progression and can serve as non-invasive assessments for glymphatic dysfunction and its interventions in clinical studies.
Collapse
Affiliation(s)
- Jing-Cai Meng
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ming-Qiang Shen
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Yan-Li Lu
- Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University(Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Hong-Xuan Feng
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Xin-Yi Chen
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Da-Qiang Xu
- Department of Radiology, Suzhou Hospital Affiliated to Nanjing Medical University(Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Guan-Hui Wu
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Qing-Zhang Cheng
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China
| | - Lin-Hui Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qian Gui
- Department of Neurology, Suzhou Hospital Affiliated to Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
15
|
Hayden MR. The Brain Endothelial Cell Glycocalyx Plays a Crucial Role in the Development of Enlarged Perivascular Spaces in Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus. Life (Basel) 2023; 13:1955. [PMID: 37895337 PMCID: PMC10608474 DOI: 10.3390/life13101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The brain endothelial cell (BEC) glycocalyx (ecGCx) is a BEC surface coating consisting of a complex interwoven polysaccharide (sweet husk) mesh-like network of membrane-bound proteoglycans, glycoproteins, and glycosaminoglycans (GAGs) covering the apical luminal layer of the brain endothelial cells. The ecGCx may be considered as the first barrier of a tripartite blood-brain barrier (BBB) consisting of (1) ecGCx; (2) BECs; and (3) an extravascular compartment of pericytes, the extracellular matrix, and perivascular astrocytes. Perturbations of this barrier allow for increased permeability in the postcapillary venule that will be permissive to both fluids, solutes, and proinflammatory peripherally derived leukocytes into the perivascular spaces (PVS) which result in enlargement as well as increased neuroinflammation. The ecGCx is known to have multiple functions, which include its physical and charge barrier, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation functions. This review discusses each of the listed functions in detail and utilizes multiple transmission electron micrographs and illustrations to allow for a better understanding of the ecGCx structural and functional roles as it relates to enlarged perivascular spaces (EPVS). This is the fifth review of a quintet series that discuss the importance of EPVS from the perspective of the cells of brain barriers. Attenuation and/or loss of the ecGCx results in brain barrier disruption with increased permeability to proinflammatory leukocytes, fluids, and solutes, which accumulate in the postcapillary venule perivascular spaces. This accumulation results in obstruction and results in EPVS with impaired waste removal of the recently recognized glymphatic system. Importantly, EPVS are increasingly being regarded as a marker of cerebrovascular and neurodegenerative pathology.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Hayden MR. Brain Injury: Response to Injury Wound-Healing Mechanisms and Enlarged Perivascular Spaces in Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1337. [PMID: 37512148 PMCID: PMC10385746 DOI: 10.3390/medicina59071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Embryonic genetic mechanisms are present in the brain and ready to be placed into action upon cellular injury, termed the response to injury wound-healing (RTIWH) mechanism. When injured, regional brain endothelial cells initially undergo activation and dysfunction with initiation of hemostasis, inflammation (peripheral leukocytes, innate microglia, and perivascular macrophage cells), proliferation (astrogliosis), remodeling, repair, and resolution phases if the injurious stimuli are removed. In conditions wherein the injurious stimuli are chronic, as occurs in obesity, metabolic syndrome, and type 2 diabetes mellitus, this process does not undergo resolution and there is persistent RTIWH with remodeling. Indeed, the brain is unique, in that it utilizes its neuroglia: the microglia cell, along with peripheral inflammatory cells and its astroglia, instead of peripheral scar-forming fibrocytes/fibroblasts. The brain undergoes astrogliosis to form a gliosis scar instead of a fibrosis scar to protect the surrounding neuropil from regional parenchymal injury. One of the unique and evolving remodeling changes in the brain is the development of enlarged perivascular spaces (EPVSs), which is the focus of this brief review. EPVSs are important since they serve as a biomarker for cerebral small vessel disease and also represent an impairment of the effluxing glymphatic system that is important for the clearance of metabolic waste from the interstitial fluid to the cerebrospinal fluid, and disposal. Therefore, it is important to better understand how the RTIWH mechanism is involved in the development of EPVSs that are closely associated with and important to the development of premature and age-related cerebrovascular and neurodegenerative diseases with impaired cognition.
Collapse
Affiliation(s)
- Melvin R Hayden
- Diabetes and Cardiovascular Disease Center, Department of Internal Medicine, Endocrinology Diabetes and Metabolism, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Wu L, Huang H, Yu Z, Luo X, Xu S. Asymmetry of Lacunae between Brain Hemispheres Is Associated with Atherosclerotic Occlusions of Middle Cerebral Artery. Brain Sci 2023; 13:1016. [PMID: 37508948 PMCID: PMC10377170 DOI: 10.3390/brainsci13071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral small vessel disease (CSVD) commonly coexists with intracranial atherosclerotic stenosis (ICAS). Previous studies have tried to evaluate the relationship between ICAS and CSVD; however, they have yielded varied conclusions. Furthermore, the methodology of these studies is not very rigorous, as they have evaluated the association between ICAS and CSVD of bilateral hemispheres rather than the affected hemisphere. Unilateral middle cerebral artery atherosclerotic occlusion (uni-MCAO) is a favorable model to solve this problem. MATERIAL AND METHODS Patients with uni-MCAO were retrospectively observed. Imaging characteristics, including lacunae, white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), and cerebral microbleeds (CMBs), were compared between the hemisphere ipsilateral to the MCAO and the contralateral hemisphere. RESULTS A total of 219 patients (median age 57 years; 156 males) were enrolled. Compared with the contralateral side, increased quality of lacunae (median, IQR, 0, 2 vs. 0, 1; p < 0.001) and elevated CSVD score (median, IQR, 0, 1 vs. 0, 1; p = 0.004) were found in the occluded hemisphere. No significant differences were shown for WMH, EPVS, and CMBs. CONCLUSIONS Uni-MCAO has a higher prevalence of lacunae in the ipsilateral hemisphere. However, no interhemispheric differences in WMH, EPVS, or CMBs were found.
Collapse
Affiliation(s)
- Lingshan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Hayden MR. Brain Endothelial Cells Play a Central Role in the Development of Enlarged Perivascular Spaces in the Metabolic Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1124. [PMID: 37374328 DOI: 10.3390/medicina59061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Brain capillary endothelial cell(s) (BECs) have numerous functions, including their semipermeable interface-barrier (transfer and diffusion of solutes), trophic (metabolic homeostasis), tonic (vascular hemodynamics), and trafficking (vascular permeability, coagulation, and leukocyte extravasation) functions to provide brain homeostasis. BECs also serve as the brain's sentinel cell of the innate immune system and are capable of antigen presentation. In metabolic syndrome (MetS), there are two regions resulting in the proinflammatory signaling of BECs, namely visceral adipose tissue depots supplying excessive peripheral cytokines/chemokines (pCCs) and gut microbiota dysbiotic regions supplying excessive soluble lipopolysaccharide (sLPS), small LPS-enriched extracellular vesicle exosomes (lpsEVexos), and pCCs. This dual signaling of BECs at their receptor sites results in BEC activation and dysfunction (BECact/dys) and neuroinflammation. sLPS and lpsEVexos signal BECs' toll-like receptor 4, which then signals translocated nuclear factor kappa B (NFkB). Translocated NFkB promotes the synthesis and secretion of BEC proinflammatory cytokines and chemokines. Specifically, the chemokine CCL5 (RANTES) is capable of attracting microglia cells to BECs. BEC neuroinflammation activates perivascular space(s) (PVS) resident macrophages. Excessive phagocytosis by reactive resident PVS macrophages results in a stagnation-like obstruction, which along with increased capillary permeability due to BECact/dys could expand the fluid volume within the PVS to result in enlarged PVS (EPVS). Importantly, this remodeling may result in pre- and post-capillary EPVS that would contribute to their identification on T2-weighted MRI, which are considered to be biomarkers for cerebral small vessel disease.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|