1
|
Mazahir FA, Shukla A, Albastaki NA. The association of particulate matter PM 2.5 and nitrogen oxides from ambient air pollution and mental health of children and young adults- a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0120. [PMID: 40074563 DOI: 10.1515/reveh-2024-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION The developing brain, especially vulnerable during neuroplastic phases, is influenced by environmental and genetic factors. Understanding the impacts of air pollution on children's and young adults' mental health is an emerging research field. CONTENT This review systematically examines the adverse associations of ambient air pollutants on mental health. A database search using Scopus, EMBASE, Global Health, and PsycINFO included articles from 2013 onwards, following PRISMA guidelines. Of the 787 identified articles, 62 met the inclusion criteria. Quality was assessed using the EPHPP tool, and Best Evidence Synthesis (BES) evaluated the findings. SUMMARY The review found 36 associations between ambient air pollutants and adverse mental health outcomes across seven life-course exposure periods. Strong evidence linked early-life PM2.5 and NO2 exposures to Autism Spectrum Disorder (ASD) and childhood exposures to Attention Deficit Hyperactivity Disorder (ADHD). Significant, though inconsistent, associations were found between air pollutants and cognitive impairments, anxiety, depression, self-harm, and other behavioral problems. The heterogeneity of exposure limits and lack of experimental studies hinder causal assessment. OUTLOOK Compelling evidence links early-life and childhood exposure to PM2.5 and NO2 with ASD and ADHD. These findings highlight the need for public health policy changes and further research to explore these associations comprehensively.
Collapse
Affiliation(s)
- Fatima A Mazahir
- Pediatric Department, Al Jalila Children's Specialty Hospital, Dubai Academic Health Corporation (Dubai Health), Dubai, United Arab Emirates
| | - Ankita Shukla
- University of Sharjah, Sharjah, United Arab Emirates
| | - Najwa A Albastaki
- Public Health Department- Dubai Health Authority, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Sharma R, Schinasi LH, Lee BK, Weuve J, Weisskopf MG, Sheffield PE, Clougherty JE. Air Pollution and Temperature in Seizures and Epilepsy: A Scoping Review of Epidemiological Studies. Curr Environ Health Rep 2024; 12:1. [PMID: 39656387 PMCID: PMC11631820 DOI: 10.1007/s40572-024-00466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF THE REVIEW Seizures and epilepsy can be debilitating neurological conditions and have few known causes. Emerging evidence has highlighted the potential contribution of environmental exposures to the etiology of these conditions, possibly manifesting via neuroinflammation and increased oxidative stress in the brain. We conducted a scoping review of epidemiological literature linking air pollution and temperature exposures with incidence and acute aggravation of seizures and epilepsy. We systematically searched PubMed, Embase, Web of Science, and APA PsycINFO databases for peer-reviewed journal articles published in English from inception to February 7, 2024. RECENT FINDINGS We identified a total of 34 studies: 16 examined air pollution exposure, 12 ambient temperature, and six examined both air pollution and ambient temperature. Most studies were conducted in Asia (China, Taiwan, South Korea, and Japan). Nearly all studies retrospectively derived acute (daily average), ambient, and postnatal exposure estimates from ground monitoring systems and ascertained epilepsy cases or seizure events through record linkage with medical records, health registry systems, or insurance claims data. Commonly assessed exposures were particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and daily mean ambient temperature. Overall, the main findings across studies lacked consistency, with mixed results reported for the associations of air pollutants and temperature metrics with both seizure incidence and acute aggravations of epilepsy.
Collapse
Affiliation(s)
- Rachit Sharma
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA.
| | - Leah H Schinasi
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
- Urban Health Collaborative, Drexel University, Philadelphia, PA, 19104, USA
| | - Brian K Lee
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Jennifer Weuve
- Boston University School of Public Health, Boston University, Boston, MA, 02118, USA
| | - Marc G Weisskopf
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | | | - Jane E Clougherty
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
- Urban Health Collaborative, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Kuodza GE, Kawai R, LaSalle JM. Intercontinental insights into autism spectrum disorder: a synthesis of environmental influences and DNA methylation. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae023. [PMID: 39703685 PMCID: PMC11658417 DOI: 10.1093/eep/dvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by a broad range of symptoms. The etiology of ASD is thought to involve complex gene-environment interactions, which are crucial to understanding its various causes and symptoms. DNA methylation is an epigenetic mechanism that potentially links genetic predispositions to environmental factors in the development of ASD. This review provides a global perspective on ASD, focusing on how DNA methylation studies may reveal gene-environment interactions characteristic of specific geographical regions. It delves into the role of DNA methylation in influencing the causes and prevalence of ASD in regions where environmental influences vary significantly. We also address potential explanations for the high ASD prevalence in North America, considering lifestyle factors, environmental toxins, and diagnostic considerations. Asian and European studies offer insights into endocrine-disrupting compounds, persistent organic pollutants, maternal smoking, and their associations with DNA methylation alterations in ASD. In areas with limited data on DNA methylation and ASD, such as Africa, Oceania, and South America, we discuss prevalent environmental factors based on epidemiological studies. Additionally, the review integrates global and country-specific prevalence data from various studies, providing a comprehensive picture of the variables influencing ASD diagnoses over region and year of assessment. This prevalence data, coupled with regional environmental variables and DNA methylation studies, provides a perspective on the complexities of ASD research. Integrating global prevalence data, we underscore the need for a comprehensive global understanding of ASD's complex etiology. Expanded research into epigenetic mechanisms of ASD is needed, particularly in underrepresented populations and locations, to enhance biomarker development for diagnosis and intervention strategies for ASD that reflect the varied environmental and genetic landscapes worldwide.
Collapse
Affiliation(s)
- George E Kuodza
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Ray Kawai
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
4
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Jin S, Yoon SZ, Choi YJ, Kang G, Choi SU. Prenatal exposure to air pollutants and the risk of congenital heart disease: a Korean national health insurance database-based study. Sci Rep 2024; 14:16940. [PMID: 39043676 PMCID: PMC11266520 DOI: 10.1038/s41598-024-63150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/25/2024] [Indexed: 07/25/2024] Open
Abstract
Air pollution and heavy metal exposure are emerging public health concerns. Prenatal exposure to air pollutants and heavy metals has been implicated in the development of congenital heart disease (CHD). However, the relationship between exposure to airborne heavy metals and CHD has not yet been investigated. Therefore, in this large population-based study, we investigated the association between air pollutants, including airborne heavy metals, and the risk of CHD using national health insurance claims data from South Korea. Data regarding 1,129,442 newborns and their mothers were matched with air pollutant levels during the first 8 weeks of gestation. In the five-air pollutant model, we found significant positive correlations between prenatal exposure to sulfur dioxide (SO2; odds ratio [OR] 6.843, 95% confidence interval [CI] 5.746-8.149) and cadmium (Cd; OR 1.513, 95% CI 1.187-1.930) and the risk of ventricular septal defects in newborns. This study highlights the association between prenatal exposure to air pollutants, including airborne heavy metals, and an elevated CHD risk. Further research is essential to validate and expand these findings, with the ultimate goal of enhancing public health outcomes.
Collapse
Affiliation(s)
- Sejong Jin
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seung Zhoo Yoon
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yoon Ji Choi
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea.
| | - Giung Kang
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, 15355, Republic of Korea
| | - Sung Uk Choi
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| |
Collapse
|
6
|
Antaya TC, Espino-Alvarado PH, Oiamo T, Wilk P, Speechley KN, Burneo JG. Association of outdoor air and noise pollution with unprovoked seizures and new onset epilepsy: A systematic review and meta-analysis. Epilepsia 2024; 65:1847-1867. [PMID: 38776166 DOI: 10.1111/epi.18010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024]
Abstract
Research has indicated that certain environmental exposures may increase the risk of unprovoked seizures and new onset epilepsy. This study aimed to synthesize the literature that has estimated the associations between short- and long-term exposure to outdoor air and noise pollution and the risk of unprovoked seizures and new onset epilepsy. We searched Embase, MEDLINE, Scopus, Web of Science, BIOSIS Previews, Latin American and Caribbean Health Sciences Literature, Proquest Dissertations and Theses, conference abstracts, and the gray literature and conducted citation tracing in June 2023. Observational and ecological studies assessing the associations of air and noise pollution with unprovoked seizures or new onset epilepsy were eligible. One reviewer extracted summary data. Using fixed and random effects models, we calculated the pooled risk ratios (RRs) for the studies assessing the associations between short-term exposure to air pollution and unprovoked seizures. Seventeen studies were included, 16 assessing the association of air pollution with seizures and one with epilepsy. Eight studies were pooled quantitatively. Ozone (O3; RR = .99, 95% confidence interval [CI] = .99-.99) and nitrogen dioxide (NO2) exposure adjusted for particulate matter (RR = 1.02, 95% CI = 1.01-1.02) on the same day, and carbon monoxide (CO) exposure 2 days prior (RR = 1.12, 95% CI = 1.02-1.22), were associated with seizure risk. A single study of air pollution and epilepsy did not report a significant association. The risk of bias and heterogeneity across studies was moderate or high. Short-term exposure to O3, NO2, and CO may affect the risk of seizures; however, the effect estimates for O3 and NO2 were minimal. Additional research should continue to explore these and the associations between outdoor air pollution and epilepsy and between noise pollution and seizures and epilepsy.
Collapse
Affiliation(s)
- Tresah C Antaya
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Neuroepidemiology Research Unit, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Poul H Espino-Alvarado
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Tor Oiamo
- Department of Geography and Environmental Studies, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Piotr Wilk
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Kathy N Speechley
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Paediatrics, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Neuroepidemiology Research Unit, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Jin T, Pang Q, Huang W, Xing D, He Z, Cao Z, Zhang T. Particulate matter 2.5 causally increased genetic risk of autism spectrum disorder. BMC Psychiatry 2024; 24:129. [PMID: 38365642 PMCID: PMC10870670 DOI: 10.1186/s12888-024-05564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Growing evidence suggested that particulate matter (PM) exhibit an increased risk of autism spectrum disorder (ASD). However, the causal association between PM and ASD risk remains unclear. METHODS We performed two-sample Mendelian randomization (MR) analyses, using instrumental variables (IVs) sourced from the largest genome-wide association studies (GWAS) databases. We employed three MR methods: inverse-variance weighted (IVW), weighted median (WM), and MR-Egger, with IVW method serving as our primary MR method. Sensitivity analyses were performed to ensure the stability of these findings. RESULTS The MR results suggested that PM2.5 increased the genetic risk of ASD (β = 2.41, OR = 11.13, 95% CI: 2.54-48.76, P < 0.01), and similar result was found for PM2.5 absorbance (β = 1.54, OR = 4.67, 95% CI: 1.21-18.01, P = 0.03). However, no such association was found in PM10 (β = 0.27, OR = 1.30, 95% CI: 0.72-2.36, P = 0.38). After adjusting for the false discovery rate (FDR) correction, our MR results remain consistent. Sensitivity analyses did not find significant heterogeneity or horizontal pleiotropy. CONCLUSIONS Our findings indicate that PM2.5 is a potential risk factor for ASD. Effective strategies to mitigate air pollutants might lead to a reduced incidence of ASD.
Collapse
Affiliation(s)
- Tianyu Jin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurological rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Qiongyi Pang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurological rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Wei Huang
- Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
- Department of Medicine and Health, University of Sydney, Sydney, Australia
| | - Dalin Xing
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurological rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Zitian He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurological rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Zheng Cao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tong Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Neurological rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China.
| |
Collapse
|