1
|
Kim H, Massett MP. Effect of Spermidine on Endothelial Function in Systemic Lupus Erythematosus Mice. Int J Mol Sci 2024; 25:9920. [PMID: 39337408 PMCID: PMC11432455 DOI: 10.3390/ijms25189920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1-parkin pathway and counters age-associated endothelial dysfunction. However, the effect of spermidine on mitophagy and vascular function in SLE has not been explored. To address this gap, 9-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned to spermidine treatment (lpr_Spermidine and MpJ_Spermidine) for 8 weeks or as control (lpr_Control and MpJ_Control). lpr_Control mice exhibited impaired endothelial function (e.g., decreased relaxation to acetylcholine), increased markers of inflammation, and lower protein content of parkin, a mitophagy marker, in the thoracic aorta. Spermidine treatment prevented endothelial dysfunction in MRL-lpr mice. Furthermore, aortas from lpr_Spermidine mice had lower levels of inflammatory markers and higher levels of parkin. Lupus phenotypes were not affected by spermidine. Collectively, these results demonstrate the beneficial effects of spermidine treatment on endothelial function, inflammation, and mitophagy in SLE mice. These results support future studies of the beneficial effects of spermidine on endothelial dysfunction and cardiovascular disease risk in SLE.
Collapse
Affiliation(s)
| | - Michael P. Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
3
|
Zahedi K, Barone S, Brooks M, Stewart TM, Foley JR, Nwafor A, Casero RA, Soleimani M. Polyamine Catabolism and Its Role in Renal Injury and Fibrosis in Mice Subjected to Repeated Low-Dose Cisplatin Treatment. Biomedicines 2024; 12:640. [PMID: 38540254 PMCID: PMC10968664 DOI: 10.3390/biomedicines12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 11/03/2024] Open
Abstract
Cisplatin, a chemotherapeutic agent, can cause nephrotoxic and ototoxic injuries. Using a mouse model of repeated low dose cisplatin (RLDC), we compared the kidneys of cisplatin- and vehicle-treated mice on days 3 (early injury phase) and 35 (late injury/recovery phase) after the final treatment. RNA-seq analyses revealed increases in the expression of markers of kidney injury (e.g., lipocalin 2 and kidney injury molecule 1) and fibrosis (e.g., collagen 1, fibronectin, and vimentin 1) in RLDC mice. In addition, we observed increased expression of polyamine catabolic enzymes (spermidine/spermine N1-acetyltransferase, Sat1, and spermine oxidase, Smox) and decreased expression of ornithine decarboxylase (Odc1), a rate-limiting enzyme in polyamine synthesis in mice subjected to RLDC. Upon confirmation of the RNA-seq results, we tested the hypothesis that enhanced polyamine catabolism contributes to the onset of renal injury and development of fibrosis. To test our hypothesis, we compared the severity of RLDC-induced renal injury and fibrosis in wildtype (WT), Sat1-KO, and Smox-KO mice. Our results suggest that the ablation of polyamine catabolic enzymes reduces the severity of renal injury and that modulation of the activity of these enzymes may protect against kidney damage and fibrosis caused by cisplatin treatment.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| | - Sharon Barone
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| | - Marybeth Brooks
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jackson R. Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ashley Nwafor
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Manoocher Soleimani
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Research Services, New Mexico Veterans Health Care Center, Albuquerque, NM 87108, USA
| |
Collapse
|
4
|
Soda K. Changes in Whole Blood Polyamine Levels and Their Background in Age-Related Diseases and Healthy Longevity. Biomedicines 2023; 11:2827. [PMID: 37893199 PMCID: PMC10604715 DOI: 10.3390/biomedicines11102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The relationship between polyamines and healthy longevity has received much attention in recent years. However, conducting research without understanding the properties of polyamines can lead to unexpected pitfalls. The most fundamental consideration in conducting polyamine studies is that bovine serum used for cell culture contains bovine serum amine oxidase. Bovine serum amine oxidase, which is not inactivated by heat treatment, breaks down spermine and spermidine to produce the highly toxic aldehyde acrolein, which causes cell damage and activates autophagy. However, no such enzyme activity has been found in humans. Polyamine catabolism does not produce toxic aldehydes under normal conditions, but inflammation and some pathogens provoke an inducible enzyme, spermine oxidase, which only breaks down spermine to produce acrolein, resulting in cytotoxicity and the activation of autophagy. Therefore, spermine oxidase activation reduces spermine concentration and the ratio of spermine to spermidine, a feature recently reported in patients with age-related diseases. Spermine, which is increased by a long-term, continuous high polyamine diet, suppresses aberrant gene methylation and the pro-inflammatory status that progress with age and are strongly associated with the development of several age-related diseases and senescence. Changes in spermine concentration and the spermine/spermidine ratio should be considered as indicators of human health status.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan;
- Saitama Ken-o Hospital, Saitama 363-0008, Japan
| |
Collapse
|
5
|
Sánchez M, Suárez L, Banda G, Barreiro-Alonso E, Rodríguez-Uña I, Rubín JM, Cantabrana B. Age-associated polyamines in peripheral blood cells and plasma in 20 to 70 years of age subjects. Amino Acids 2023:10.1007/s00726-023-03269-2. [PMID: 37310532 DOI: 10.1007/s00726-023-03269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/14/2023] [Indexed: 06/14/2023]
Abstract
Dietary polyamines have been associated with slowing ageing processes and various pathologies, raising the importance of establishing reference values at different ages throughout life. This study aimed to analyse age-dependent variations in polyamine content using peripheral blood cells and plasma in a healthy and homogeneous population. Peripheral blood of 193 volunteers of both sexes (20-70 years), selected by convenience, was processed to separate cells and plasma. A pre-column derivatization method was used to determine the amines by HPLC (nmol or pmol/mg protein or nmol/ml) to analyse their association with the age (continuous or ordinal in decades) of the subjects. Putrescine and spermine weakly declined significantly in mononuclear cells with age. In erythrocytes and plasma, putrescine showed an evident decrease in the 60-70-year-old group compared to the rest. The ratios between polyamines, mainly in erythrocytes, decreased in the 60-70 years age group and increased the ratio of putrescine in mononuclear cells/erythrocytes. The ratio of putrescine in mononuclear cells/erythrocytes was higher in the 60-70-year-old age group than in the rest. In a sample of subjects (20-29 vs. 60-70 years), whole blood polyamines were not significantly different when differences existed in erythrocytes. Polyamine homeostasis in blood cells and plasma changed with age. Putrescine declined in mononuclear cells and decreased in erythrocytes and plasma in the decade of the 60 s. Further studies should establish an age-dependent phenotype and whether polyamines' supplementation could restore the decreased values and be associated with long-term overall biological benefits.
Collapse
Affiliation(s)
- Manuel Sánchez
- Farmacología, Departamento de Medicina, Facultad de Medicina, Universidad de Oviedo, c/ Julián Clavería 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), c/ Fernando Bongera s/n, Edificio Santiago, Gascón Campus El Cristo B, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain.
| | - Lorena Suárez
- Farmacología, Departamento de Medicina, Facultad de Medicina, Universidad de Oviedo, c/ Julián Clavería 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), c/ Fernando Bongera s/n, Edificio Santiago, Gascón Campus El Cristo B, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
| | - Gabriela Banda
- Farmacología, Departamento de Medicina, Facultad de Medicina, Universidad de Oviedo, c/ Julián Clavería 6, 33006, Oviedo, Spain
| | - Eva Barreiro-Alonso
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), c/ Fernando Bongera s/n, Edificio Santiago, Gascón Campus El Cristo B, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
- Servicio de Digestivo, Hospital Universitario Central de Asturias (HUCA), Av. Roma s/n, 33011, Oviedo, Spain
| | - Ignacio Rodríguez-Uña
- Fundación de Investigación Oftalmológica (FIO), Instituto Universitario Fernández-Vega (IUFV), Universidad de Oviedo, Av. Dres. Fernández-Vega 34, 33012, Oviedo, Spain
| | - José Manuel Rubín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
- Servicio de Cardiología, Hospital Universitario Central de Asturias (HUCA), Av. de Roma s/n, 33011, Oviedo, Spain
| | - Begoña Cantabrana
- Farmacología, Departamento de Medicina, Facultad de Medicina, Universidad de Oviedo, c/ Julián Clavería 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), c/ Fernando Bongera s/n, Edificio Santiago, Gascón Campus El Cristo B, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
| |
Collapse
|
6
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
7
|
Sanayama H, Ito K, Ookawara S, Uemura T, Sakiyama Y, Sugawara H, Tabei K, Igarashi K, Soda K. Whole Blood Spermine/Spermidine Ratio as a New Indicator of Sarcopenia Status in Older Adults. Biomedicines 2023; 11:biomedicines11051403. [PMID: 37239074 DOI: 10.3390/biomedicines11051403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Early diagnosis and therapeutic intervention improve the quality of life and prognosis of patients with sarcopenia. The natural polyamines spermine and spermidine are involved in many physiological activities. Therefore, we investigated blood polyamine levels as a potential biomarker for sarcopenia. Subjects were Japanese patients >70 years of age who visited outpatient clinics or resided in nursing homes. Sarcopenia was determined based on muscle mass, muscle strength, and physical performance according to the criteria of the Asian Working Group for Sarcopenia (2019). The analysis included 182 patients (male: 38%, age: 83 [76-90] years). Spermidine levels were higher (p = 0.002) and the spermine/spermidine ratio was lower (p < 0.001) in the sarcopenia group than in the non-sarcopenia group. Polyamine concentration analysis showed that the odds ratios for age and spermidine changed in parallel with sarcopenia progression, and the odds ratio for the spermine/spermidine ratio changed inversely with the degree of sarcopenia progression. Additionally, when the odds ratio was analyzed with spermine/spermidine instead of polyamine concentrations, only for spermine/spermidine, the odds ratio values varied in parallel with the progression of sarcopenia. Based on the present data, we believe that the blood spermine/spermidine ratio may be a diagnostic indicator of risk for sarcopenia.
Collapse
Affiliation(s)
- Hidenori Sanayama
- Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Takeshi Uemura
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Josai University, Saitama 330-0295, Japan
| | - Yoshio Sakiyama
- Division of Neurology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hitoshi Sugawara
- Division of General Medicine, Department of Comprehensive Medicine 1, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kaoru Tabei
- Department of Internal Medicine, Minamiuonuma City Hospital, Niigata 949-6680, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba 260-0856, Japan
| | - Kuniyasu Soda
- Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
- Saitama Ken-o Hospital, Saitama 363-0008, Japan
| |
Collapse
|
8
|
Senekowitsch S, Wietkamp E, Grimm M, Schmelter F, Schick P, Kordowski A, Sina C, Otzen H, Weitschies W, Smollich M. High-Dose Spermidine Supplementation Does Not Increase Spermidine Levels in Blood Plasma and Saliva of Healthy Adults: A Randomized Placebo-Controlled Pharmacokinetic and Metabolomic Study. Nutrients 2023; 15:nu15081852. [PMID: 37111071 PMCID: PMC10143675 DOI: 10.3390/nu15081852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Spermidine is a biogenic polyamine that plays a crucial role in mammalian metabolism. As spermidine levels decline with age, spermidine supplementation is suggested to prevent or delay age-related diseases. However, valid pharmacokinetic data regarding spermidine remains lacking. Therefore, for the first time, the present study investigated the pharmacokinetics of oral spermidine supplementation. (2) Methods: This study was designed as a randomized, placebo-controlled, triple-blinded, two-armed crossover trial with two 5-day intervention phases separated by a washout phase of 9 days. In 12 healthy volunteers, 15 mg/d of spermidine was administered orally, and blood and saliva samples were taken. Spermidine, spermine, and putrescine were quantified by liquid chromatography-mass spectrometry (LC-MS/MS). The plasma metabolome was investigated using nuclear magnetic resonance (NMR) metabolomics. (3) Results: Compared with a placebo, spermidine supplementation significantly increased spermine levels in the plasma, but it did not affect spermidine or putrescine levels. No effect on salivary polyamine concentrations was observed. (4) Conclusions: This study's results suggest that dietary spermidine is presystemically converted into spermine, which then enters systemic circulation. Presumably, the in vitro and clinical effects of spermidine are at least in part attributable to its metabolite, spermine. It is rather unlikely that spermidine supplements with doses <15 mg/d exert any short-term effects.
Collapse
Affiliation(s)
- Stefan Senekowitsch
- Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Eliza Wietkamp
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Franziska Schmelter
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Anna Kordowski
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
| | - Hans Otzen
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, 17489 Greifswald, Germany
| | - Martin Smollich
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
9
|
Positive Correlation between Relative Concentration of Spermine to Spermidine in Whole Blood and Skeletal Muscle Mass Index: A Possible Indicator of Sarcopenia and Prognosis of Hemodialysis Patients. Biomedicines 2023; 11:biomedicines11030746. [PMID: 36979725 PMCID: PMC10045508 DOI: 10.3390/biomedicines11030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Several mechanisms strictly regulate polyamine concentration, and blood polyamines are excreted in urine. This indicates polyamine accumulation in renal dysfunction, and studies have shown increased blood polyamine concentrations in patients with renal failure. Hemodialysis (HD) may compensate for polyamine excretion; however, little is known about polyamine excretion. We measured whole-blood polyamine levels in patients on HD and examined the relationship between polyamine concentrations and indicators associated with health status. Study participants were 59 hemodialysis patients (median age: 70.0 years) at Minami-Uonuma City Hospital and 26 healthy volunteers (median age: 44.5 years). Whole-blood spermidine levels were higher and spermine/spermidine ratio (SPM/SPD) was lower in hemodialysis patients. Hemodialysis showed SPD efflux into the dialysate; however, blood polyamine levels were not altered by hemodialysis and appeared to be minimally excreted. The skeletal muscle mass index (SMI), which was positively correlated with hand grip strength and serum albumin level, was positively correlated with SPM/SPD. Given that sarcopenia and low serum albumin levels are reported risk factors for poor prognosis in HD patients, whole blood SPM/SPD in hemodialysis patients may be a new indicator of the prognosis and health status of HD patients.
Collapse
|
10
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Isaac-Lam MF, DeMichael KM. Calorie restriction and breast cancer treatment: a mini-review. J Mol Med (Berl) 2022; 100:1095-1109. [PMID: 35760911 DOI: 10.1007/s00109-022-02226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Calorie restriction (CR), referred to as a reduction in dietary calorie intake without malnutrition, has been demonstrated to be a safe way to extend longevity of yeast, worms, and laboratory animals, and to decrease the risk factors in age-related diseases including cancer in humans. Pre-clinical studies in animal models demonstrated that CR may enhance the efficacy of chemotherapy, radiation therapy, and immunotherapy during breast cancer treatment. Reduced calorie intake ameliorates risk factors and delays the onset of cancer by altering metabolism and fostering health-enhancing characteristics including increased autophagy and insulin sensitivity, and decreased blood glucose levels, inflammation, angiogenesis, and growth factor signaling. CR is not a common protocol implemented by medical practitioners to the general public due to the lack of substantial clinical studies. Future research and clinical trials are urgently needed to understand fully the biochemical basis of CR or CR mimetics to support its benefits. Here, we present a mini-review of research studies integrating CR as an adjuvant to chemotherapy, radiation therapy, or immunotherapy during breast cancer treatment.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA.
| | - Kelly M DeMichael
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA
| |
Collapse
|
12
|
Schwarz C, Benson GS, Horn N, Wurdack K, Grittner U, Schilling R, Märschenz S, Köbe T, Hofer SJ, Magnes C, Stekovic S, Eisenberg T, Sigrist SJ, Schmitz D, Wirth M, Madeo F, Flöel A. Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults With Subjective Cognitive Decline: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2213875. [PMID: 35616942 PMCID: PMC9136623 DOI: 10.1001/jamanetworkopen.2022.13875] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Importance Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration ClinicalTrials.gov Identifier: NCT03094546.
Collapse
Affiliation(s)
- Claudia Schwarz
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gloria S. Benson
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nora Horn
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Wurdack
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Ralph Schilling
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Märschenz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theresa Köbe
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH–Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Stephan J. Sigrist
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miranka Wirth
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Agnes Flöel
- German Center for Neurodegenerative Diseases, Greifswald, Germany
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Zheng R, Kong M, Wang S, He B, Xie X. Spermine alleviates experimental autoimmune encephalomyelitis via regulating T cell activation and differentiation. Int Immunopharmacol 2022; 107:108702. [PMID: 35305382 DOI: 10.1016/j.intimp.2022.108702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease which causes demyelination, axonal damage and even disability. Th1 and Th17 cells, more precisely, the IFNγ/IL17a double producing CD4+ T cells, have been known to play critical roles in the pathogenesis of MS and EAE, a mouse model of MS. Polyamines not only regulate the immune system, but also are essential for the normal function of the central nervous system (CNS). In this study, we demonstrate that the supplementation of spermine (SPM), a biogenic polyamine, significantly suppresses EAE progression in both preventative and therapeutic ways. Further study suggests that spermine significantly reduces IFNγ+/IL17a-, IFNγ-/IL17a+ and IFNγ+/IL17a+ cells in periphery, and thus reducing the infiltration of these pathogenic cells into the CNS. In vitro, spermine has been shown to suppress the activation and proliferation of CD4+ T cells and also significantly impede the polarization of T effector cells in a dose-dependent manner, accompanied by the inhibition of ERK phosphorylation. Consistently, a number of MEK/ERK inhibitors (including PD0325901, FR180204 and selumetinib) have been found to mimic the effects of spermine in inhibiting CD4+ T cell activation and T effector cell differentiation. Collectively, spermine alleviates EAE progression by inhibiting CD4+ T cells activation and T effector cell differentiation in a MAPK/ERK-dependent manner, suggesting this pathway might be a target to develop effective therapies for MS.
Collapse
Affiliation(s)
- Ruting Zheng
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Miaomiao Kong
- Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Siwei Wang
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bingqing He
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
14
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
15
|
Voglhuber J, Ljubojevic-Holzer S, Abdellatif M, Sedej S. Targeting Cardiovascular Risk Factors Through Dietary Adaptations and Caloric Restriction Mimetics. Front Nutr 2021; 8:758058. [PMID: 34660673 PMCID: PMC8514725 DOI: 10.3389/fnut.2021.758058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The average human life expectancy continues to rise globally and so does the prevalence and absolute burden of cardiovascular disease. Dietary restriction promotes longevity and improves various cardiovascular risk factors, including hypertension, obesity, diabetes mellitus, and metabolic syndrome. However, low adherence to caloric restriction renders this stringent dietary intervention challenging to adopt as a standard practice for cardiovascular disease prevention. Hence, alternative eating patterns and strategies that recapitulate the salutary benefits of caloric restriction are under intense investigation. Here, we first provide an overview of alternative interventions, including intermittent fasting, alternate-day fasting and the Mediterranean diet, along with their cardiometabolic effects in animal models and humans. We then present emerging pharmacological alternatives, including spermidine, NAD+ precursors, resveratrol, and metformin, as promising caloric restriction mimetics, and briefly touch on the mechanisms underpinning their cardiometabolic and health-promoting effects. We conclude that implementation of feasible dietary approaches holds the promise to attenuate the burden of cardiovascular disease and facilitate healthy aging in humans.
Collapse
Affiliation(s)
- Julia Voglhuber
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par La Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institute Universitaire de France, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
16
|
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front Nutr 2021; 8:717343. [PMID: 34552954 PMCID: PMC8450594 DOI: 10.3389/fnut.2021.717343] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
The human diet and dietary patterns are closely linked to the health status. High-calorie Western-style diets have increasingly come under scrutiny as their caloric load and composition contribute to the development of non-communicable diseases, such as diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-reduced and health-promoting diets have shown promising results in maintaining health and reducing disease burden throughout aging. More recently, pharmacological Caloric Restriction Mimetics (CRMs) have gained interest of the public and scientific community as promising candidates that mimic some of the myriad of effects induced by caloric restriction. Importantly, many of the CRM candidates activate autophagy, prolong life- and healthspan in model organisms and ameliorate diverse disease symptoms without the need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine), hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g., resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify as CRM candidates, which are naturally available via foods and beverages. However, it is yet unclear how these bioactive substances contribute to the benefits of healthy diets. In this review, we thus discuss dietary sources, availability and intake levels of dietary CRMs. Finally, since translational research on CRMs has entered the clinical stage, we provide a summary of their effects in clinical trials.
Collapse
Affiliation(s)
- Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
17
|
Occurrence of Polyamines in Foods and the Influence of Cooking Processes. Foods 2021; 10:foods10081752. [PMID: 34441529 PMCID: PMC8392025 DOI: 10.3390/foods10081752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary polyamines are involved in different aspects of human health and play an important role in the prevention of certain chronic conditions such as cardiovascular diseases and diabetes. Different polyamines can be found in all foods in variable amounts. Moreover, several culinary practices have been reported to modify the content and profile of these bioactive compounds in food although experimental data are still scarce and even contradictory. Therefore, the aim of this study was to evaluate the occurrence of polyamines in a large range of foods and to assess the effect of different cooking processes on the polyamine content of a few of them. The highest level of polyamines was found in wheat germ (440.6 mg/kg). Among foods of a plant origin, high levels of total polyamines over 90 mg/kg were determined in mushrooms, green peppers, peas, citrus fruit, broad beans and tempeh with spermidine being predominant (ranging from 54 to 109 mg/kg). In foods of an animal origin, the highest levels of polyamines, above all putrescine (42-130 mg/kg), were found in raw milk, hard and blue cheeses and in dry-fermented sausages. Regarding the influence of different domestic cooking processes, polyamine levels in food were reduced by up to 64% by boiling and grilling but remained practically unmodified by microwave and sous-vide cooking.
Collapse
|