1
|
Hasegawa T, Shibayama S, Osumi Y, Sentsui H, Kato M. Quantitative performance of digital ELISA for the highly sensitive quantification of viral proteins and influenza virus. Anal Bioanal Chem 2023; 415:1897-1904. [PMID: 36820912 DOI: 10.1007/s00216-023-04600-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
A single-molecule assay (SiMoA) using a digital enzyme-linked immunosorbent assay (ELISA) has been attracting attention as a promising method that can detect viruses with ultra-high sensitivity. However, the quantitative application of digital ELISA has not been adequately reported. Therefore, in this study, we first evaluated the linearity and sensitivity of digital ELISA using a Certified Reference Material of C-reactive protein (NMIJ CRM 6201-c) as a quality control material. Next, we originally screened those antibody pair that are suitable for detecting recombinant viral proteins of influenza A virus, nucleoprotein (NP), and hemagglutinin (HA), and established the measurement system. Under optimized conditions, the limit of detection (LOD) of NP and HA was 0.59 fM and 0.99 fM, and the coefficient of determination, R2, was 0.9998 and 0.9979, respectively. Two subtypes of influenza virus, A/Puerto Rico/8/1934 (H1N1) [PR8] and A/Panama/2007/99 (H3N2) [Pan99], were also quantified under established conditions, and the LOD of PR8 was 3.1 × 102 PFU/mL on targeting NP and 7.4 × 102 PFU/mL on targeting HA. The LOD of Pan99 was 5.3 × 102 PFU/mL on targeting NP. The specificity and robustness of the recombinant viral protein and influenza virus measurements using digital ELISA were also evaluated. Our measurement system showed enough specificity to discriminate the viral subtypes properly and showed sufficient inter- and intra-assay variations for both measurements of recombinant viral proteins and viruses, except for NP-targeting virus measurement.
Collapse
Affiliation(s)
- Takema Hasegawa
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Sachie Shibayama
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yukiko Osumi
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroshi Sentsui
- Sensing System Research Center (SSRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Megumi Kato
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Hu D, Wang T, Uddin J, Greene WK, Hu D, Ma B. Development of a high-sensitivity and short-duration fluorescence in situ hybridization method for viral mRNA detection in HEK 293T cells. Front Cell Infect Microbiol 2022; 12:960938. [PMID: 36268226 PMCID: PMC9577401 DOI: 10.3389/fcimb.2022.960938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an extremely contagious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early disease recognition of COVID-19 is crucial not only for prompt diagnosis and treatment of the patients, but also for effective public health surveillance and response. The reverse transcription-polymerase chain reaction (RT-PCR) is the most common method for the detection of SARS-CoV-2 viral mRNA and is regarded as the gold standard test for COVID-19. However, this test and those for antibodies (IgM and IgG) and antigens have certain limitations (e.g., by yielding false-negative and false-positive results). We have developed an RNA fluorescence in situ hybridization (FISH) method for high-sensitivity detection of SARS-CoV-2 mRNAs in HEK 293T cell cultures as a model. After transfection of HEK 293T cells with plasmids, Spike (S)/envelope (E) proteins and their mRNAs were clearly detected inside the cells. In addition, hybridization time could be reduced to 2 hours for faster detection when probe concentration was increased. Our approach might thus significantly improve the sensitivity and specificity of SARS-CoV-2 detection and be widely applied for the high-sensitivity single-molecular detection of other RNA viruses (e.g., Middle East respiratory syndrome coronavirus (MERS-CoV), Hepatitis A virus, all influenza viruses, and human immunodeficiency virus (HIV)) in various types of samples including tissue, body fluid, blood, and water. RNA FISH can also be utilized for the detection of DNA viruses (e.g., Monkeypox virus, human papillomavirus (HPV), and cytomegalovirus (CMV)) by detection of their mRNAs inside cells or body fluid.
Collapse
Affiliation(s)
- Dailun Hu
- Clinical College, Hebei Medical University, Shijiazhuang, China
| | - Tao Wang
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Jasim Uddin
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Dakang Hu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
- *Correspondence: Dakang Hu, ; Bin Ma,
| | - Bin Ma
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- *Correspondence: Dakang Hu, ; Bin Ma,
| |
Collapse
|
3
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Savvateeva E, Filippova M, Valuev-Elliston V, Nuralieva N, Yukina M, Troshina E, Baklaushev V, Ivanov A, Gryadunov D. Microarray-Based Detection of Antibodies against SARS-CoV-2 Proteins, Common Respiratory Viruses and Type I Interferons. Viruses 2021; 13:2553. [PMID: 34960822 PMCID: PMC8705234 DOI: 10.3390/v13122553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
A microarray-based assay to detect IgG and IgM antibodies against betacoronaviruses (SARS-CoV-2, SARS, MERS, OC43, and HKU1), other respiratory viruses and type I interferons (IFN-Is) was developed. This multiplex assay was applied to track antibody cross-reactivity due to previous contact with similar viruses and to identify antibodies against IFN-Is as the markers for severe COVID-19. In total, 278 serum samples from convalescent plasma donors, COVID-19 patients in the intensive care unit (ICU) and patients who recovered from mild/moderate COVID-19, vaccine recipients, prepandemic and pandemic patients with autoimmune endocrine disorders, and a heterogeneous prepandemic cohort including healthy individuals and chronically ill patients were analyzed. The anti-SARS-CoV-2 microarray results agreed well with the ELISA results. Regarding ICU patients, autoantibodies against IFN-Is were detected in 10.5% of samples, and 10.5% of samples were found to simultaneously contain IgM antibodies against more than two different viruses. Cross-reactivity between IgG against the SARS-CoV-2 nucleocapsid and IgG against the OC43 and HKU1 spike proteins was observed, resulting in positive signals for the SARS-CoV-2 nucleocapsid in prepandemic samples from patients with autoimmune endocrine disorders. The presence of IgG against the SARS-CoV-2 nucleocapsid in the absence of IgG against the SARS-CoV-2 spike RBD should be interpreted with caution.
Collapse
Affiliation(s)
- Elena Savvateeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.F.); (V.V.-E.); (A.I.); (D.G.)
| | - Marina Filippova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.F.); (V.V.-E.); (A.I.); (D.G.)
| | - Vladimir Valuev-Elliston
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.F.); (V.V.-E.); (A.I.); (D.G.)
| | - Nurana Nuralieva
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (N.N.); (M.Y.); (E.T.)
| | - Marina Yukina
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (N.N.); (M.Y.); (E.T.)
| | - Ekaterina Troshina
- Endocrinology Research Centre, Ministry of Health of Russia, 117036 Moscow, Russia; (N.N.); (M.Y.); (E.T.)
| | - Vladimir Baklaushev
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia;
| | - Alexander Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.F.); (V.V.-E.); (A.I.); (D.G.)
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.F.); (V.V.-E.); (A.I.); (D.G.)
| |
Collapse
|
5
|
Ultra-Fast Electrochemical Sensor for Point-of-Care COVID-19 Diagnosis Using Non-Invasive Saliva Sampling. Processes (Basel) 2021. [DOI: 10.3390/pr9071236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Point-of-care diagnostic devices that are rapid and reliable remain as an unmet need highlighted by the coronavirus disease (COVID-19) pandemic crisis. The second/third wave of virus spread in various parts of the world combined with new evidence of re-infections and inadequate healthcare facilities demand increased testing rate to diagnose COVID-19 at its core. Although traditional molecular diagnostic tests have served this purpose, there have been shortage of reagents and other supplies at pandemic frontlines. This calls for novel alternate diagnostic processes with potential for obtaining emergency use authorization and that can be deployed in the field at the earliest opportunity. Here, we show an ultra-fast SARS-CoV-2 detection sensor for detecting coronavirus proteins in saliva within 100 milliseconds. Electrochemical oxidation of nickel hydroxide has been controlled using cyclic voltammetry and chronoamperometry techniques for successful detection of SARS-CoV-2. Test results have proven the capability of sensors to quantitatively detect the concentration of virus in blinded analyses. The detection occurs by a process similar to that of SARS-CoV-2 binding onto host cells. The sensor also shows prospects in distinguishing SARS-CoV-2 from other viruses such as HIV. More importantly, the sensor matches the detection limit of the gold standard test for diagnosing early infection. The use of saliva as a non-invasive sampling technique combined with the portability of the instrument has broadened the potential of this sensor.
Collapse
|