1
|
Acarer Arat S, Pir İ, Tüfekci M, Öz N, Tüfekci N. Effect of Promising Sustainable Nano-Reinforcements on Polysulfone/Polyvinylpyrrolidone-Based Membranes: Enhancing Mechanical Properties and Water Filtration Performance. Polymers (Basel) 2024; 16:3531. [PMID: 39771386 PMCID: PMC11678235 DOI: 10.3390/polym16243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated. Distilled water and surface water (lake water) fluxes of the membranes were determined at 3 bar using a dead-end filtration system. The distilled water flux of the fouled-hydraulic cleaned membranes was determined, and scanning electron microscopy (SEM) images of the fouled-cleaned membranes were examined. The flux recovery ratio (FRR) and fouling parameters were calculated to examine the fouling behaviour of the membranes. The mechanical properties of the membranes were modelled by the Mori-Tanaka, finite element, Voigt-Reuss, self-consistent scheme, and Halpin-Tsai methods using Digimat and/or analytically. In addition, the von Mises equivalent stress distributions of the nanocomposites were presented. Among the investigated membranes, PSf/PVP/CNC-0.5 had the highest distilled water flux (475.5 ± 17.77 L/m2.h), PSf/PVP/CNF-1 exhibited the stiffest behaviour with an elasticity modulus of 70.63 ± 3.15 MPa, and PSf/PVP/CNC-1 had the best organic matter removal efficiency. The finite element was the most successful modelling method for estimating the mechanical properties of nanocellulose-reinforced flat sheet membranes.
Collapse
Affiliation(s)
- Seren Acarer Arat
- Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey;
| | - İnci Pir
- Faculty of Mechanical Engineering, Istanbul Technical University, Gumussuyu, Istanbul 34437, Turkey;
| | - Mertol Tüfekci
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK;
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Nurtaç Öz
- Environmental Engineering Department, Engineering Faculty, Sakarya University, Esentepe Campus, Sakarya 54050, Turkey
| | - Neşe Tüfekci
- Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey;
| |
Collapse
|
2
|
Vasco G, Arima V, Boudjelida S, Carraro M, Bianco M, Zizzari A, Perrone E, Galiano F, Figoli A, Cesaria M. Polymeric Membranes Doped with Halloysite Nanotubes Imaged using Proton Microbeam Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2970. [PMID: 37999324 PMCID: PMC10674683 DOI: 10.3390/nano13222970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Polymeric membranes are useful tools for water filtration processes, with their performance strongly dependent on the presence of hydrophilic dopants. In this study, polyaniline (PANI)-capped aluminosilicate (halloysite) nanotubes (HNTs) are dispersed into polyether sulfone (PES), with concentrations ranging from 0.5 to 1.5 wt%, to modify the properties of the PES membrane. Both undoped and HNT-doped PES membranes are investigated in terms of wettability (static and time-dependent contact angle), permeance, mechanical resistance, and morphology (using scanning electron microscopy (SEM)). The higher water permeance observed for the PES membranes incorporating PANI-capped HNTs is, finally, assessed and discussed vis-à-vis the real distribution of HNTs. Indeed, the imaging and characterization in terms of composition, spatial arrangement, and counting of HNTs embedded within the polymeric matrix are demonstrated using non-destructive Micro Particle Induced X-ray Emission (µ-PIXE) and Scanning Transmission Ion Microscopy (STIM) techniques. This approach not only exhibits the unique ability to detect/highlight the distribution of HNTs incorporated throughout the whole thickness of polymer membranes and provide volumetric morphological information consistent with SEM imaging, but also overcomes the limits of the most common analytical techniques exploiting electron probes. These aspects are comprehensively discussed in terms of practical analysis advantages.
Collapse
Affiliation(s)
- Giovanna Vasco
- CEDAD—Center of Applied Physics, Dating and Diagnostics, Cittadella della Ricerca, University of Salento, SS. 7, Km. 7300, 72100 Brindisi, Italy;
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Soufiane Boudjelida
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Department of Material Sciences, University Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj 34030, Algeria
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Institute on Membrane Technology (CNR-ITM), University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Monica Bianco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Alessandra Zizzari
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Elisabetta Perrone
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Francesco Galiano
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Maura Cesaria
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
3
|
Acarer S, Pir İ, Tüfekci M, Erkoç T, Güneş Durak S, Öztekin V, Türkoǧlu Demirkol G, Özçoban MŞ, Temelli Çoban TY, Ćavuş S, Tüfekci N. Halloysite Nanotube-Enhanced Polyacrylonitrile Ultrafiltration Membranes: Fabrication, Characterization, and Performance Evaluation. ACS OMEGA 2023; 8:34729-34745. [PMID: 37779974 PMCID: PMC10536855 DOI: 10.1021/acsomega.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
This research focuses on the production and characterization of pristine polyacrylonitrile (PAN) as well as halloysite nanotube (HNT)-doped PAN ultrafiltration (UF) membranes via the phase inversion technique. Membranes containing 0.1, 0.5, and 1% wt HNT in 16% wt PAN are fabricated, and their chemical compositions are examined using Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) is utilized to characterize the membranes' surface and cross-sectional morphologies. Atomic force microscopy (AFM) is employed to assess the roughness of the PAN/HNT membrane. Thermal characterization is conducted using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA), while contact angle and water content measurements reveal the hydrophilic/hydrophobic properties. The pure water flux (PWF) performance of the porous UF water filtration membranes is evaluated at 3 bar, with porosity and mean pore size calculations. The iron (Fe), manganese (Mn), and total organic carbon (TOC) removal efficiencies of PAN/HNT membranes from dam water are examined, and the surfaces of fouled membranes are investigated by using SEM post-treatment. Mechanical characterization encompasses tensile testing, the Mori-Tanaka homogenization approach, and finite element analysis. The findings offer valuable insights into the impact of HNT doping on PAN membrane characteristics and performance, which will inform future membrane development initiatives.
Collapse
Affiliation(s)
- Seren Acarer
- Faculty
of Engineering, Department of Environmental Engineering, Istanbul University-Cerrahpasa, 34320 Istanbul, Avcilar, Turkey
| | - İnci Pir
- Faculty
of Mechanical Engineering, Istanbul Technical
University, Istanbul 34437, Turkey
| | - Mertol Tüfekci
- Department
of Mechanical Engineering, Imperial College
London, South Kensington Campus, Exhibition Road, London SW7 2AZ, U.K.
| | - Tuǧba Erkoç
- Faculty
of Engineering, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, 34320 İstanbul, Avcilar, Turkey
| | - Sevgi Güneş Durak
- Department
of Environmental Engineering, Faculty of Engineering-Architecture, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey
| | - Vehbi Öztekin
- Faculty
of Mechanical Engineering, Istanbul Technical
University, Istanbul 34437, Turkey
| | - Güler Türkoǧlu Demirkol
- Faculty
of Engineering, Department of Environmental Engineering, Istanbul University-Cerrahpasa, 34320 Istanbul, Avcilar, Turkey
| | - Mehmet Şükrü Özçoban
- Faculty of
Civil Engineering, Yıldız Technical
University - Davutpaşa, 34220 Istanbul, Turkey
| | - Tuba Yelda Temelli Çoban
- Faculty
of Engineering, Department of Environmental Engineering, Istanbul University-Cerrahpasa, 34320 Istanbul, Avcilar, Turkey
| | - Selva Ćavuş
- Faculty
of Engineering, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, 34320 İstanbul, Avcilar, Turkey
| | - Neşe Tüfekci
- Faculty
of Engineering, Department of Environmental Engineering, Istanbul University-Cerrahpasa, 34320 Istanbul, Avcilar, Turkey
| |
Collapse
|
4
|
Zahedipoor A, Faramarzi M, Mansourizadeh A, Ghaedi A, Emadzadeh D. Integration of Porous Nanomaterial-Infused Membrane in UF/FO Membrane Hybrid for Simulated Osmosis Membrane Bioreactor (OsMBR) Process. MEMBRANES 2023; 13:577. [PMID: 37367781 DOI: 10.3390/membranes13060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
This study explored the use of a combination of hydrothermal and sol-gel methods to produce porous titanium dioxide (PTi) powder with a high specific surface area of 112.84 m2/g. The PTi powder was utilized as a filler in the fabrication of ultrafiltration nanocomposite membranes using polysulfone (PSf) as the polymer. The synthesized nanoparticles and membranes were analyzed using various techniques, including BET, TEM, XRD, AFM, FESEM, FTIR, and contact angle measurements. The membrane's performance and antifouling properties were also assessed using bovine serum albumin (BSA) as a simulated wastewater feed solution. Furthermore, the ultrafiltration membranes were tested in the forward osmosis (FO) system using a 0.6-weight-percent solution of poly (sodium 4-styrene sulfonate) as the osmosis solution to evaluate the osmosis membrane bioreactor (OsMBR) process. The results revealed that the incorporation of PTi nanoparticles into the polymer matrix enhanced the hydrophilicity and surface energy of the membrane, resulting in better performance. The optimized membrane containing 1% PTi displayed a water flux of 31.5 L/m2h, compared to the neat membrane water value of 13.7 L/m2h. The membrane also demonstrated excellent antifouling properties, with a flux recovery of 96%. These results highlight the potential of the PTi-infused membrane as a simulated osmosis membrane bioreactor (OsMBR) for wastewater treatment applications.
Collapse
Affiliation(s)
- Ahmadreza Zahedipoor
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Mehdi Faramarzi
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Amir Mansourizadeh
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Abdolmohammad Ghaedi
- Department of Chemistry, Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
| | - Daryoush Emadzadeh
- Department of Chemical Engineering, Membrane Science and Technology Research Center (MSTRC), Gachsaran Branch, Islamic Azad University, Gachsaran P.O. Box 75818-63876, Iran
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Geleta TA, Maggay IV, Chang Y, Venault A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. MEMBRANES 2023; 13:58. [PMID: 36676865 PMCID: PMC9864519 DOI: 10.3390/membranes13010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces. A convenient method to prepare antifouling membranes is via physical blending (or simply blending), which is a one-step method that consists of mixing the main matrix polymer and the antifouling material prior to casting and film formation by a phase inversion process. This review focuses on the recent development (past 10 years) of antifouling membranes via this method and uses different phase-inversion processes including liquid-induced phase separation, vapor induced phase separation, and thermally induced phase separation. Antifouling materials used in these recent studies including polymers, metals, ceramics, and carbon-based and porous nanomaterials are also surveyed. Furthermore, the assessment of antifouling properties and performances are extensively summarized. Finally, we conclude this review with a list of technical and scientific challenges that still need to be overcome to improve the functional properties and widen the range of applications of antifouling membranes prepared by blending modification.
Collapse
Affiliation(s)
| | | | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
7
|
Niu X, Chen Y, Hu H. Cross-Linked Networks of 1,6-Hexanedithiol with Gold Nanoparticles to Improve Permeation Flux of Polyethersulfone Membrane. MEMBRANES 2022; 12:1207. [PMID: 36557114 PMCID: PMC9781281 DOI: 10.3390/membranes12121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
It is a great challenge to design and prepare polymeric membranes with excellent permeability and good rejection. In this study, a modifier of gold nanoparticles for crosslinking and self-assembly by 1,6-hexanedithiol is fabricated and used to modify the polyethersulfone membrane as an additive, which forms a uniform porous membrane by liquid-liquid phase conversion technology. The morphology of the membrane is investigated by scanning electron microscopy (SEM), the change of the hydrophilicity of the membrane surface after modification is measured by the contact angle goniometer, and the performance of the fabricated membrane is measured by evaluating the pure water flux and the rejection ratio of bovine serum albumin. The results indicate that the permeability of the modified membrane has a significant improvement. When the mass fraction of the modifying agent is 5 wt%, the water flux of the modified membrane reaches up to 131.6 L m-2 h-1, and has a good rejection ratio to bovine serum albumin. In short, this work plays an important role in improving the flux of the membrane and maintaining good separation performance.
Collapse
Affiliation(s)
- Xiaoqin Niu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China
| | - Yuhong Chen
- School of Science, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haobin Hu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China
| |
Collapse
|
8
|
Butt AS, Qaiser AA, Abid N, Mahmood U. Novel polyaniline-polyethersulfone nanofiltration membranes: effect of in situ polymerization time on structure and desalination performance. RSC Adv 2022; 12:33889-33898. [PMID: 36505678 PMCID: PMC9703125 DOI: 10.1039/d2ra05735b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
In this research, novel polyaniline-layered nanofiltration membranes were prepared by phase inversion of base polyethersulfone (PES) membranes and subsequent in situ solution-phase deposition of polyaniline as a thin surface layer. In these composite membranes, the impact of the polyaniline deposition time on steric hindrance and electrostatic interactions during permeation was elucidated. The chemical structure, thermal stability, and mechanical properties of the PES and PANI-PES membranes were investigated using Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA), respectively. The membranes' porosity and pore size decreased as PANI deposition time increased. As PANI deposition time increased, PANI layered nanofiltration membranes exhibited improved thermal stability but deteriorated mechanical characteristics due to free radical destruction from prolonged exposure to the oxidant. These PANI-PES membranes showed 43% rejection (NaCl) at 1.7 bar coupled with a flux of 11.59 L h-1 m2 that is quite promising when comparing with similar Nanofilteration (NF) membranes in the literature and commercial NF membranes, as well. As the deposited layer, PANI is partially doped; hence, permeation results have been interpreted in terms of steric hindrance and electrostatic repulsion by electrochemical PANI layering.
Collapse
Affiliation(s)
- Ayyaz Shahbaz Butt
- Department of Chemical Engineering, University of Engineering and Technology Pakistan
| | - Asif Ali Qaiser
- Department of Polymer and Process Engineering, University of Engineering and Technology 54890 Lahore Pakistan
| | - Nida Abid
- Department of Polymer and Process Engineering, University of Engineering and Technology 54890 Lahore Pakistan
| | - Umer Mahmood
- Department of Polymer and Process Engineering, University of Engineering and Technology 54890 Lahore Pakistan
| |
Collapse
|
9
|
Alasfar RH, Kochkodan V, Ahzi S, Barth N, Koç M. Preparation and Characterization of Polysulfone Membranes Reinforced with Cellulose Nanofibers. Polymers (Basel) 2022; 14:polym14163317. [PMID: 36015574 PMCID: PMC9416018 DOI: 10.3390/polym14163317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanical properties of polymeric membranes are very important in water treatment applications. In this study, polysulfone (PSF) membranes with different loadings of cellulose nanofibers (CNFs) were prepared via the phase inversion method. CNF was characterized through transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The pore morphology, mechanical properties, membrane performance and hydrophilicity of pure PSF membranes and PSF/CNF membranes were investigated. The changes in membrane pore structure with the addition of different CNF contents were observed using SEM images. It was shown that the calculated membrane pore sizes correlate with the membrane water fluxes. The pure water flux (PWF) of fabricated membranes increased with the addition of CNFs into the PSF matrix. It was shown that the optimal CNF loading of 0.3 wt.% CNF improved both the elastic modulus and yield stress of the PSF/CNF membranes by 34% and 32%, respectively (corresponds to values of 234.5 MPa and 5.03 MPa, respectively). This result indicates a strong interfacial interaction between the PSF matrix and the reinforced nanofibers. The calculated compaction factor (CF) showed that the membrane resistance to compaction could be improved with CNF reinforcement. Compared to pure PSF membrane, the hydrophilicity was significantly enhanced with the incorporation of 0.1 wt.%, 0.2 wt.% and 0.3 wt.% CNF, as shown by the water contact angle (WCA) results. It can be concluded that CNFs are homogeneously dispersed within the PSF matrix at CNF loading less than 0.5 wt.%.
Collapse
Affiliation(s)
- Reema H. Alasfar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
- Correspondence:
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| | - Said Ahzi
- ICUBE Laboratory—CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Nicolas Barth
- Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| | - Muammer Koç
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
| |
Collapse
|
10
|
Maggay IV, Yu ML, Wang DM, Chiang CH, Chang Y, Venault A. Strategy to prepare skin-free and macrovoid-free polysulfone membranes via the NIPS process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Mohamed Haneef INH, Mohd Shaffiar N, Buys YF, Syed Shaharuddin SI, Abdul Hamid AM, Widiyati K. Recent advancement in polymer/halloysite nanotube nanocomposites for biomedical applications. J Biomed Mater Res B Appl Biomater 2022; 110:2574-2588. [PMID: 35661579 DOI: 10.1002/jbm.b.35105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
Halloysite nanotubes (HNTs) have recently been the subject of extensive research as a reinforcing filler. HNT is a natural nanoclay, non-toxic and biocompatible, hence, applicable in biomedical fields. This review focuses on the mechanical, thermal, and functional properties of polymer nanocomposites with HNT as a reinforcing agent from an experimental and theoretical perspective. In addition, this review also highlights the recent applications of polymer/HNT nanocomposites in the biomedical fields.
Collapse
Affiliation(s)
| | - Norhashimah Mohd Shaffiar
- Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Yose Fachmi Buys
- Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia
| | | | - Abdul Malek Abdul Hamid
- Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Khusnun Widiyati
- Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia
| |
Collapse
|
12
|
Alasfar RH, Ahzi S, Barth N, Kochkodan V, Khraisheh M, Koç M. A Review on the Modeling of the Elastic Modulus and Yield Stress of Polymers and Polymer Nanocomposites: Effect of Temperature, Loading Rate and Porosity. Polymers (Basel) 2022; 14:polym14030360. [PMID: 35160350 PMCID: PMC8838186 DOI: 10.3390/polym14030360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Porous polymer-based nanocomposites have been used for various applications due to their advantages, including multi-functionalities, easy and known manufacturability, and low cost. Understanding of their mechanical properties has become essential to expand the nanocomposites’ applications and efficiency, including service-life, resistance to different loads, and reliability. In this review paper, the focus is on the modeling of the mechanical properties of porous polymer-based nanocomposites, including the effects of loading rates, operational temperatures, and the material’s porosity. First, modeling of the elastic modulus and yield stress for glassy polymers and polymer reinforced by nanofillers are addressed. Then, modeling of porosity effects on these properties for polymers are reviewed, especially via the use of the well-known power-law approach linking porosity to elastic modulus and/or stress. Studies related to extending the mechanical modeling to account for porosity effects on the elastic modulus and yield stress of polymers and polymer-nanocomposites are discussed. Finally, a brief review of the implementation of this modeling into 3D computational methods to predict the large elastic-viscoplastic deformation response of glassy polymers is presented. In addition to the modeling part, the experimental techniques to measure the elastic modulus and the yield stress are discussed, and applications of polymers and polymer composites as membranes for water treatment and scaffolds for bone tissue engineering are addressed. Some modeling results and validation from different studies are presented as well.
Collapse
Affiliation(s)
- Reema H. Alasfar
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Doha P.O. Box 34110, Qatar;
- Correspondence:
| | - Said Ahzi
- Mechanical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 34110, Qatar; (S.A.); (M.K.)
| | - Nicolas Barth
- Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha P.O. Box 34110, Qatar; (N.B.); (V.K.)
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad bin Khalifa University, Doha P.O. Box 34110, Qatar; (N.B.); (V.K.)
| | - Marwan Khraisheh
- Mechanical Engineering Program, Texas A&M University at Qatar, Doha P.O. Box 34110, Qatar; (S.A.); (M.K.)
| | - Muammer Koç
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
13
|
Manufacturing and Characterisation of Polymeric Membranes for Water Treatment and Numerical Investigation of Mechanics of Nanocomposite Membranes. Polymers (Basel) 2021; 13:polym13101661. [PMID: 34065285 PMCID: PMC8161102 DOI: 10.3390/polym13101661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) microfiltration membranes containing polyvinylpyrrolidone (PVP) with and without support layers of 130 and 150 μm thickness are manufactured using the phase inversion method and then experimentally characterised. For the characterisation of membranes, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and pore size analysis are performed, the contact angle and water content of membranes are measured and the tensile test is applied to membranes without support layers. Using the results obtained from the tensile tests, the mechanical properties of the halloysite nanotube (HNT) and nano-silicon dioxide (nano SiO2) reinforced nanocomposite membranes are approximately determined by the Mori–Tanaka homogenisation method without applying any further mechanical tests. Then, plain polymeric and PES and PVDF based nanocomposite membranes are modelled using the finite element method to determine the effect of the geometry of the membrane on the mechanical behaviour for fifteen different geometries. The modelled membranes compared in terms of three different criteria: equivalent stress (von Mises), displacement, and in-plane principal strain. Based on the data obtained from the characterisation part of the study and the numerical analysis, the membrane with the best performance is determined. The most appropriate shape and material for a membrane for water treatment is specified as a 1% HNT doped PVDF based elliptical membrane.
Collapse
|
14
|
Clarification Processes of Orange Prickly Pear Juice ( Opuntia spp.) by Microfiltration. MEMBRANES 2021; 11:membranes11050354. [PMID: 34065923 PMCID: PMC8151961 DOI: 10.3390/membranes11050354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
In this study, fresh orange prickly pear juice (Opuntia spp.) was clarified by a cross-flow microfiltration (MF) process on a laboratory scale. The viability of the process-in terms of productivity (permeate flux of 77.80 L/h) and the rejection of selected membranes towards specific compounds-was analyzed. The quality of the clarified juice was also analyzed for total antioxidants (TEAC), betalains content (mg/100 g wet base), turbidity (NTU) and colorimetry parameters (L, a*, b*, Croma and H). The MF process permitted an excellent level of clarification, reducing the suspended solids and turbidity of the fresh juice. In the clarified juice, a decrease in total antioxidants (2.03 TEAC) and betalains content (4.54 mg/100 g wet basis) was observed as compared to the fresh juice. Furthermore, there were significant changes in color properties due to the effects of the L, a*, b*, C and h° values after removal of turbidity of the juice. The turbidity also decreased (from 164.33 to 0.37 NTU).
Collapse
|
15
|
Modification Approaches to Enhance Dehydration Properties of Sodium Alginate-Based Pervaporation Membranes. MEMBRANES 2021; 11:membranes11040255. [PMID: 33916137 PMCID: PMC8066153 DOI: 10.3390/membranes11040255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
Transport characteristics of sodium alginate (SA) membranes cross-linked with CaCl2 and modified with fullerenol and fullerene derivative with L-arginine for pervaporation dehydration were improved applying various approaches, including the selection of a porous substrate for the creation of a thin selective SA-based layer, and the deposition of nano-sized polyelectrolyte (PEL) layers through the use of a layer-by-layer (Lbl) method. The impacts of commercial porous substrates made of polyacrylonitrile (PAN), regenerated cellulose, and aromatic polysulfone amide were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), standard porosimetry method, and water filtration. The effects of PEL combinations (such as poly(sodium 4-styrene sulfonate) (PSS)/SA, PSS/chitosan, PSS/polyacrylic acid, PSS/poly(allylamine hydrochloride)) and the number of PEL bilayers deposited with the Lbl technique on the properties of the SA and SA/fullerene derivative membranes were studied by SEM, AFM, and contact angle measurements. The best characteristics were exhibited by a cross-linked PAN-supported SA/fullerenol (5%) membrane with five PSS/SA bilayers: permeation flux of 0.68–1.38 kg/(m2h), 0.18–1.55 kg/(m2h), and 0.50–1.15 kg/(m2h), and over 99.7, 99.0, and 89.0 wt.% water in the permeate for the pervaporation dehydration of isopropanol (12–70 wt.% water), ethanol (4–70 wt.% water), and tetrahydrofuran (5.7–70 wt.% water), respectively. It was demonstrated that the mutual application of bulk and surface modifications essentially improved the membrane’s characteristics in pervaporation dehydration.
Collapse
|
16
|
AbdulKadir WAFW, Ahmad AL, Boon Seng O. Carnauba Wax/Halloysite Nanotube with Improved Anti-Wetting and Permeability of Hydrophobic PVDF Membrane via DCMD. MEMBRANES 2021; 11:membranes11030228. [PMID: 33807017 PMCID: PMC8005014 DOI: 10.3390/membranes11030228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
The hydrophobic membranes have been widely explored to meet the membrane characteristics for the membrane distillation (MD) process. Inorganic metal oxide nanoparticles have been used to improve the membrane hydrophobicity, but limited studies have used nano clay particles. This study introduces halloysite nanotube (HNT) as an alternative material to synthesis a hydrophobic poly(vinylidene fluoride) (PVDF)-HNT membrane. The PVDF membranes were fabricated using functionalized HNTs (e.g., carnauba wax and 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (FOTS)). The results were determined by Fourier transform infrared-attenuated total reflection, scanning electron microscope, goniometer and porometer to determine the desired hydrophobic membrane for direct contact membrane distillation (DCMD). The addition of FOTS-HNT (fs-HNT) and carnauba wax-HNT (fw-HNT) in the PVDF membrane enhanced the water contact angle (CA) to 127° and 137°, respectively. The presence of fw-HNT in the PVDF membrane exhibited higher liquid entry pressure (LEP) (2.64 bar) compared to fs-HNT in the membrane matrix (1.44 bar). The PVDF/fw-HNT membrane (Pfw-HNT) obtained the highest flux of 7.24 L/m2h with 99.9% salt removal. A stable permeability in the Pfw-HNT membrane was obtained throughout 16 h of DCMD. The incorporation of fw-HNT in the PVDF membrane had improved the anti-wetting properties and the membrane performance with the anti-fouling effect.
Collapse
|
17
|
Tran TTV, Kumar SR, Nguyen CH, Lee JW, Tsai HA, Hsieh CH, Lue SJ. High-permeability graphene oxide and poly(vinyl pyrrolidone) blended poly(vinylidene fluoride) membranes: Roles of additives and their cumulative effects. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Grylewicz A, Mozia S. Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Antunes M, Abbasi H, Velasco JI. The Effect of Microcellular Structure on the Dynamic Mechanical Thermal Properties of High-Performance Nanocomposite Foams Made of Graphene Nanoplatelets-Filled Polysulfone. Polymers (Basel) 2021; 13:437. [PMID: 33573026 PMCID: PMC7866377 DOI: 10.3390/polym13030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022] Open
Abstract
Polysulfone nanocomposite foams containing variable amounts of graphene nanoplatelets (0-10 wt%) were prepared by water vapor-induced phase separation (WVIPS) and supercritical CO2 (scCO2) dissolution. WVIPS foams with two ranges of relative densities were considered, namely, between 0.23 and 0.41 and between 0.34 and 0.46. Foams prepared by scCO2 dissolution (0.0-2.0 wt% GnP) were obtained with a relative density range between 0.35 and 0.45. Although the addition of GnP affected the cellular structure of all foams, they had a bigger influence in WVIPS foams. The storage modulus increased for all foams with increasing relative density and GnP's concentration, except for WVIPS PSU-GnP foams, as they developed open/interconnected cellular structures during foaming. Comparatively, foams prepared by scCO2 dissolution showed higher specific storage moduli than similar WVIPS foams (same relative density and GnP content), explained by the microcellular structure of scCO2 foams. As a result of the plasticizing effect of CO2, PSU foams prepared by scCO2 showed lower glass transition temperatures than WVIPS foams, with the two series of these foams displaying decreasing values with incrementing the amount of GnP.
Collapse
Affiliation(s)
- Marcelo Antunes
- Department of Materials Science and Engineering, Poly2 Group, Technical University of Catalonia (UPC BarcelonaTech), ESEIAAT, C/Colom 11, 08222 Terrassa, Spain; (H.A.); (J.I.V.)
| | | | | |
Collapse
|
20
|
Tüfekci M, Durak SG, Pir İ, Acar TO, Demirkol GT, Tüfekci N. Manufacturing, Characterisation and Mechanical Analysis of Polyacrylonitrile Membranes. Polymers (Basel) 2020; 12:polym12102378. [PMID: 33081085 PMCID: PMC7602745 DOI: 10.3390/polym12102378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
To investigate the effect of polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes polyacrylonitrile (PAN) and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using the finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements with hexagonal and rectangular pore arrays (RE) to understand the impact of porosity on the mechanical properties. Exploring the results, the best geometry is found as the elliptic membrane with the aspect ratio 4 and the better RE as the hexagonal array which can predict the elastic properties with an approximate error of 12%.
Collapse
Affiliation(s)
- Mertol Tüfekci
- Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Correspondence: (M.T.); (N.T.)
| | - Sevgi Güneş Durak
- Department of Environmental Engineering, Faculty of Engineering-Architecture, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey;
| | - İnci Pir
- Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul 34437, Turkey;
| | - Türkan Ormancı Acar
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar Kampusu, Istanbul 34320, Turkey; (T.O.A.); (G.T.D.)
| | - Güler Türkoğlu Demirkol
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar Kampusu, Istanbul 34320, Turkey; (T.O.A.); (G.T.D.)
| | - Neşe Tüfekci
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar Kampusu, Istanbul 34320, Turkey; (T.O.A.); (G.T.D.)
- Correspondence: (M.T.); (N.T.)
| |
Collapse
|
21
|
Zhou JY, Luo ZY, Yin MJ, Wang N, Qin Z, Lee KR, An QF. A comprehensive study on phase inversion behavior of a novel polysulfate membrane for high-performance ultrafiltration applications. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, Alitheen NB. Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. Int J Nanomedicine 2020; 15:2439-2483. [PMID: 32346289 PMCID: PMC7169473 DOI: 10.2147/ijn.s227805] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Many types of research have distinctly addressed the efficacy of natural plant metabolites used for human consumption both in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated for clinical use because of several factors such as inefficient systemic delivery and bioavailability of promising agents that significantly contribute to this disconnection. Over the past decades, extraordinary advances have been made successfully on the development of novel drug delivery systems for encapsulation of plant active metabolites including organic, inorganic and hybrid nanoparticles. The advanced formulas are confirmed to have extraordinary benefits over conventional and previously used systems in the manner of solubility, bioavailability, toxicity, pharmacological activity, stability, distribution, sustained delivery, and both physical and chemical degradation. The current review highlights the development of novel nanocarrier for plant active compounds, their method of preparation, type of active ingredients, and their biomedical applications.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Sulaymaniyah, Republic of Iraq
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nahidah Ibrahim Hammadi
- Department of Histology, College of Veterinary Medicine, University of Al-Anbar, Ramadi, Republic of Iraq
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Kawa Mohammad Amin
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaymaniyah46001, Republic of Iraq
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Kepala Batas13200, Pulau Pinang, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|