1
|
Merlo F, Cabrera-Codony A, Ghiglione R, Speltini A, Fontàs C, Anticò E, Profumo A. Activated char embedded in biodegradable film for antimicrobials removal: Towards sustainable water purification. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137768. [PMID: 40022932 DOI: 10.1016/j.jhazmat.2025.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The development of sustainable materials toward efficient pollutant removal is crucial for water remediation. Following a waste-to-wealth approach, we report a novel preparation of biodegradable film embedded with a biomass-derived activated char and its effective application for the removal of fluoroquinolones from aqueous solutions. The presence of these antimicrobials contributes to the worrying increase of environmental antimicrobial resistance and ecotoxicity since they are emerging and harmful pollutants, and requires effective solution for their removal. The impact of different parameters on the sorptive performance was evaluated (e.g., type of polymeric support and char, amount of char), revealing that the removal process strongly depends on the type and amount of activated char used, whereas the polycaprolactone only acts as a support immobilizing the char and facilitating the sample treatment. By simply suspending the film in the aqueous sample, it is possible to adsorb the target contaminants, with removal efficiency up to 80 % in 240 min and satisfactory cumulative sorption capacity (Q up to 14,000 μg g-1) in competitive conditions. The sorption process obeys second-order kinetics in all the water samples tested (potable water, river water and wastewater). Notably, the film demonstrated continued stable removal capabilities over multiple uses (up to five). This work provides a new strategy for exploring a novel and efficient film for water purification.
Collapse
Affiliation(s)
- Francesca Merlo
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy.
| | - Alba Cabrera-Codony
- LEQUIA Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69, Girona 17003, Spain
| | - Riccardo Ghiglione
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Andrea Speltini
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany, 69, Girona 17003, Spain
| | - Enriqueta Anticò
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany, 69, Girona 17003, Spain
| | - Antonella Profumo
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
2
|
Sigonya S, Mokhena TC, Mayer P, Makhanya TR, Mokhothu TH. Electrospinning and Rheological Characterization of Polyethylene Terephthalate and Polyvinyl Alcohol with Different Degrees of Hydrolysis Incorporating Molecularly Imprinted Polymers. Polymers (Basel) 2024; 16:3297. [PMID: 39684041 DOI: 10.3390/polym16233297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the electrospinning and rheological properties of polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) with varying degrees of hydrolysis (DH) for molecularly imprinted polymer (MIP) incorporation. The morphology and properties of the electrospun nanofibers were evaluated, revealing that PVA nanofibers exhibited smoother and more uniform structures compared to PET fibers. The rheological behavior of the polymer solutions was also characterized, showing that PVA 99 DH solution exhibited shear-thinning behavior due to the unique structural properties of the polymer chains. The introduction of MIP and NIP additives had no significant impact on the rheological properties, except for PVA 99 MIP and NIP solutions, which showed deviations from Newtonian behavior. The electrospun MIP nanofibers showed a conductivity of 1054 µS/cm for PVA (87-90% DH) and a viscosity of 165.5 mPa·s, leading to optimal fiber formation, while displaying a good adsorption capacity of 0.36 mg for PVA-MIP to effectively target pharmaceuticals such as emtricitabine and tenofovir disoproxil, showing their potential for advanced water treatment applications. The results suggest that the electrospinning process and rheological properties of the polymer solutions are influenced by the molecular structure and interactions within the polymer matrix, which can be exploited to tailor the properties of MIPs for specific applications.
Collapse
Affiliation(s)
- Sisonke Sigonya
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban 4000, South Africa
| | - Teboho Clement Mokhena
- DST/Mintek NIC, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg 2194, South Africa
| | - Paul Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - Talent Raymond Makhanya
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban 4000, South Africa
| | | |
Collapse
|
3
|
Wu Z, Wang L, Chen W, Wang Y, Cui K, Chen W, Liu J, Jin H, Zhou Z. Reproductive Toxicity and Multi/Transgenerational Effects of Emerging Pollutants on C. elegans. TOXICS 2024; 12:785. [PMID: 39590964 PMCID: PMC11598590 DOI: 10.3390/toxics12110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Emerging pollutants (EPs) are receiving increasing attention due to the threats they pose to the environment and human health. As EPs continue to emerge, risk assessment requires many model animals. Caenorhabditis elegans (C. elegans) has been an outstanding toxicological model organism due to its growth and development characteristics. Particularly, in studying the transgenerational influences of EPs, C. elegans has advantages in saving time and cost due to its short generation cycle. As infertility has become a major problem in human reproductive health, reproductive toxicities of EPs on contemporary nematodes and across generations of C. elegans were introduced in this review. Moreover, the underlying mechanisms involved in germ cell apoptosis, spermatogenesis, and epigenetic alteration were discussed. Future research opportunities and challenges are also discussed to expand our understanding of the reproductive influences of EPs.
Collapse
Affiliation(s)
- Zhiling Wu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weihua Chen
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, China;
| | - Yiqi Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Jijun Liu
- Chongqing Center for Disease Control and Prevention, Chongqing 400707, China;
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (Z.W.); (L.W.); (Y.W.); (K.C.); (W.C.); (H.J.)
| |
Collapse
|
4
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
5
|
Shao Y, You D, Wan Y, Cheng Q, Pan Z. A novel molecularly expanded covalent triazine framework heterojunction with significantly enhanced molecular oxygen activation and photocatalysis performance under visible light. Dalton Trans 2023; 52:11272-11284. [PMID: 37526923 DOI: 10.1039/d3dt01726e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The activation capacity of molecular oxygen is an important indicator to evaluate the photocatalytic efficiency of photocatalysts. In this paper, WS2 nanosheet was deposited on hyper-crosslinked CTF-1-G (obtained by molecular expansion from covalent triazine framework CTF-1) to form a C-GW heterojunction, which promoted the photodegradation of pollutants and the activation of molecular oxygen. This novel C-GW heterojunction exhibited excellent degradation property for organic pollutants (tetracycline (TC), rhodamine B (RhB)) and activating molecular oxygen under visible light irradiation. Among them, C-GW15 could degrade 98% of 20 ppm TC in 60 min and 99% of 30 ppm RhB in 30 min, and it had the highest hydrogen generation rate and hydrogen production amount in 4 hours, which were 8.74 mmol h-1 g-1 and 34.94 mmol g-1, respectively. Meanwhile, C-GW15 had the strongest 3,3',5,5'-tetramethylbenzidine oxidation capacity and could generate 1.83 μmol of ˙O2- in 60 min and the production of H2O2 was 20.8 μmol L-1 in 40 min. The results of this study clearly indicated that the combination of WS2 and CTF-1-G can enhance the visible light absorption capacity and photogenerated carrier separation efficiency, thus promoting the photocatalytic performance. Finally, a Z-type photocatalytic mechanism was proposed based on radical capture, molecular oxygen activation experiments and electron spin resonance analysis. These findings will extend the fundamental understanding of the Z-type photocatalytic mechanism and provide new opportunities for the rational design of CTF heterojunctions for the treatment of environmental pollution and clean energy conversion.
Collapse
Affiliation(s)
- Yuxuan Shao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Dan You
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Yuqi Wan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
- The Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, PR China
| | - Qingrong Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Zhiquan Pan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
6
|
Râpă M, Darie-Niță RN, Matei E, Predescu AM, Berbecaru AC, Predescu C. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers (Basel) 2023; 15:polym15112425. [PMID: 37299225 DOI: 10.3390/polym15112425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Anthropogenic microplastics (MPs) and nanoplastics (NPs) are ubiquitous pollutants found in aquatic, food, soil and air environments. Recently, drinking water for human consumption has been considered a significant pathway for ingestion of such plastic pollutants. Most of the analytical methods developed for detection and identification of MPs have been established for particles with sizes > 10 μm, but new analytical approaches are required to identify NPs below 1 μm. This review aims to evaluate the most recent information on the release of MPs and NPs in water sources intended for human consumption, specifically tap water and commercial bottled water. The potential effects on human health of dermal exposure, inhalation, and ingestion of these particles were examined. Emerging technologies used to remove MPs and/or NPs from drinking water sources and their advantages and limitations were also assessed. The main findings showed that the MPs with sizes > 10 μm were completely removed from drinking water treatment plants (DWTPs). The smallest NP identified using pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS) had a diameter of 58 nm. Contamination with MPs/NPs can occur during the distribution of tap water to consumers, as well as when opening and closing screw caps of bottled water or when using recycled plastic or glass bottles for drinking water. In conclusion, this comprehensive study emphasizes the importance of a unified approach to detect MPs and NPs in drinking water, as well as raising the awareness of regulators, policymakers and the public about the impact of these pollutants, which pose a human health risk.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ecaterina Matei
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andra-Mihaela Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Andrei-Constantin Berbecaru
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
7
|
Anani OA, Adama KK, Ukhurebor KE, Habib AI, Abanihi VK, Pal K. Application of nanofibrous protein for the purification of contaminated water as a next generational sorption technology: a review. NANOTECHNOLOGY 2023; 34:232004. [PMID: 36807991 DOI: 10.1088/1361-6528/acbd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Globally, wastes from agricultural and industrial activities cause water pollution. Pollutants such as microbes, pesticides, and heavy metals in contaminated water bodies beyond their threshold limits result in several diseases like mutagenicity, cancer, gastrointestinal problems, and skin or dermal issues when bioaccumulated via ingestion and dermal contacts. Several technologies have been used in modern times to treat wastes or pollutants such as membrane purification technologies and ionic exchange methods. However, these methods have been recounted to be capital intensive, non-eco-friendly, and need deep technical know-how to operate thus, contributing to their inefficiencies and non-efficacies. This review work evaluated the application of Nanofibrils-protein for the purification of contaminated water. Findings from the study indicated that Nanofibrils protein is economically viable, green, and sustainable when used for water pollutant management or removal because they have outstanding recyclability of wastes without resulting in a secondary phase-pollutant. It is recommended to use residues from dairy industries, agriculture, cattle guano, and wastes from a kitchen in conjunction with nanomaterials to develop nanofibrils protein which has been recounted for the effective removal of micro and micropollutants from wastewater and water. The commercialization of nanofibrils protein for the purification of wastewater and water against pollutants has been tied to novel methods in nanoengineering technology, which depends strongly on the environmental impact in the aqueous ecosystem. So, there is a need to establish a legal framework for the establishment of a nano-based material for the effective purification of water against pollutants.
Collapse
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State, Nigeria
| | - Kenneth Kennedy Adama
- Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | | | - Aishatu Idris Habib
- Department of Microbiology, Edo State University, Faculty of Science, Uzairue, Nigeria
| | - Vincent Kenechi Abanihi
- Department of Electrical/Electronic Engineering, Faculty of Engineering, Edo State University, Uzairue, Nigeria
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| |
Collapse
|
8
|
Yao L, Sun C, Lin H, Li G, Lian Z, Song R, Zhuang S, Zhang D. Enhancement of AFB 1 Removal Efficiency via Adsorption/Photocatalysis Synergy Using Surface-Modified Electrospun PCL-g-C 3N 4/CQDs Membranes. Biomolecules 2023; 13:biom13030550. [PMID: 36979485 PMCID: PMC10046413 DOI: 10.3390/biom13030550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a highly toxic mycotoxin produced by aspergillus species under specific conditions as secondary metabolites. In this study, types of PCL (Polycaprolactone) membranes anchored (or not) to g-C3N4/CQDs composites were prepared using electrospinning technology with (or without) the following surface modification treatment to remove AFB1. These membranes and g-C3N4/CQDs composites were characterized by SEM, TEM, UV-vis, XRD, XPS and FTIR to analyze their physical and chemical properties. Among them, the modified PCL-g-C3N4/CQDs electrospun membranes exhibited an excellent ability to degrade AFB1 via synergistic effects of adsorption and photocatalysis, and the degradation rate of 0.5 μg/mL AFB1 solution was observed to be up to 96.88% in 30 min under visible light irradiation. Moreover, the modified PCL-g-C3N4/CQDs electrospun membranes could be removed directly after the reaction process without centrifugal or magnetic separation, and the regeneration was a green approach synchronized with the reaction under visible light avoiding physical or chemical treatment. The mechanism of adsorption by electrostatic attraction and hydrogen bonding interaction was revealed and the mechanism of photodegradation of AFB1 was also proposed based on active species trapping experiments. This study illuminated the highly synergic adsorption and photocatalytic AFB1 removal efficiency without side effects from the modified PCL-g-C3N4/CQDs electrospun membranes, thereby offering a continual and green solution to AFB1 removal in practical application.
Collapse
Affiliation(s)
- Liangtao Yao
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - Changpo Sun
- Standards and Quality Center of National Food and Strategic Reserves Administration, No.25 Yuetan North Street, Xicheng District, Beijing 100834, China
| | - Hui Lin
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - Guisheng Li
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - Zichao Lian
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - Ruixin Song
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai 200093, China
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Research Center for Photonics Technology, Quanzhou Normal University, Quanzhou 362000, China
- Correspondence:
| |
Collapse
|
9
|
Soukup K, Topka P, Kupčík J, Solcova O. Platinum Nanoparticles Immobilized on Electrospun Membranes for Catalytic Oxidation of Volatile Organic Compounds. MEMBRANES 2023; 13:110. [PMID: 36676917 PMCID: PMC9864639 DOI: 10.3390/membranes13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Structured catalytic membranes with high porosity and a low pressure drop are particularly suitable for industrial processes carried out at high space velocities. One of these processes is the catalytic total oxidation of volatile organic compounds, which is an economically feasible and environmentally friendly way of emission abatement. Noble metal catalysts are typically preferred due to high activity and stability. In this paper, the preparation of a thermally stable polybenzimidazole electrospun membrane, which can be used as a support for a platinum catalyst applicable in the total oxidation of volatile organic compounds, is reported for the first time. In contrast to commercial pelletized catalysts, high porosity of the membrane allowed for easy accessibility of the platinum active sites to the reactants and the catalytic bed exhibited a low pressure drop. We have shown that the preparation conditions can be tuned in order to obtain catalysts with a desired platinum particle size. In the gas-phase oxidation of ethanol, acetone, and toluene, the catalysts with Pt particle sizes 2.1 nm and 26 nm exhibited a lower catalytic activity than that with a Pt particle size of 12 nm. Catalysts with a Pt particle size of 2.1 nm and 12 nm were prepared by equilibrium adsorption, and the higher catalytic activity of the latter catalyst was ascribed to more reactive adsorbed oxygen species on larger Pt nanoparticles. On the other hand, the catalyst with a Pt particle size of 26 nm was prepared by a solvent evaporation method and contained less active polycrystalline platinum. Last but not least, the catalyst containing only 0.08 wt.% of platinum achieved high conversion (90%) of all the model volatile organic compounds at moderate temperatures (lower than 335 °C), which is important for reducing the costs of the abatement technology.
Collapse
Affiliation(s)
- Karel Soukup
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
| | - Pavel Topka
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
| | - Jaroslav Kupčík
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
- FZU-Institute of Physics of the Czech Academy of Sciences, CZ-182 00 Prague, Czech Republic
| | - Olga Solcova
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
| |
Collapse
|
10
|
Kovalchuk I, Kornilovych B, Tobilko V, Bondarieva A, Kholodko Y. Adsorption removal of heavy metal ions from multi-component aqueous system by clay-supported nanoscale zero-valent iron. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2127754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
Affiliation(s)
- Iryna Kovalchuk
- Department of Sorption and Fine Inorganic Synthesis, Institute for Sorption and Problem of Endoecology of NAS of Ukraine, Kyiv, Ukraine
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Borys Kornilovych
- Department of Sorption and Fine Inorganic Synthesis, Institute for Sorption and Problem of Endoecology of NAS of Ukraine, Kyiv, Ukraine
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Viktoriia Tobilko
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Antonina Bondarieva
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Yurii Kholodko
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| |
Collapse
|