1
|
Poveda MC, Löser S, Gillan V, Richards J, Ciancia C, Blackburn G, Kerr E, Barrett M, Hildersley KA, Jay P, Devaney E, McNeilly TN, Britton C, Maizels RM. Metabolomic and functional analyses of small molecules secreted by intestinal nematodes in the activation of epithelial tuft cells. Metabolomics 2025; 21:55. [PMID: 40257648 PMCID: PMC12011944 DOI: 10.1007/s11306-025-02248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
INTRODUCTION Intestinal helminth parasites trigger the host immune response through epithelial sensory tuft cells, but helminth-derived molecules that may activate tuft cells are poorly characterized. OBJECTIVES The study aimed to identify small molecules released in vitro by two nematode parasites, that infect rodents (Nippostrongylus brasiliensis) and ruminants (Haemonchus contortus), and to test candidate ligands in an in vivo model of tuft cell differentiation. METHODS Small molecules were analyzed by hydrophilic interaction liquid chromatography (HILIC) of material released by adult parasites incubated in serum-free media, followed by mass spectrometry; selected molecules were administered to mice and tuft cell expansion enumerated after 5 days. RESULTS A range of different conditions (culture media, timing, oxygenation) were tested, and comparisons made between the conditions, and between the two nematode species at selected points. Common products across the conditions and species included carboxylic acids (malate, succinate), medium chain fatty acids (such as decanoic and undecanoic acids), purines (guanine, xanthine and their derivatives), and phosphocholine compounds. We selected 19 of the prominent molecules for in vivo testing by oral administration, including succinate, a known activator of tuft cell differentiation. Malate elicited a low but significant level of tuft cell expansion, while undecanoic acids with or without a bromine substitution were also able to induce significant differentiation comparable to succinate. Other molecules including phosphorylcholine had no effect. CONCLUSION Multiple molecular species including decanoic and undecanoic acids released by helminths may contribute to activation of tuft cells in vivo.
Collapse
Affiliation(s)
- Marta Campillo Poveda
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Stephan Löser
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
- GlaxoSmithKline GmbH, Prinzregentenplatz 9, 81675, Munich, Germany
| | - Victoria Gillan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Josh Richards
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Claire Ciancia
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Gavin Blackburn
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Erin Kerr
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Michael Barrett
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | | | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Eileen Devaney
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Collette Britton
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
2
|
Monteiro JP, Sousa T, Pinho M, Atroch F, Rangel LF, Pardo CA, Santos MJ, Barracosa R, Rey F, Domingues MR, Calado R. Evaluating fatty acid profiles in anisakid nematode parasites and adjacent tissue of European hake (Merluccius merluccius): a first insight into local host-parasite lipid dynamics. Parasitol Res 2025; 124:32. [PMID: 40080181 PMCID: PMC11906546 DOI: 10.1007/s00436-025-08477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Parasitism in fish is a widespread and ecologically significant phenomenon, affecting fish in both wild and aquaculture environments. Comprehending parasitism is essential for managing fish populations, protecting fish health, and preventing human exposure to zoonotic parasites. Understanding lipid dynamics between parasitic organisms and their hosts is crucial for elucidating host-parasite interactions. Although the third larval (L3) stage of anisakid larvae is not a developing stage, and therefore not as dependent on the host for the acquisition of nutrients, there are hints of interplay between parasites and fish hosts, also in terms of lipid content. This study aimed to characterize for the first time the fatty acid profiles of anisakid nematode parasites and adjacent tissue in the European hake (Merluccius merluccius) in order to shed some light on these intricate relationships. Fatty acid analysis revealed significant differences in the percentages of individual fatty acids between anisakid nematodes and adjacent European hake tissue. Anisakids presented a higher content in stearic (18:0), vaccenic (18:1n-7), and linoleic (18:2n-6) acids, while in turn, the belly flap tissue of the fish presented significantly higher contents in palmitic (16:0) and especially docosahexaenoic acid (22:6n-3) than the parasite. These differences suggest unique lipid metabolic pathways between parasite and fish, and that parasitism and the possible acquisition of lipids from the host (hake) do not profoundly shape the fatty acid profile of the parasites. Furthermore, the distinct fatty acid signatures described for parasites and hosts may serve as baselines to follow possible changes in the ecological statuses of both species and even to appraise the nutritional features of European hake when affected by parasitism. This study provides valuable insights into the lipid dynamics within host-parasite systems and underscores the importance of further research to unravel the complexities of these interactions.
Collapse
Affiliation(s)
- João P Monteiro
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CIVG - Vasco da Gama Research Center / EUVG, Vasco da Gama University School, Coimbra, Portugal.
| | - Tiago Sousa
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marisa Pinho
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernando Atroch
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and CIIMAR, Departmento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, FC4, 4169-007, Porto, Portugal
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Luís Filipe Rangel
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Camilo Ayra Pardo
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Maria João Santos
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and CIIMAR, Departmento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, FC4, 4169-007, Porto, Portugal
- CIIMAR, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Rita Barracosa
- MC Shared Services S.A. - Rua João Mendonça, 529, 4464-501 Senhora da Hora, Matosinhos, Portugal
| | - Felisa Rey
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Espetrometria de Massa & LAQV-REQUIMTE & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Ricardo Calado
- ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Godoy P, Rezanezhad Dizaji B, Zardini Buzatto A, Sanchez L, Li L. The Lipid Composition of the Exo-Metabolome from Haemonchus contortus. Metabolites 2025; 15:193. [PMID: 40137157 PMCID: PMC11944095 DOI: 10.3390/metabo15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Metabolomic studies of different parasite-derived biomolecules, such as lipids, are needed to broaden the discovery of novel targets and overcome anthelmintic resistance. Lipids are involved in diverse functions in biological systems, including parasitic helminths, but little is known about their role in the biology of these organisms and their impact on host-parasite interactions. This study aimed to characterize the lipid profile secreted by Haemonchus contortus, the major parasitic nematodes of farm ruminants. Methods: H. contortus adult worms were recovered from infected sheep and cultured ex vivo. Parasite medium was collected at different time points and samples were subjected to an untargeted global lipidomic analysis. Lipids were extracted and subjected to Liquid Chromatography-Mass Spectrometry (LC-MS/MS). Annotated lipids were normalized and subjected to statistical analysis. Lipid clusters' fold change (FC) and individual lipid features were compared at different time points. Lipids were also analyzed by structural composition and saturation bonding. Results: A total of 1057 H. contortus lipid features were annotated, including glycerophospholipids, fatty acyls, sphingolipids, glycerolipids, and sterols. Most of these compounds were unsaturated lipids. We found significant FC differences in the lipid profile in a time-dependent manner. Conclusions: We predict that many lipids found in our study act as signaling molecules for nematodes' physiological functions, such as adaptation to nutrient changes, life span and mating, and as modulators on the host immune responses.
Collapse
Affiliation(s)
- Pablo Godoy
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
- Independent Researcher and Animal Health Consultant, Montreal, QC H4A 2V2, Canada
| | - Behrouz Rezanezhad Dizaji
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | | | - Laura Sanchez
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), Edmonton, AB T6G 2E9, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
| |
Collapse
|
4
|
Wang T, Leeming MG, Williamson NA, Bouchery T, Doolan R, Le Gros G, Reid GE, Harris NL, Gasser RB. The developmental lipidome of Nippostrongylus brasiliensis. Parasit Vectors 2025; 18:27. [PMID: 39863914 PMCID: PMC11762861 DOI: 10.1186/s13071-024-06654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling. METHODS The present investigation provides a comprehensive, untargeted lipidomic analysis of four developmental stages/sexes (i.e. egg, L3, adult female and adult male stages) of N. brasiliensis utilising liquid chromatography coupled to mass spectrometry. RESULTS We identified 464 lipid species representing 18 lipid classes and revealed distinct stage-specific changes in lipid composition throughout nematode development. Triacylglycerols (TGs) dominated the lipid profile in the egg stage, suggesting a key role for them in energy storage at this early developmental stage. As N. brasiliensis develops, there was a conspicuous transition toward membrane-associated lipids, including glycerophospholipids (e.g. PE and PC) and ether-linked lipids, particularly in adult stages, indicating a shift toward host adaptation and membrane stabilisation. CONCLUSIONS We provide a comprehensive insight into the lipid composition and abundance of key free-living and parasitic stages of N. brasiliensis. This study provides lipidomic resources to underpin the detailed exploration of lipid biology in this model parasitic nematode.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael G Leeming
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tiffany Bouchery
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
| | - Rory Doolan
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Kelburn, Wellington, 6012, New Zealand
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicola L Harris
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Wangchuk P, Yeshi K. Techniques, Databases and Software Used for Studying Polar Metabolites and Lipids of Gastrointestinal Parasites. Animals (Basel) 2024; 14:2671. [PMID: 39335259 PMCID: PMC11428429 DOI: 10.3390/ani14182671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrointestinal parasites (GIPs) are organisms known to have coevolved for millennia with their mammalian hosts. These parasites produce small molecules, peptides, and proteins to evade or fight their hosts' immune systems and also to protect their host for their own survival/coexistence. The small molecules include polar compounds, amino acids, lipids, and carbohydrates. Metabolomics and lipidomics are emerging fields of research that have recently been applied to study helminth infections, host-parasite interactions and biochemicals of GIPs. This review comprehensively discusses metabolomics and lipidomics studies of the small molecules of GIPs, providing insights into the available tools and techniques, databases, and analytical software. Most metabolomics and lipidomics investigations employed LC-MS, MS or MS/MS, NMR, or a combination thereof. Recent advancements in artificial intelligence (AI)-assisted software tools and databases have propelled parasitomics forward, offering new avenues to explore host-parasite interactions, immunomodulation, and the intricacies of parasitism. As our understanding of AI technologies and their utilisation continue to expand, it promises to unveil novel perspectives and enrich the knowledge of these complex host-parasite relationships.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- College of Public Health, Medical and Veterinary Sciences (CPHMVS), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| | - Karma Yeshi
- College of Public Health, Medical and Veterinary Sciences (CPHMVS), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| |
Collapse
|
6
|
Mah MSM, Cao E, Anderson D, Escott A, Tegegne S, Gracia G, Schmitz J, Brodesser S, Zaph C, Creek DJ, Hong J, Windsor JA, Phillips ARJ, Trevaskis NL, Febbraio MA, Turpin-Nolan SM. High-fat feeding drives the intestinal production and assembly of C 16:0 ceramides in chylomicrons. SCIENCE ADVANCES 2024; 10:eadp2254. [PMID: 39178255 PMCID: PMC11343029 DOI: 10.1126/sciadv.adp2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.
Collapse
Affiliation(s)
- Michael SM Mah
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Alistair Escott
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Surafel Tegegne
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gracia Gracia
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Joel Schmitz
- Max Planck Institute for Metabolism and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging associated Diseases (CECAD), Cologne, Germany
| | - Colby Zaph
- Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Anthony RJ Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Natalie L. Trevaskis
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Mark A. Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Sarah M. Turpin-Nolan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Bay ÖF, Hayes KS, Schwartz JM, Grencis RK, Roberts IS. A genome-scale metabolic model of parasitic whipworm. Nat Commun 2023; 14:6937. [PMID: 37907472 PMCID: PMC10618284 DOI: 10.1038/s41467-023-42552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Genome-scale metabolic models are widely used to enhance our understanding of metabolic features of organisms, host-pathogen interactions and to identify therapeutics for diseases. Here we present iTMU798, the genome-scale metabolic model of the mouse whipworm Trichuris muris. The model demonstrates the metabolic features of T. muris and allows the prediction of metabolic steps essential for its survival. Specifically, that Thioredoxin Reductase (TrxR) enzyme is essential, a prediction we validate in vitro with the drug auranofin. Furthermore, our observation that the T. muris genome lacks gsr-1 encoding Glutathione Reductase (GR) but has GR activity that can be inhibited by auranofin indicates a mechanism for the reduction of glutathione by the TrxR enzyme in T. muris. In addition, iTMU798 predicts seven essential amino acids that cannot be synthesised by T. muris, a prediction we validate for the amino acid tryptophan. Overall, iTMU798 is as a powerful tool to study not only the T. muris metabolism but also other Trichuris spp. in understanding host parasite interactions and the rationale design of new intervention strategies.
Collapse
Affiliation(s)
- Ömer F Bay
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Bioinformatics, Abdullah Gül University, Kayseri, Türkiye
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kelly S Hayes
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K Grencis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Ian S Roberts
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Polak I, Stryiński R, Majewska M, Łopieńska-Biernat E. Metabolomic analysis reveals a differential adaptation process of the larval stages of Anisakis simplex to the host environment. Front Mol Biosci 2023; 10:1233586. [PMID: 37520327 PMCID: PMC10373882 DOI: 10.3389/fmolb.2023.1233586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Anisakis simplex are parasitic nematodes that cause anisakiasis. The possibility of infection with this parasite is through consumption of raw or undercooked fish products. A. simplex infections are often misdiagnosed, especially in subclinical cases that do not present with typical symptoms such as urticaria, angioedema, and gastrointestinal allergy. The resulting allergic reactions range from rapid-onset and potentially fatal anaphylactic reactions to chronic, debilitating conditions. While there have been numerous published studies on the genomes and proteomes of A. simplex, less attention has been paid to the metabolomes. Metabolomics is concerned with the composition of metabolites in biological systems. Dynamic responses to endogenous and exogenous stimuli are particularly well suited for the study of holistic metabolic responses. In addition, metabolomics can be used to determine metabolic activity at different stages of development or during growth. Materials and methods: In this study, we reveal for the first time the metabolomes of infectious stages (L3 and L4) of A. simplex using untargeted metabolomics by ultra-performance liquid chromatography-mass spectrometry. Results: In the negative ionization mode (ESI-), we identified 172 different compounds, whereas in the positive ionization mode (ESI+), 186 metabolites were found. Statistical analysis showed that 60 metabolites were found in the ESI- mode with different concentration in each group, of which 21 were more enriched in the L3 larvae and 39 in the L4 stage of A. simplex. Comparison of the individual developmental stages in the ESI + mode also revealed a total of 60 differential metabolites, but 32 metabolites were more enriched in the L3 stage larvae, and 28 metabolites were more concentrated in the L4 stage. Discussion: The metabolomics study revealed that the developmental stages of A. simplex differed in a number of metabolic pathways, including nicotinate and nicotinamide metabolism. In addition, molecules responsible for successful migration within their host, such as pyridoxine and prostaglandins (E1, E2, F1a) were present in the L4 stage. In contrast, metabolic pathways for amino acids, starch, and sucrose were mainly activated in the L3 stage. Our results provide new insights into the comparative metabolome profiles of two different developmental stages of A. simplex.
Collapse
Affiliation(s)
- Iwona Polak
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
9
|
Wangchuk P, Yeshi K, Loukas A. Metabolomics and lipidomics studies of parasitic helminths: molecular diversity and identification levels achieved by using different characterisation tools. Metabolomics 2023; 19:63. [PMID: 37356029 PMCID: PMC10290966 DOI: 10.1007/s11306-023-02019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/15/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Helminths are parasitic worms that infect millions of people worldwide and secrete a variety of excretory-secretory products (ESPs), including proteins, peptides, and small molecules. Despite this, there is currently no comprehensive review article on cataloging small molecules from helminths, particularly focusing on the different classes of metabolites (polar and lipid molecules) identified from the ESP and somatic tissue extracts of helminths that were studied in isolation from their hosts. OBJECTIVE This review aims to provide a comprehensive assessment of the metabolomics and lipidomics studies of parasitic helminths using all available analytical platforms. METHOD To achieve this objective, we conducted a meta-analysis of the identification and characterization tools, metabolomics approaches, metabolomics standard initiative (MSI) levels, software, and databases commonly applied in helminth metabolomics studies published until November 2021. RESULT This review analyzed 29 studies reporting the metabolomic assessment of ESPs and somatic tissue extracts of 17 helminth species grown under ex vivo/in vitro culture conditions. Of these 29 studies, 19 achieved the highest level of metabolite identification (MSI level-1), while the remaining studies reported MSI level-2 identification. Only 155 small molecule metabolites, including polar and lipids, were identified using MSI level-1 characterization protocols from various helminth species. Despite the significant advances made possible by the 'omics' technology, standardized software and helminth-specific metabolomics databases remain significant challenges in this field. Overall, this review highlights the potential for future studies to better understand the diverse range of small molecules that helminths produce and leverage their unique metabolomic features to develop novel treatment options.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| | - Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878 Australia
| |
Collapse
|
10
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Untargeted Multimodal Metabolomics Investigation of the Haemonchus contortus Exsheathment Secretome. Cells 2022; 11:cells11162525. [PMID: 36010603 PMCID: PMC9406637 DOI: 10.3390/cells11162525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
In nematodes that invade the gastro-intestinal tract of the ruminant, the process of larval exsheathment marks the transition from the free-living to the parasitic stages of these parasites. To investigate the secretome associated with larval exsheathment, a closed in vitro system that effectively reproduces the two basic components of an anaerobic rumen environment (CO2 and 39 °C) was developed to trigger exsheathment in one of the most pathogenic and model gastrointestinal parasitic nematodes, Haemonchus contortus (barber‘s pole worm). This study reports the use of multimodal untargeted metabolomics and lipidomics methodologies to identify the metabolic signatures and compounds secreted during in vitro larval exsheathment in the H. contortus infective third-stage larva (iL3). A combination of statistical and chemoinformatic analyses using three analytical platforms revealed a panel of metabolites detected post exsheathment and associated with amino acids, purines, as well as select organic compounds. The major lipid classes identified by the non-targeted lipidomics method applied were lysophosphatidylglycerols, diglycerides, fatty acyls, glycerophospholipids, and a triglyceride. The identified metabolites may serve as metabolic signatures to improve tractability of parasitic nematodes for characterizing small molecule host–parasite interactions related to pathogenesis, vaccine and drug design, as well as the discovery of metabolic biomarkers.
Collapse
|
12
|
Han Y, Quan X, Chuang Y, Liang Q, Li Y, Yuan Z, Bian Y, Wei L, Wang J, Zhao Y. A multi-omics analysis for the prediction of neurocognitive disorders risk among the elderly in Macao. Clin Transl Med 2022; 12:e909. [PMID: 35696554 PMCID: PMC9191869 DOI: 10.1002/ctm2.909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Due to the increasing ageing population, neurocognitive disorders (NCDs) have been a global public health issue, and its prevention and early diagnosis are crucial. Our previous study demonstrated that there is a significant correlation between specific populations and NCDs, but the biological characteristics of the vulnerable group predispose to NCDs are unclear. The purpose of this study is to investigate the predictors for the vulnerable group by a multi-omics analysis. METHODS Multi-omics approaches, including metagenomics, metabolomic and proteomic, were used to detect gut microbiota, faecal metabolites and urine exosome of 8 normal controls and 13 vulnerable elders after a rigorous screening of 400 elders in Macao. The multi-omics data were analysed using R and Bioconductor. The two-sided Wilcoxon's rank-sum test, Kruskal-Wallis rank sum test and the linear discriminant analysis effective size were applied to investigate characterized features. Moreover, a 2-year follow-up was conducted to evaluate cognitive function change of the elderly. RESULTS Compared with the control elders, the metagenomics of gut microbiota showed that Ruminococcus gnavus, Lachnospira eligens, Escherichia coli and Desulfovibrio piger were increased significantly in the vulnerable group. Carboxylates, like alpha-ketoglutaric acid and d-saccharic acid, and levels of vitamins had obvious differences in the faecal metabolites. There was a distinct decrease in the expression of eukaryotic translation initiation factor 2 subunit 1 (eIF2α) and amine oxidase A (MAO-A) according to the proteomic results of the urine exosomes. Moreover, the compound annual growth rate of neurocognitive scores was notably decreased in vulnerable elders. CONCLUSIONS The multi-omics characteristics of disturbed glyoxylate and dicarboxylate metabolism (bacteria), vitamin digestion and absorption and tricarboxylic acid cycle in vulnerable elders can serve as predictors of NCDs risk among the elderly of Macao. Intervention with them may be effective therapeutic approaches for NCDs, and the underlying mechanisms merit further exploration.
Collapse
Affiliation(s)
- Yan Han
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Xingping Quan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | | | - Qiaoxing Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yang Li
- Department of Gastrointestinal SurgerySecond Clinical Medical College of Jinan University, Shenzhen People's HospitalShenzhenChina
| | - Zhen Yuan
- Centre for Cognitive and Brain SciencesUniversity of MacauTaipaMacao SARChina
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Ji Wang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacao SARChina
| |
Collapse
|
13
|
Montanhaur ADRS, Lima EDO, Delafiori J, Esteves CZ, Prado CCR, Allegretti SM, Ueta MT, Levy CE, Catharino RR. Metabolic alterations in Strongyloidiasis stool samples unveil potential biomarkers of infection. Acta Trop 2022; 227:106279. [PMID: 34968451 DOI: 10.1016/j.actatropica.2021.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Strongyloidiasis, a parasitosis caused by Strongyloides stercoralis in humans, is a very prevalent infection in tropical or subtropical areas. Gaps on public health strategies corroborates to the high global incidence of strongyloidiasis especially due to challenges involved on its diagnosis. Based on the lack of a gold-standard diagnostic tool, we aimed to present a metabolomic study for the assessment of stool metabolic alterations. Stool samples were collected from 25 patients segregated into positive for strongyloidiasis (n = 10) and negative control (n = 15) and prepared for direct injection high-resolution mass spectrometry analysis. Using metabolomics workflow, 18 metabolites were annotated increased or decreased in strongyloidiasis condition, from which a group of 5 biomarkers comprising caprylic acid, mannitol, glucose, lysophosphatidylinositol and hydroxy-dodecanoic acid demonstrated accuracy over 89% to be explored as potential markers. The observed metabolic alteration in stool samples indicates involvement of microbiota remodeling, parasite constitution, and host response during S. stercoralis infection.
Collapse
|
14
|
Doolan R, Bouchery T. Hookworm infections: Reappraising the evidence for a role of Neutrophils in light of NETosis. Parasite Immunol 2022; 44:e12911. [PMID: 35124825 PMCID: PMC9285577 DOI: 10.1111/pim.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
In Hookworm infection, neutrophils have long had the image of the villain, being recruited to the site of larval migration because of damage but participating themselves in tissue injury. With recent developments in neutrophil biology, there is an increasing body of evidence for the role of neutrophils as effector cells in hookworm immunity. In particular, their ability to release extracellular traps, or neutrophil extracellular traps (NETs), confer neutrophils a larvicidal activity. Here, we review recent evidence in this nascent field and discuss the avenue for future research on NETs/hookworm interactions.
Collapse
Affiliation(s)
- Rory Doolan
- Hookworm Immunobiology Laboratory Department of Medical Parasitology & Infection Biology Swiss Tropical and Public Health Institute Socinstrasse 57 4051 CH Basel Switzerland
| | - Tiffany Bouchery
- Hookworm Immunobiology Laboratory Department of Medical Parasitology & Infection Biology Swiss Tropical and Public Health Institute Socinstrasse 57 4051 CH Basel Switzerland
| |
Collapse
|
15
|
Wangchuk P, Anderson D, Yeshi K, Loukas A. Identification of Small Molecules of the Infective Stage of Human Hookworm Using LCMS-Based Metabolomics and Lipidomics Protocols. ACS Infect Dis 2021; 7:3264-3276. [PMID: 34767348 DOI: 10.1021/acsinfecdis.1c00428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hookworm infections affect millions of people worldwide and are responsible for impaired mental and physical growth in children, and anemias. There is no vaccine, and increasing anthelmintic drug resistance in nematodes of domestic animals, and reduced drug cure rates in nematode infections of humans is alarming. Despite this looming health problem, there is a significant knowledge gap in terms of nonproteinaceous "excretory/secretory products" (ESPs) and how they orchestrate a parasitic existence. In the current study, we have conducted the first metabolomic and lipidomic analysis of the infective third-stage filariform larvae (L3) of the predominant human hookworm Necator americanus using liquid chromatography-mass spectrometry. Altogether, we have identified a total of 645 small molecules that were mainly produced through amino acid and glycerophospholipid metabolism. Putatively, 495 metabolites were unique to the somatic tissue extract, and 34 metabolites were present only in the ESP component. More than 21 novel mass features with nitrogen and sulfur functional groups were detected in the ESP component for the first time from helminths. While this study could not establish the biological functions of the metabolites identified, literature searches revealed that these metabolites possess various biological properties, including anti-inflammatory activities. These metabolites are likely used by the parasite upon exposure to a host to facilitate skin penetration, passage through different tissues, and immune regulation in the small bowel. Overall, the results presented herein offer significant insight into the metabolome of N. americanus L3 and have the potential to instigate future work to establish biomarkers of infection. This area urgently needs attention, given the lack of sensitive point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Road, Smithfield, Cairns, Queensland 4878, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Royal Parade, Parkville, Victoria 3052, Australia
| | - Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Road, Smithfield, Cairns, Queensland 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, McGregor Road, Smithfield, Cairns, Queensland 4878, Australia
| |
Collapse
|
16
|
Chen Y, Zhang M, Ding X, Yang Y, Chen Y, Zhang Q, Fan Y, Dai Y, Wang J. Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach. Front Cell Infect Microbiol 2021; 11:781132. [PMID: 34858883 PMCID: PMC8632049 DOI: 10.3389/fcimb.2021.781132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Hookworm is one type of soil-transmitted helminth, which could exert an anti-inflammatory effect in human or animal host, which provides a beneficial possibility for the discovery of inflammatory-related disease interventions. The identification of hookworm-derived anti-inflammatory molecules is urgently needed for future translational research. The emergence of metabolomics has become a powerful approach to comprehensively characterize metabolic alterations in recent times. Herein, excretory and secretory products (ESPs) were collected from cultured adult worm, while small intestinal contents were obtained from Nippostrongylus brasiliensis (N. brasiliensis, Nb)-infected mice. Through ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) platform, metabolomics analysis was used to explore the identification of anti-inflammatory molecules. Out of 45 differential metabolites that were discovered from ESPs, 10 of them showed potential anti-inflammatory properties, which could be subclassed into amino acids, furanocoumarins, linear diarylheptanoids, gamma butyrolactones, and alpha-keto acids. In terms of intestinal contents that were derived from N. brasiliensis-infected mice, 14 out of 301 differential metabolites were discovered to demonstrate anti-inflammatory effects, with possible subclassification into amino acids, benzylisoquinolines, quaternary ammonium salts, pyrimidines, pregnane steroids, purines, biphenyls, and glycerophosphocholines. Furthermore, nine of the differential metabolites appeared both in ESPs and infected intestinal contents, wherein four were proven to show anti-inflammation properties, namely, L-glutamine, glutamine (Gln), pyruvate, and alanine-Gln (Ala-Gln). In summary, we have provided a method for the identification and analysis of parasite-derived molecules with potential anti-inflammatory properties in the present study. This array of anti-inflammatory metabolites could provide clues for future evaluation and translational study of these anti-inflammatory molecules.
Collapse
Affiliation(s)
- Yuying Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yougui Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yujia Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yinwen Fan
- Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Yang Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| |
Collapse
|
17
|
The yin and yang of human soil-transmitted helminth infections. Int J Parasitol 2021; 51:1243-1253. [PMID: 34774540 PMCID: PMC9145206 DOI: 10.1016/j.ijpara.2021.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The major soil-transmitted helminths that infect humans are the roundworms, whipworms and hookworms. Soil-transmitted helminth infections rank among the most important neglected tropical diseases in terms of morbidity, and almost one billion people are still infected with at least one species. While anthelmintic drugs are available, they do not offer long term protection against reinfection, precipitating the need for vaccines that provide long-term immunologic defense. Vaccine discovery and development is in advanced clinical development for hookworm infection, with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory properties of these helminths, creating a barrier to the induction of meaningful long-term protective immunity. While challenging for vaccinologists, this phenomenon presents unique opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental soil-transmitted helminth challenge models, when coupled with findings from animal models, show that at least some soil-transmitted helminth-derived molecules can protect against the onset of autoimmune, allergic and metabolic disorders, and several natural products with the desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-transmitted helminth infections reflect both the urgency for effective vaccines and the potential for new immunoregulatory molecules from parasite products.
Collapse
|
18
|
Rajeev S, Sosnowski O, Li S, Allain T, Buret AG, McKay DM. Enteric Tuft Cells in Host-Parasite Interactions. Pathogens 2021; 10:pathogens10091163. [PMID: 34578195 PMCID: PMC8467374 DOI: 10.3390/pathogens10091163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Enteric tuft cells are chemosensory epithelial cells gaining attention in the field of host-parasite interactions. Expressing a repertoire of chemosensing receptors and mediators, these cells have the potential to detect lumen-dwelling helminth and protozoan parasites and coordinate epithelial, immune, and neuronal cell defenses against them. This review highlights the versatility of enteric tuft cells and sub-types thereof, showcasing nuances of tuft cell responses to different parasites, with a focus on helminths reflecting the current state of the field. The role of enteric tuft cells in irritable bowel syndrome, inflammatory bowel disease and intestinal viral infection is assessed in the context of concomitant infection with parasites. Finally, the review presents pertinent questions germane to understanding the enteric tuft cell and its role in enteric parasitic infections. There is much to be done to fully elucidate the response of this intriguing cell type to parasitic-infection and there is negligible data on the biology of the human enteric tuft cell—a glaring gap in knowledge that must be filled.
Collapse
Affiliation(s)
- Sruthi Rajeev
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.R.); (S.L.)
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
| | - Olivia Sosnowski
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shuhua Li
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.R.); (S.L.)
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
| | - Thibault Allain
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - André G. Buret
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.R.); (S.L.)
- Inflammation Research Network and Host-Parasite Interaction Group, University of Calgary, Calgary, AB T2N 4N1, Canada; (O.S.); (T.A.); (A.G.B.)
- Correspondence: ; Tel.: +1-403-220-7362
| |
Collapse
|
19
|
Lawson MAE, Roberts IS, Grencis RK. The interplay between Trichuris and the microbiota. Parasitology 2021; 148:1-8. [PMID: 34075861 PMCID: PMC8660641 DOI: 10.1017/s0031182021000834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022]
Abstract
Parasitic worms are amongst the most common pathogens to infect humans and have a long-established history of inflicting disease in their hosts. There is a large body of evidence that states intestine-dwelling helminths ensure their survival by influencing the host immune response against them. In recent years, it has become apparent that the large and diverse microbial communities that exist in the gastrointestinal (GI) tract of the host and within the parasite itself have a pivotal role in worm survival and persistence. Using a variety of mouse models (including laboratory, germ-free and rewilded mice), there have been new insights into how bacteria and worms interact with each other; this includes the discovery that Trichuris is unable to hatch and/or infect their host in the absence of bacteria, and that these worms contain a Trichuris-specific gut microbiota. These interactions are determined in part by the capacity of the host, gut microbiota and worms to communicate via metabolites such as butyrate, which are microbially derived and have known immunoregulatory properties. By exploring the contribution of gut bacteria to worm infections and the intricate relationship that exists between them, an exciting and emerging field in whipworm parasitology is established.
Collapse
Affiliation(s)
- Melissa A. E. Lawson
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Ian S. Roberts
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Richard K. Grencis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester, M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, Manchester, M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
20
|
Bancroft AJ, Grencis RK. Immunoregulatory molecules secreted by Trichuris muris. Parasitology 2021; 148:1-7. [PMID: 34075864 PMCID: PMC8660643 DOI: 10.1017/s0031182021000846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
Trichuris, whipworm nematode infections are prevalent in humans, domestic livestock and mammals. All share an epithelial dwelling niche and similar life cycle with the chronic infections that follow implying that immune evasion mechanisms are operating. Nematode excretory secretory (ES) products have been shown to be a rich source of immunomodulatory molecules for many species. The Trichuris muris model is a natural parasite of mice and has been used extensively to study host–parasite interactions and provides a tractable platform for investigation of the immunoregulatory capacity of whipworm ES. The present review details progress in identification of the composition of T. muris ES, immunomodulatory components and their potential mechanisms of action. The adult T. muris secretome is dominated by one protein with modulatory capacity although remains to be completely characterized. In addition, the secretome contains multiple other proteins and small molecules that have immunomodulatory potential, certainly by comparison to other Trichuris species. Moreover, T. muris-derived exosomes/exosome-like vesicles contain both protein and multiple miRNAs providing an alternate delivery process for molecules with the potential to modulate host immunity.
Collapse
Affiliation(s)
- Allison J. Bancroft
- Lydia Becker Institute for Immunology and Inflammation, ManchesterM13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, ManchesterM13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, ManchesterM13 9PL, UK
| | - Richard K. Grencis
- Lydia Becker Institute for Immunology and Inflammation, ManchesterM13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, Manchester M13 9PT, UK
- Division of Infection, Immunity and Respiratory Medicine, ManchesterM13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|