1
|
Brito Rodrigues P, de Rezende Rodovalho V, Sencio V, Benech N, Creskey M, Silva Angulo F, Delval L, Robil C, Gosset P, Machelart A, Haas J, Descat A, Goosens JF, Beury D, Maurier F, Hot D, Wolowczuk I, Sokol H, Zhang X, Ramirez Vinolo MA, Trottein F. Integrative metagenomics and metabolomics reveal age-associated gut microbiota and metabolite alterations in a hamster model of COVID-19. Gut Microbes 2025; 17:2486511. [PMID: 40172215 PMCID: PMC11970752 DOI: 10.1080/19490976.2025.2486511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Aging is a key contributor of morbidity and mortality during acute viral pneumonia. The potential role of age-associated dysbiosis on disease outcomes is still elusive. In the current study, we used high-resolution shotgun metagenomics and targeted metabolomics to characterize SARS-CoV-2-associated changes in the gut microbiota from young (2-month-old) and aged (22-month-old) hamsters, a valuable model of COVID-19. We show that age-related dysfunctions in the gut microbiota are linked to disease severity and long-term sequelae in older hamsters. Our data also reveal age-specific changes in the composition and metabolic activity of the gut microbiota during both the acute phase (day 7 post-infection, D7) and the recovery phase (D22) of infection. Aged hamsters exhibited the most notable shifts in gut microbiota composition and plasma metabolic profiles. Through an integrative analysis of metagenomics, metabolomics, and clinical data, we identified significant associations between bacterial taxa, metabolites and disease markers in the aged group. On D7 (high viral load and lung epithelial damage) and D22 (body weight loss and fibrosis), numerous amino acids, amino acid-related molecules, and indole derivatives were found to correlate with disease markers. In particular, a persistent decrease in phenylalanine, tryptophan, glutamic acid, and indoleacetic acid in aged animals positively correlated with poor recovery of body weight and/or lung fibrosis by D22. In younger hamsters, several bacterial taxa (Eubacterium, Oscillospiraceae, Lawsonibacter) and plasma metabolites (carnosine and cis-aconitic acid) were associated with mild disease outcomes. These findings support the need for age-specific microbiome-targeting strategies to more effectively manage acute viral pneumonia and long-term disease outcomes.
Collapse
Affiliation(s)
- Patrícia Brito Rodrigues
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | - Valentin Sencio
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Benech
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- Hospices Civils de Lyon, Lyon GEM Microbiota Study Group, Lyon, France
| | - Marybeth Creskey
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
| | - Fabiola Silva Angulo
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Lou Delval
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Cyril Robil
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Philippe Gosset
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Arnaud Machelart
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joel Haas
- U1011-EGID, University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Amandine Descat
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Jean François Goosens
- EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, CHU Lille, Lille, France
| | - Delphine Beury
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Florence Maurier
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - David Hot
- US 41 - UAR 2014 - PLBS, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Isabelle Wolowczuk
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xu Zhang
- Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, University of Ottawa, Ottawa, Canada
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - François Trottein
- U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
2
|
Laro J, Xue B, Zheng J, Ness M, Perlman S, McCall LI. Severe acute respiratory syndrome coronavirus 2 infection unevenly impacts metabolism in the coronal periphery of the lungs. iScience 2025; 28:111727. [PMID: 39995861 PMCID: PMC11848469 DOI: 10.1016/j.isci.2024.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/26/2025] Open
Abstract
SARS-CoV-2, the virus responsible for COVID-19, is a highly contagious virus that can lead to hospitalization and death. COVID-19 is characterized by its involvement in the lungs, particularly the lower lobes. To improve patient outcomes and treatment options, a better understanding of how SARS-CoV-2 impacts the body, particularly the lower respiratory system, is required. In this study, we sought to understand the spatial impact of COVID-19 on the lungs of mice infected with mouse-adapted SARS2-N501YMA30. Overall, infection caused a decrease in fatty acids, amino acids, and most eicosanoids. When analyzed by segment, viral loads were highest in central lung tissue, while metabolic disturbance was highest in peripheral tissue. Infected peripheral lung tissue was characterized by lower levels of fatty acids and amino acids when compared to central lung tissue. This study highlights the spatial impacts of SARS-CoV-2 and helps explain why peripheral lung tissue is most damaged by COVID-19.
Collapse
Affiliation(s)
- Jarrod Laro
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Biyun Xue
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
3
|
Mallol R, Rombauts A, Abelenda-Alonso G, Gudiol C, Balsalobre M, Carratalà J. Metabolomic profile of severe COVID-19 and a signature predictive of progression towards severe disease status: a prospective cohort study (METCOVID). Sci Rep 2025; 15:4963. [PMID: 39929875 PMCID: PMC11811168 DOI: 10.1038/s41598-025-87288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Profound metabolomic alterations occur during COVID-19. Early identification of the subset of hospitalised COVID-19 patients at risk of developing severe disease is critical for optimal resource utilization and prompt treatment. This work explores the metabolomic profile of hospitalised adult COVID-19 patients with severe disease, and establishes a predictive signature for disease progression. Within 48 hours of admission, serum samples were collected from 148 hospitalised patients for nuclear magnetic resonance (NMR) spectroscopy. Lipoprotein profiling was performed using the 1H-NMR-based Liposcale test, while low molecular weight metabolites were analysed using one-dimensional Carr-Purcell-Meiboom-Gill pulse spectroscopy and an adaptation of the Dolphin method for lipophilic extracts. Severe COVID-19, per WHO's Clinical Progression Scale, was characterized by altered lipoprotein distribution, elevated signals of glyc-A and glyc-B, a shift towards a catabolic state with elevated levels of branched-chain amino acids, and accumulation of ketone bodies. Furthermore, COVID-19 patients initially presenting with moderate disease but progressing to severe stages exhibited a distinct metabolic signature. Our multivariate model demonstrated a cross-validated AUC of 0.82 and 72% predictive accuracy for severity progression. NMR spectroscopy-based metabolomic profiling enables the identification of moderate COVID-19 patients at risk of disease progression, aiding in resource allocation and early intervention.
Collapse
Affiliation(s)
- Roger Mallol
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007, Barcelona, Spain
| | - Alexander Rombauts
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08907, Barcelona, Spain.
| | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08907, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carlota Gudiol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08907, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, 08007, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Institut Català d'Oncologia (ICO), Hospital Duran i Reynals, 08908, Barcelona, Spain
| | - Marc Balsalobre
- Human Environment Research, La Salle-Universitat Ramon Llull, 08022, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-IDIBELL, 08907, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, 08007, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
4
|
Rodrigues PB, de Rezende Rodovalho V, Sencio V, Benech N, Creskey M, Silva Angulo F, Delval L, Robil C, Gosset P, Machelart A, Haas J, Descat A, Goosens JF, Beury D, Maurier F, Hot D, Wolowczuk I, Sokol H, Zhang X, Ramirez Vinolo MA, Trottein F. Integrative metagenomics and metabolomics reveal age-associated gut microbiota and metabolite alterations in experimental COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622058. [PMID: 39574606 PMCID: PMC11580917 DOI: 10.1101/2024.11.05.622058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Aging is a key contributor of morbidity and mortality during acute viral pneumonia. The potential role of age-associated dysbiosis on disease outcomes is still elusive. In the current study, we used high-resolution shotgun metagenomics and targeted metabolomics to characterize SARS-CoV-2-associated changes in the gut microbiota from young (2-month-old) and aged (22-month-old) hamsters, a valuable model of COVID-19. We show that age-related dysfunctions in the gut microbiota are linked to disease severity and long-term sequelae in older hamsters. Our data also reveal age-specific changes in the composition and metabolic activity of the gut microbiota during both the acute phase (day 7 post-infection, D7) and the recovery phase (D22) of infection. Aged hamsters exhibited the most notable shifts in gut microbiota composition and plasma metabolic profiles. Through an integrative analysis of metagenomics, metabolomics, and clinical data, we identified significant associations between bacterial taxa, metabolites and disease markers in the aged group. On D7 (high viral load and lung epithelial damage) and D22 (body weight loss and fibrosis), numerous amino acids, amino acid-related molecules, and indole derivatives were found to correlate with disease markers. In particular, a persistent decrease in phenylalanine, tryptophan, glutamic acid, and indoleacetic acid in aged animals positively correlated with poor recovery of body weight and/or lung fibrosis by D22. In younger hamsters, several bacterial taxa ( Eubacterium , Oscillospiraceae , Lawsonibacter ) and plasma metabolites (carnosine and cis-aconitic acid) were associated with mild disease outcomes. These findings support the need for age-specific microbiome-targeting strategies to more effectively manage acute viral pneumonia and long-term disease outcomes.
Collapse
|
5
|
Lopes de Lima I, Ap. Rosini Silva A, Brites C, Angelo da Silva Miyaguti N, Raposo Passos Mansoldo F, Vaz Nunes S, Henrique Godoy Sanches P, Regiani Cataldi T, Pais de Carvalho C, Reis da Silva A, Ribeiro da Rosa J, Magalhães Borges M, Vilarindo Oliveira W, Canevari TC, Beatriz Vermelho A, Nogueira Eberlin M, M. Porcari A. Mass Spectrometry-Based Metabolomics Reveals a Salivary Signature for Low-Severity COVID-19. Int J Mol Sci 2024; 25:11899. [PMID: 39595969 PMCID: PMC11593410 DOI: 10.3390/ijms252211899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/28/2024] Open
Abstract
Omics approaches were extensively applied during the coronavirus disease 2019 (COVID-19) pandemic to understand the disease, identify biomarkers with diagnostic and prognostic value, and discover new molecular targets for medications. COVID-19 continues to challenge the healthcare system as the virus mutates, becoming more transmissible or adept at evading the immune system, causing resurgent epidemic waves over the last few years. In this study, we used saliva from volunteers who were negative and positive for COVID-19 when Omicron and its variants became dominant. We applied a direct solid-phase extraction approach followed by non-target metabolomics analysis to identify potential salivary signatures of hospital-recruited volunteers to establish a model for COVID-19 screening. Our model, which aimed to differentiate COVID-19-positive individuals from controls in a hospital setting, was based on 39 compounds and achieved high sensitivity (85%/100%), specificity (82%/84%), and accuracy (84%/92%) in training and validation sets, respectively. The salivary diagnostic signatures were mainly composed of amino acids and lipids and were related to a heightened innate immune antiviral response and an attenuated inflammatory profile. The higher abundance of thyrotropin-releasing hormone in the COVID-19 positive group highlighted the endocrine imbalance in low-severity disease, as first reported here, underscoring the need for further studies in this area.
Collapse
Affiliation(s)
- Iasmim Lopes de Lima
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Carlos Brites
- LAPI-Laboratory of Research in Infectology, University Hospital Professor Edgard Santos (HUPES), Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (C.B.); (S.V.N.)
| | - Natália Angelo da Silva Miyaguti
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Felipe Raposo Passos Mansoldo
- BIOINOVAR-Biotechnology Laboratories, Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil; (F.R.P.M.); (A.B.V.)
| | - Sara Vaz Nunes
- LAPI-Laboratory of Research in Infectology, University Hospital Professor Edgard Santos (HUPES), Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (C.B.); (S.V.N.)
| | - Pedro Henrique Godoy Sanches
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Thais Regiani Cataldi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (USP/ESALQ), Piracicaba 13418-900, SP, Brazil;
| | - Caroline Pais de Carvalho
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Adriano Reis da Silva
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Jonas Ribeiro da Rosa
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Mariana Magalhães Borges
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Wellisson Vilarindo Oliveira
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Thiago Cruz Canevari
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biotechnology Laboratories, Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil; (F.R.P.M.); (A.B.V.)
| | - Marcos Nogueira Eberlin
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| |
Collapse
|
6
|
Singh D, Menghini P, Rodriguez-Palacios A, Martino LD, Cominelli F, Basson AR. Leucine-Enriched Diet Reduces Fecal MPO but Does Not Protect Against DSS Colitis in a Mouse Model of Crohn's Disease-like Ileitis. Int J Mol Sci 2024; 25:11748. [PMID: 39519299 PMCID: PMC11545852 DOI: 10.3390/ijms252111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the complex link between inflammation, gut health, and dietary amino acids is becoming increasingly important in the pathophysiology of inflammatory bowel disease (IBD). This study tested the hypothesis that a leucine-rich diet could attenuate inflammation and improve gut health in a mouse model of IBD. Specifically, we investigated the effects of a leucine-rich diet on dextran sulfate sodium (DSS)-induced colitis in germ-free (GF) SAMP1/YitFC (SAMP) mice colonized with human gut microbiota (hGF-SAMP). hGF-SAMP mice were fed one of four different diets: standard mouse diet (CHOW), American diet (AD), leucine-rich AD (AD + AA), or leucine-rich CHOW diet (CH + AA). Body weight, myeloperoxidase (MPO) activity, gut permeability, colonoscopy scores, and histological analysis were measured. Mice on a leucine-rich CHOW diet showed a decrease in fecal MPO prior to DSS treatment as compared to those on a regular diet (p > 0.05); however, after week five, prior to DSS, this effect had diminished. Following DSS treatment, there was no significant difference in gut permeability, fecal MPO activity, or body weight changes between the leucine-supplemented and control groups. These findings suggest that while a leucine-rich diet may transiently affect fecal MPO levels in hGF-SAMP mice, it does not confer protection against DSS-induced colitis symptoms or mitigate inflammation in the long term.
Collapse
Affiliation(s)
- Drishtant Singh
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
| | - Paola Menghini
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luca Di Martino
- Case Digestive Health Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Mouse Models Core, Silvio O’Conte Cleveland Digestive Diseases Research Core Center, Cleveland, OH 44106, USA
- Germ-Free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abigail Raffner Basson
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.); (A.R.-P.); (F.C.)
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Laro J, Xue B, Zheng J, Ness M, Perlman S, McCall LI. SARS-CoV-2 infection unevenly impacts metabolism in the coronal periphery of the lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595414. [PMID: 38952797 PMCID: PMC11216382 DOI: 10.1101/2024.05.22.595414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
COVID-19 significantly decreases amino acids, fatty acids, and most eicosanoidsSARS-CoV-2 preferentially localizes to central lung tissueMetabolic disturbance is highest in peripheral tissue, not central like viral loadSpatial metabolomics allows detection of metabolites not altered overallSARS-CoV-2, the virus responsible for COVID-19, is a highly contagious virus that can lead to hospitalization and death. COVID-19 is characterized by its involvement in the lungs, particularly the lower lobes. To improve patient outcomes and treatment options, a better understanding of how SARS-CoV-2 impacts the body, particularly the lower respiratory system, is required. In this study, we sought to understand the spatial impact of COVID-19 on the lungs of mice infected with mouse-adapted SARS2-N501Y MA30 . Overall, infection caused a decrease in fatty acids, amino acids, and most eicosanoids. When analyzed by segment, viral loads were highest in central lung tissue, while metabolic disturbance was highest in peripheral tissue. Infected peripheral lung tissue was characterized by lower levels of fatty acids and amino acids when compared to central lung tissue. This study highlights the spatial impacts of SARS-CoV-2 and helps explain why peripheral lung tissue is most damaged by COVID-19.
Collapse
|
8
|
Abdallah AM, Doudin A, Sulaiman TO, Jamil O, Arif R, Sada FA, Yassine HM, Elrayess MA, Elzouki AN, Emara MM, Thillaiappan NB, Cyprian FS. Metabolic predictors of COVID-19 mortality and severity: a survival analysis. Front Immunol 2024; 15:1353903. [PMID: 38799469 PMCID: PMC11127595 DOI: 10.3389/fimmu.2024.1353903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The global healthcare burden of COVID-19 pandemic has been unprecedented with a high mortality. Metabolomics, a powerful technique, has been increasingly utilized to study the host response to infections and to understand the progression of multi-system disorders such as COVID-19. Analysis of the host metabolites in response to SARS-CoV-2 infection can provide a snapshot of the endogenous metabolic landscape of the host and its role in shaping the interaction with SARS-CoV-2. Disease severity and consequently the clinical outcomes may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. Hence, the host metabolome can help predict potential clinical risks and outcomes. Methods In this prospective study, using a targeted metabolomics approach, we studied the metabolic signature in 154 COVID-19 patients (males=138, age range 48-69 yrs) and related it to disease severity and mortality. Blood plasma concentrations of metabolites were quantified through LC-MS using MxP Quant 500 kit, which has a coverage of 630 metabolites from 26 biochemical classes including distinct classes of lipids and small organic molecules. We then employed Kaplan-Meier survival analysis to investigate the correlation between various metabolic markers, disease severity and patient outcomes. Results A comparison of survival outcomes between individuals with high levels of various metabolites (amino acids, tryptophan, kynurenine, serotonin, creatine, SDMA, ADMA, 1-MH and carnitine palmitoyltransferase 1 and 2 enzymes) and those with low levels revealed statistically significant differences in survival outcomes. We further used four key metabolic markers (tryptophan, kynurenine, asymmetric dimethylarginine, and 1-Methylhistidine) to develop a COVID-19 mortality risk model through the application of multiple machine-learning methods. Conclusions Metabolomics analysis revealed distinct metabolic signatures among different severity groups, reflecting discernible alterations in amino acid levels and perturbations in tryptophan metabolism. Notably, critical patients exhibited higher levels of short chain acylcarnitines, concomitant with higher concentrations of SDMA, ADMA, and 1-MH in severe cases and non-survivors. Conversely, levels of 3-methylhistidine were lower in this context.
Collapse
Affiliation(s)
| | - Asmma Doudin
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Theeb Osama Sulaiman
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Omar Jamil
- Department of Radiology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Rida Arif
- Emergency Medicine Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Al Sada
- Neurosurgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Abdel-Naser Elzouki
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed M. Emara
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | | | - Farhan S. Cyprian
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Melis R, Braca A, Pagnozzi D, Anedda R. The metabolic footprint of Vero E6 cells highlights the key metabolic routes associated with SARS-CoV-2 infection and response to drug combinations. Sci Rep 2024; 14:7950. [PMID: 38575586 PMCID: PMC10995198 DOI: 10.1038/s41598-024-57726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
SARS-CoV-2 burdens healthcare systems worldwide, yet specific drug-based treatments are still unavailable. Understanding the effects of SARS-CoV-2 on host molecular pathways is critical for providing full descriptions and optimizing therapeutic targets. The present study used Nuclear Magnetic Resonance-based metabolic footprinting to characterize the secreted cellular metabolite levels (exometabolomes) of Vero E6 cells in response to SARS-CoV-2 infection and to two candidate drugs (Remdesivir, RDV, and Azithromycin, AZI), either alone or in combination. SARS-CoV-2 infection appears to force VE6 cells to have increased glucose concentrations from extra-cellular medium and altered energetic metabolism. RDV and AZI, either alone or in combination, can modify the glycolic-gluconeogenesis pathway in the host cell, thus impairing the mitochondrial oxidative damage caused by the SARS-CoV-2 in the primary phase. RDV treatment appears to be associated with a metabolic shift toward the TCA cycle. Our findings reveal a metabolic reprogramming produced by studied pharmacological treatments that protects host cells against virus-induced metabolic damage, with an emphasis on the glycolytic-gluconeogenetic pathway. These findings may help researchers better understand the relevant biological mechanisms involved in viral infection, as well as the creation of mechanistic hypotheses for such candidate drugs, thereby opening up new possibilities for SARS-CoV-2 pharmacological therapy.
Collapse
Affiliation(s)
- Riccardo Melis
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy
| | - Angela Braca
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy
| | - Roberto Anedda
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy.
| |
Collapse
|
10
|
Camelo ALM, Zamora Obando HR, Rocha I, Dias AC, Mesquita ADS, Simionato AVC. COVID-19 and Comorbidities: What Has Been Unveiled by Metabolomics? Metabolites 2024; 14:195. [PMID: 38668323 PMCID: PMC11051775 DOI: 10.3390/metabo14040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has brought about diverse impacts on the global population. Individuals with comorbidities were more susceptible to the severe symptoms caused by the virus. Within the crisis scenario, metabolomics represents a potential area of science capable of providing relevant information for understanding the metabolic pathways associated with the intricate interaction between the viral disease and previous comorbidities. This work aims to provide a comprehensive description of the scientific production pertaining to metabolomics within the specific context of COVID-19 and comorbidities, while highlighting promising areas for exploration by those interested in the subject. In this review, we highlighted the studies of metabolomics that indicated a variety of metabolites associated with comorbidities and COVID-19. Furthermore, we observed that the understanding of the metabolic processes involved between comorbidities and COVID-19 is limited due to the urgent need to report disease outcomes in individuals with comorbidities. The overlap of two or more comorbidities associated with the severity of COVID-19 hinders the comprehension of the significance of each condition. Most identified studies are observational, with a restricted number of patients, due to challenges in sample collection amidst the emergent situation.
Collapse
Affiliation(s)
- André Luiz Melo Camelo
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Hans Rolando Zamora Obando
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Isabela Rocha
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Aline Cristina Dias
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Alessandra de Sousa Mesquita
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
- National Institute of Science and Technology for Bioanalytics—INCTBio, Institute of Chemistry, Universidade Estadual de (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| |
Collapse
|
11
|
Gama-Almeida MC, Pinto GDA, Teixeira L, Hottz ED, Ivens P, Ribeiro H, Garrett R, Torres AG, Carneiro TIA, Barbalho BDO, Ludwig C, Struchiner CJ, Assunção-Miranda I, Valente APC, Bozza FA, Bozza PT, Dos Santos GC, El-Bacha T. Integrated NMR and MS Analysis of the Plasma Metabolome Reveals Major Changes in One-Carbon, Lipid, and Amino Acid Metabolism in Severe and Fatal Cases of COVID-19. Metabolites 2023; 13:879. [PMID: 37512587 PMCID: PMC10384698 DOI: 10.3390/metabo13070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Brazil has the second-highest COVID-19 death rate worldwide, and Rio de Janeiro is among the states with the highest rate in the country. Although vaccine coverage has been achieved, it is anticipated that COVID-19 will transition into an endemic disease. It is concerning that the molecular mechanisms underlying clinical evolution from mild to severe disease, as well as the mechanisms leading to long COVID-19, are not yet fully understood. NMR and MS-based metabolomics were used to identify metabolites associated with COVID-19 pathophysiology and disease outcome. Severe COVID-19 cases (n = 35) were enrolled in two reference centers in Rio de Janeiro within 72 h of ICU admission, alongside 12 non-infected control subjects. COVID-19 patients were grouped into survivors (n = 18) and non-survivors (n = 17). Choline-related metabolites, serine, glycine, and betaine, were reduced in severe COVID-19, indicating dysregulation in methyl donors. Non-survivors had higher levels of creatine/creatinine, 4-hydroxyproline, gluconic acid, and N-acetylserine, indicating liver and kidney dysfunction. Several changes were greater in women; thus, patients' sex should be considered in pandemic surveillance to achieve better disease stratification and improve outcomes. These metabolic alterations may be useful to monitor organ (dys) function and to understand the pathophysiology of acute and possibly post-acute COVID-19 syndromes.
Collapse
Affiliation(s)
- Marcos C Gama-Almeida
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela D A Pinto
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora 36936-900, Brazil
| | - Paula Ivens
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Hygor Ribeiro
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Garrett
- LabMeta, Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Alexandre G Torres
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Talita I A Carneiro
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Bianca de O Barbalho
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2SQ, UK
| | - Claudio J Struchiner
- School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro 22231-080, Brazil
- Institute of Social Medicine, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil
| | - Iranaia Assunção-Miranda
- LaRIV, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Paula C Valente
- National Center for Nuclear Magnetic Resonance-Jiri Jonas, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil
| | - Gilson C Dos Santos
- LabMet-Laboratory of Metabolomics, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Lipid Biochemistry and Lipidomics Laboratory, Department of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|