1
|
Syed AM, Karius AK, Ma J, Wang PY, Hwang PM. Mitochondrial Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Physiology (Bethesda) 2025; 40:0. [PMID: 39960432 DOI: 10.1152/physiol.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisystem disorder of unclear etiology that affects many individuals worldwide. One of its hallmark symptoms is prolonged fatigue following exertion, a feature also observed in long COVID, suggesting an underlying dysfunction in energy production in both conditions. Here, mitochondrial dysfunction and its potential pathogenetic role in these disorders are reviewed.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Alexander K Karius
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Jin Ma
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States
| |
Collapse
|
2
|
Vernon SD, Zheng T, Do H, Marconi VC, Jason LA, Singer NG, Natelson BH, Sherif ZA, Bonilla HF, Taylor E, Mullington JM, Ashktorab H, Laiyemo AO, Brim H, Patterson TF, Akintonwa TT, Sekar A, Peluso MJ, Maniar N, Bateman L, Horwitz LI, Hess R. Incidence and Prevalence of Post-COVID-19 Myalgic Encephalomyelitis: A Report from the Observational RECOVER-Adult Study. J Gen Intern Med 2025; 40:1085-1094. [PMID: 39804551 PMCID: PMC11968624 DOI: 10.1007/s11606-024-09290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/06/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) may occur after infection. How often people develop ME/CFS after SARS-CoV-2 infection is unknown. OBJECTIVE To determine the incidence and prevalence of post-COVID-19 ME/CFS among adults enrolled in the Researching COVID to Enhance Recovery (RECOVER-Adult) study. DESIGN, SETTING, AND PARTICIPANTS RECOVER-Adult is a longitudinal observational cohort study conducted across the U.S. We included participants who had a study visit at least 6 months after infection and had no pre-existing ME/CFS, grouped as (1) acute infected, enrolled within 30 days of infection or enrolled as uninfected who became infected (n=4515); (2) post-acute infected, enrolled greater than 30 days after infection (n=7270); and (3) uninfected (1439). MEASUREMENTS Incidence rate and prevalence of post-COVID-19 ME/CFS based on the 2015 Institute of Medicine ME/CFS clinical diagnostic criteria. RESULTS The incidence rate of ME/CFS in participants followed from time of SARS-CoV-2 infection was 2.66 (95% CI 2.63-2.70) per 100 person-years while the rate in matched uninfected participants was 0.93 (95% CI 0.91-10.95) per 100 person-years: a hazard ratio of 4.93 (95% CI 3.62-6.71). The proportion of all RECOVER-Adult participants that met criteria for ME/CFS following SARS-CoV-2 infection was 4.5% (531 of 11,785) compared to 0.6% (9 of 1439) in uninfected participants. Post-exertional malaise was the most common ME/CFS symptom in infected participants (24.0%, 2830 of 11,785). Most participants with post-COVID-19 ME/CFS also met RECOVER criteria for long COVID (88.7%, 471 of 531). LIMITATIONS The ME/CFS clinical diagnostic criteria uses self-reported symptoms. Symptoms can wax and wane. CONCLUSION ME/CFS is a diagnosable sequela that develops at an increased rate following SARS-CoV-2 infection. RECOVER provides an unprecedented opportunity to study post-COVID-19 ME/CFS.
Collapse
Affiliation(s)
- Suzanne D Vernon
- Bateman Horne Center, 24 S 1100 E Suite 205, Salt Lake City, UT, USA.
| | - Tianyu Zheng
- Department of Population Health Sciences, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Hyungrok Do
- Department of Population Health at NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Vincent C Marconi
- Rollins School of Public Health, Atlanta Veterans Affairs Medical Center, and the Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Leonard A Jason
- Center for Community Research, DePaul University, Chicago, IL, USA
| | - Nora G Singer
- Division of Rheumatology, The MetroHealth System, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin H Natelson
- Pain and Fatigue Study Center, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, District of Columbia, Howard University College of Medicine, Washington, USA
| | - Hector Fabio Bonilla
- Department of Medicine, Division of Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | | | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hassan Ashktorab
- Department of Medicine, Division of Gastroenterology, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Adeyinka O Laiyemo
- Department of Medicine, Division of Gastroenterology, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Hassan Brim
- Department of Pathology, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Thomas F Patterson
- Division of Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Anisha Sekar
- Patient-Led Research Collaborative, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Nikita Maniar
- Department of Neurology & Rehabilitation, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucinda Bateman
- Bateman Horne Center, 24 S 1100 E Suite 205, Salt Lake City, UT, USA
| | - Leora I Horwitz
- Division of Healthcare Delivery Science, Department of Population Health, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Rachel Hess
- Department of Population Health Sciences, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Todhunter-Brown A, Campbell P, Broderick C, Cowie J, Davis B, Fenton C, Markham S, Sellers C, Thomson K. Recent research in myalgic encephalomyelitis/chronic fatigue syndrome: an evidence map. Health Technol Assess 2025:1-78. [PMID: 40162526 PMCID: PMC11973615 DOI: 10.3310/btbd8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome is a chronic condition, classified by the World Health Organization as a nervous system disease, impacting around 17 million people worldwide. Presentation involves persistent fatigue and postexertional malaise (a worsening of symptoms after minimal exertion) and a wide range of other symptoms. Case definitions have historically varied; postexertional malaise is a core diagnostic criterion in current definitions. In 2022, a James Lind Alliance Priority Setting Partnership established research priorities relating to myalgic encephalomyelitis/chronic fatigue syndrome. Objective(s) We created a map of myalgic encephalomyelitis/chronic fatigue syndrome evidence (2018-23), showing the volume and key characteristics of recent research in this field. We considered diagnostic criteria and how current research maps against the James Lind Alliance Priority Setting Partnership research priorities. Methods Using a predefined protocol, we conducted a comprehensive search of Cochrane, MEDLINE, EMBASE and Cumulative Index to Nursing and Allied Health Literature. We included all English-language research studies published between January 2018 and May 2023. Two reviewers independently applied inclusion criteria with consensus involving additional reviewers. Studies including people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome using any criteria (including self-report), of any age and in any setting were eligible. Studies with < 10 myalgic encephalomyelitis/chronic fatigue syndrome participants were excluded. Data extraction, coding of topics (involving stakeholder consultation) and methodological quality assessment of systematic reviews (using A MeaSurement Tool to Assess systematic Reviews 2) was conducted independently by two reviewers, with disagreements resolved by a third reviewer. Studies were presented in an evidence map. Results Of the 11,278 identified studies, 742 met the selection criteria, but only 639 provided sufficient data for inclusion in the evidence map. These reported data from approximately 610,000 people with myalgic encephalomyelitis/chronic fatigue syndrome. There were 81 systematic reviews, 72 experimental studies, 423 observational studies and 63 studies with other designs. Most studies (94%) were from high-income countries. Reporting of participant details was poor; 16% did not report gender, 74% did not report ethnicity and 81% did not report the severity of myalgic encephalomyelitis/chronic fatigue syndrome. Forty-four per cent of studies used multiple diagnostic criteria, 16% did not specify criteria, 24% used a single criterion not requiring postexertional malaise and 10% used a single criterion requiring postexertional malaise. Most (89%) systematic reviews had a low methodological quality. Five main topics (37 subtopics) were included in the evidence map. Of the 639 studies; 53% addressed the topic 'what is the cause?'; 38% 'what is the problem?'; 26% 'what can we do about it?'; 15% 'diagnosis and assessment'; and 13% other topics, including 'living with myalgic encephalomyelitis/chronic fatigue syndrome'. Discussion Studies have been presented in an interactive evidence map according to topic, study design, diagnostic criteria and age. This evidence map should inform decisions about future myalgic encephalomyelitis/chronic fatigue syndrome research. Limitations An evidence map does not summarise what the evidence says. Our evidence map only includes studies published in 2018 or later and in English language. Inconsistent reporting and use of diagnostic criteria limit the interpretation of evidence. We assessed the methodological quality of systematic reviews, but not of primary studies. Conclusions We have produced an interactive evidence map, summarising myalgic encephalomyelitis/chronic fatigue syndrome research from 2018 to 2023. This evidence map can inform strategic plans for future research. We found some, often limited, evidence addressing every James Lind Alliance Priority Setting Partnership priority; high-quality systematic reviews should inform future studies. Funding This article presents independent research funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme as award number NIHR159926.
Collapse
Affiliation(s)
| | | | | | - Julie Cowie
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | | - Candida Fenton
- NESSIE, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Markham
- NESSIE Patient and public involvement member, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Ceri Sellers
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | |
Collapse
|
4
|
Davis L, Higgs M, Snaith A, Lodge TA, Strong J, Espejo-Oltra JA, Kujawski S, Zalewski P, Pretorius E, Hoerger M, Morten KJ. Dysregulation of lipid metabolism, energy production, and oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome, Gulf War Syndrome and fibromyalgia. Front Neurosci 2025; 19:1498981. [PMID: 40129725 PMCID: PMC11931034 DOI: 10.3389/fnins.2025.1498981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Syndrome (GWS), and Fibromyalgia (FM) are complex, chronic illnesses with overlapping clinical features. Symptoms that are reported across these conditions include post-exertional malaise (PEM), fatigue, and pain, yet the etiology of these illnesses remains largely unknown. Diagnosis is challenging in patients with these conditions as definitive biomarkers are lacking; patients are required to meet clinical criteria and often undergo lengthy testing to exclude other conditions, a process that is often prolonged, costly, and burdensome for patients. The identification of reliable validated biomarkers could facilitate earlier and more accurate diagnosis and drive the development of targeted pharmacological therapies that might address the underlying pathophysiology of these diseases. Major driving forces for biomarker identification are the advancing fields of metabolomics and proteomics that allow for comprehensive characterization of metabolites and proteins in biological specimens. Recent technological developments in these areas enable high-throughput analysis of thousands of metabolites and proteins from a variety of biological samples and model systems, that provides a powerful approach to unraveling the metabolic phenotypes associated with these complex diseases. Emerging evidence suggests that ME/CFS, GWS, and FM are all characterized by disturbances in metabolic pathways, particularly those related to energy production, lipid metabolism, and oxidative stress. Altered levels of key metabolites in these pathways have been reported in studies highlighting potential common biochemical abnormalities. The precise mechanisms driving altered metabolic pathways in ME/CFS, GWS, and FM remain to be elucidated; however, the elevated oxidative stress observed across these illnesses may contribute to symptoms and offer a potential target for therapeutic intervention. Investigating the mechanisms, and their role in the disease process, could provide insights into disease pathogenesis and reveal novel treatment targets. As such, comprehensive metabolomic and proteomic analyses are crucial for advancing the understanding of these conditions in-order to identify both common, and unique, metabolic alterations that could serve as diagnostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Leah Davis
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Maisy Higgs
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Ailsa Snaith
- Veterans and Families Institute for Military Social Research, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Tiffany A. Lodge
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - James Strong
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| | - Jose A. Espejo-Oltra
- Department of Pathology, Catholic University of Valencia Saint Vincent Martyr, Valencia, Spain
| | - Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paweł Zalewski
- Department of Exercise Physiology and Functional Anatomy, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, Nicolaus Copernicus University in Torun, Torun, Poland
- Department of Experimental and Clinical Physiology, Warsaw Medical University, Warszawa, Poland
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Hoerger
- Departments of Psychology, Psychiatry, and Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA, United States
| | - Karl J. Morten
- The Nuffield Department of Women's and Reproductive Health, The Women Centre, The John Radcliffe Hospital, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Xiong R, Aiken E, Caldwell R, Vernon SD, Kozhaya L, Gunter C, Bateman L, Unutmaz D, Oh J. BioMapAI: Artificial Intelligence Multi-Omics Modeling of Myalgic Encephalomyelitis / Chronic Fatigue Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.24.600378. [PMID: 38979186 PMCID: PMC11230215 DOI: 10.1101/2024.06.24.600378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic illness with a multifactorial etiology and heterogeneous symptomatology, posing major challenges for diagnosis and treatment. Here, we present BioMapAI, a supervised deep neural network trained on a four-year, longitudinal, multi-omics dataset from 249 participants, which integrates gut metagenomics, plasma metabolomics, immune cell profiling, blood laboratory data, and detailed clinical symptoms. By simultaneously modeling these diverse data types to predict clinical severity, BioMapAI identifies disease- and symptom-specific biomarkers and robustly classifies ME/CFS in both held-out and independent external cohorts. Using an explainable AI approach, we construct the first connectivity map spanning the microbiome, immune system, and plasma metabolome in health and ME/CFS, adjusted for age, gender, and additional clinical factors. This map uncovers disrupted associations between microbial metabolism (e.g., short-chain fatty acids, branched-chain amino acids, tryptophan, benzoate), plasma lipids and bile acids, and heightened inflammatory responses in mucosal and inflammatory T cell subsets (MAIT, γδT) secreting IFNγ and GzA. Overall, BioMapAI provides unprecedented systems-level insights into ME/CFS, refining existing hypotheses and hypothesizing new pathways associated to the disease's heterogeneous symptoms.
Collapse
Affiliation(s)
- Ruoyun Xiong
- The Jackson Laboratory, Farmington, CT, 06032
- The University of Connecticut Health Center, Farmington, CT, 06030
- Current address: Duke University, Durham, NC 27705, USA
| | | | | | | | | | - Courtney Gunter
- The Jackson Laboratory, Farmington, CT, 06032
- The University of Connecticut Health Center, Farmington, CT, 06030
| | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT, 06032
- Current address: Duke University, Durham, NC 27705, USA
| |
Collapse
|
6
|
Thomas N, Chau T, Tantanis D, Huang K, Scheinberg A, Gooley PR, Josev EK, Knight SJ, Armstrong CW. Serial Paediatrics Omics Tracking in Myalgic Encephalomyelitis (SPOT-ME): protocol paper for a multidisciplinary, observational study of clinical and biological markers of paediatric myalgic encephalomyelitis/chronic fatigue syndrome in Australian adolescents aged 12-19 years. BMJ Open 2024; 14:e089038. [PMID: 39658280 PMCID: PMC11647375 DOI: 10.1136/bmjopen-2024-089038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling condition that can affect adolescents during a vulnerable period of development. The underlying biological mechanisms for ME/CFS remain unclear and have rarely been investigated in the adolescent population, despite this period representing an age peak in the overall incidence. The primary objective of this is to provide a foundational set of biological data on adolescent ME/CFS patients. Data generated will be compared with controls and over several time points within each patient to potentially develop a biomarker signature of the disease, identify subsets or clusters of patients, and to unveil the pathomechanisms of the disease. METHODS AND ANALYSIS This protocol paper outlines a comprehensive, multilevel, longitudinal, observational study in paediatric ME/CFS. ME/CFS patients aged 12-19 years and controls will donate biosamples of urine, blood, and peripheral blood mononuclear cells for an in-depth omics profiling analysis (whole-genome sequencing, metabolomics and quantitative proteomics) while being assessed by gold-standard clinical and neuropsychological measures. ME/CFS patients will then be provided with a take-home kit that enables them to collect urine and blood microsamples during an average day and during days when they are experiencing postexertional malaise. The longitudinal repeated-measures study design is optimal for studying heterogeneous chronic diseases like ME/CFS as it can detect subtle changes, control for individual differences, enhance precision and boost statistical power. The outcomes of this research have the potential to identify biomarker signatures, aid in understanding the underlying mechanisms, and ultimately, improve the lives of children with ME/CFS. ETHICS AND DISSEMINATION This project was approved by the Royal Children's Hospital's Human Research Ethics Committee (HREC 74175). Findings from this study will be disseminated through peer-reviewed journal publications and presentations at relevant conferences. All participants will be provided with a summary of the study's findings once the project is completed.
Collapse
Affiliation(s)
- Natalie Thomas
- Department of Biochemistry and Pharmacology, The University of Melbourne Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
- Neurodisability & Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Tracey Chau
- Neurodisability & Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Darcy Tantanis
- Department of Biochemistry and Pharmacology, The University of Melbourne Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
- Neurodisability & Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Katherine Huang
- Department of Biochemistry and Pharmacology, The University of Melbourne Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Adam Scheinberg
- Neurodisability & Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Victorian Paediatric Rehabilitation Service, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, The University of Melbourne Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Elisha K Josev
- Neurodisability & Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Sarah J Knight
- Neurodisability & Rehabilitation, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- The University of Melbourne Melbourne School of Psychological Sciences, Melbourne, Victoria, Australia
| | - Christopher W Armstrong
- Department of Biochemistry and Pharmacology, The University of Melbourne Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Vashishth A, Sharma G, Sarkar A, Kadian M, Jain M, Kumar A. Doxophylline, a Non-Selective Phosphodiesterase Inhibitor, Protects Against Chronic Fatigue-Induced Neurobehavioral, Biochemical, and Mitochondrial Alterations. Neurochem Res 2024; 50:34. [PMID: 39601912 DOI: 10.1007/s11064-024-04295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/19/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Chronic fatigue stress (CFS) is a multisystem disorder which exhibits multiple signs of neurological complications like brain fog, cognitive deficits and oxidative stress with no specific treatment. Doxophylline, a non-selective phosphodiesterase inhibitor (PDEI), has anti-inflammatory properties with enhanced blood-brain barrier penetration and tissue specificity. We have evaluated the neuroprotective potential of doxophylline in a murine model of forced swim test (FST) induced CFS and in H2O2 (hydrogen peroxide) induced oxidative stress in PC12 cells. An FST model to induce a state of CFS in mice was induced by forcing them to swim daily for 6 min for 15 days. The drug was administered daily 30 min prior to FST. The immobility period was compared for day 1 and day 15. Animals were sacrificed on day 16 for biochemical, mitochondrial, and histopathological estimations in the brain. Cytotoxicity assay, reactive oxygen species (ROS) and nuclear morphology determination were carried out in PC12 cells. A significant increase in immobility has been observed on the 15th day in CFS-induced mice compared to doxophylline treated group. Neurobehavioral studies revealed hypo locomotion, anxiety, motor incoordination, and memory deficit. Biochemical analysis showed a significant change in oxidative stress markers (superoxide dismutase (SOD), reduced glutathione (GSH), catalase, lipid peroxidation (LPO) and nitrite levels) and acetylcholinesterase enzyme activity (AChE) in brain homogenates. Doxophylline pre-treatment protects against these impairments. In PC12 cell lines, doxophylline exhibits alleviation against H2O2-induced oxidative stress, intracellular ROS generation, and changes in nuclear morphology. Doxophylline could be promising and possess therapeutic potential in CFS treatment. Further research is needed to test if doxophylline can be repurposed for neurological disorders.
Collapse
Affiliation(s)
- Anushka Vashishth
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Huang K, G C de Sá A, Thomas N, Phair RD, Gooley PR, Ascher DB, Armstrong CW. Discriminating Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and comorbid conditions using metabolomics in UK Biobank. COMMUNICATIONS MEDICINE 2024; 4:248. [PMID: 39592839 PMCID: PMC11599898 DOI: 10.1038/s43856-024-00669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Diagnosing complex illnesses like Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is complicated due to the diverse symptomology and presence of comorbid conditions. ME/CFS patients often present with multiple health issues, therefore, incorporating comorbidities into research can provide a more accurate understanding of the condition's symptomatology and severity, to better reflect real-life patient experiences. METHODS We performed association studies and machine learning on 1194 ME/CFS individuals with blood plasma nuclear magnetic resonance (NMR) metabolomics profiles, and seven exclusive comorbid cohorts: hypertension (n = 13,559), depression (n = 2522), asthma (n = 6406), irritable bowel syndrome (n = 859), hay fever (n = 3025), hypothyroidism (n = 1226), migraine (n = 1551) and a non-diseased control group (n = 53,009). RESULTS We present a lipoprotein perspective on ME/CFS pathophysiology, highlighting gender-specific differences and identifying overlapping associations with comorbid conditions, specifically surface lipids, and ketone bodies from 168 significant individual biomarker associations. Additionally, we searched for, trained, and optimised a machine learning algorithm, resulting in a predictive model using 19 baseline characteristics and nine NMR biomarkers which could identify ME/CFS with an AUC of 0.83 and recall of 0.70. A multi-variable score was subsequently derived from the same 28 features, which exhibited ~2.5 times greater association than the top individual biomarker. CONCLUSIONS This study provides an end-to-end analytical workflow that explores the potential clinical utility that association scores may have for ME/CFS and other difficult to diagnose conditions.
Collapse
Affiliation(s)
- Katherine Huang
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Alex G C de Sá
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, QLD, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Natalie Thomas
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Robert D Phair
- Integrative Bioinformatics, Inc., Mountain View, CA, USA
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, QLD, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Christopher W Armstrong
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Abujrais S, Vallianatou T, Bergquist J. Untargeted Metabolomics and Quantitative Analysis of Tryptophan Metabolites in Myalgic Encephalomyelitis Patients and Healthy Volunteers: A Comparative Study Using High-Resolution Mass Spectrometry. ACS Chem Neurosci 2024; 15:3525-3534. [PMID: 39302151 PMCID: PMC11450765 DOI: 10.1021/acschemneuro.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex illness characterized by severe and often disabling physical and mental fatigue. So far, scientists have not been able to fully pinpoint the biological cause of the illness and yet it affects millions of people worldwide. To gain a better understanding of ME/CFS, we compared the metabolic networks in the plasma of 38 ME/CFS patients to those of 24 healthy control participants. This involved an untargeted metabolomics approach in addition to the measurement of targeted substances including tryptophan and its metabolites, as well as tyrosine, phenylalanine, B vitamins, and hypoxanthine using liquid chromatography coupled to mass spectrometry. We observed significant alterations in several metabolic pathways, including the vitamin B3, arginine-proline, and aspartate-asparagine pathways, in the untargeted analysis. The targeted analysis revealed changes in the levels of 3-hydroxyanthranilic acid, 3-hydroxykynurenine, hypoxanthine, and phenylalanine in ME/CFS patients compared to the control group. These findings suggest potential alterations in immune system response and oxidative stress in ME/CFS patients.
Collapse
Affiliation(s)
- Sandy Abujrais
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
- The
ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| | - Theodosia Vallianatou
- Spatial
Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University, Box
591, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
- The
ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
10
|
Liu T, Sun W, Guo S, Chen T, Zhu M, Yuan Z, Li B, Lu J, Shao Y, Qu Y, Sun Z, Feng C, Yang T. Research progress on pathogenesis of chronic fatigue syndrome and treatment of traditional Chinese and Western medicine. Auton Neurosci 2024; 255:103198. [PMID: 39047501 DOI: 10.1016/j.autneu.2024.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Chronic Fatigue Syndrome (CFS) is a complex and perplexing medical disorder primarily characterized by persistent and debilitating fatigue, often accompanied by a constellation of symptoms, including weakness, dyspnea, arthromyalgia, sore throat, and disrupted sleep patterns. CFS is defined by its persistent or recurrent manifestation for a minimum duration of six months, marked by an enduring and unrelenting fatigue that remains refractory to rest. In recent decades, this condition has garnered significant attention within the medical community. While the precise etiology of CFS remains elusive, it is postulated to be multifactorial. CFS is potentially associated with various contributory factors such as infections, chronic stress, genetic predisposition, immune dysregulation, and psychosocial influences. The pathophysiological underpinnings of CFS encompass viral infections, immune system dysregulation, neuroendocrine aberrations, heightened oxidative stress, and perturbations in gut microbiota. Presently, clinical management predominantly relies on pharmaceutical interventions or singular therapeutic modalities, offering alleviation of specific symptoms but exhibiting inherent limitations. Traditional Chinese Medicine (TCM) interventions have emerged as a promising paradigm, demonstrating notable efficacy through their multimodal, multi-target, multi-pathway approach, and holistic regulatory mechanisms. These interventions effectively address the lacunae in contemporary medical interventions. This comprehensive review synthesizes recent advancements in the understanding of the etiological factors, pathophysiological mechanisms, and interventional strategies for CFS, drawing from a corpus of domestic and international literature. Its aim is to furnish valuable insights for clinicians actively involved in diagnosing and treating CFS, as well as for pharmaceutical researchers delving into innovative drug development pathways. Moreover, it seeks to address the intricate challenges confronted by clinical practitioners in managing this incapacitating condition.
Collapse
Affiliation(s)
- Tingting Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weibo Sun
- Harbin Medical University, Harbin, China
| | - Shuhao Guo
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tao Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Minghang Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiying Yuan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Binbin Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Lu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuying Shao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanyuan Qu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chuwen Feng
- Heilongjiang University of Chinese Medicine, Harbin, China; Rehabilitation Medicine Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Chinese Medicine Informotics in Heilongjiang Province, 24 Heping Road, Harbin, China
| | - Tiansong Yang
- Heilongjiang University of Chinese Medicine, Harbin, China; Rehabilitation Medicine Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Chinese Medicine Informotics in Heilongjiang Province, 24 Heping Road, Harbin, China.
| |
Collapse
|
11
|
Pipper C, Bliem L, León LE, Mennickent D, Bodner C, Guzmán-Gutiérrez E, Stingl M, Untersmayr E, Wagner B, Bertinat R, Sepúlveda N, Westermeier F. Sex and disease severity-based analysis of steroid hormones in ME/CFS. J Endocrinol Invest 2024; 47:2235-2248. [PMID: 38724880 PMCID: PMC11369000 DOI: 10.1007/s40618-024-02334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/09/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by persistent fatigue and decreased daily activity following physical and/or cognitive exertion. While ME/CFS affects both sexes, there is a higher prevalence in women. However, studies evaluating this sex-related bias are limited. METHODS Circulating steroid hormones, including mineralocorticoids (aldosterone), glucocorticoids (cortisol, corticosterone, 11-deoxycortisol, cortisone), androgens (androstenedione, testosterone), and progestins (progesterone, 17α-hydroxyprogesterone), were measured in plasma samples using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Samples were obtained from mild/moderate (ME/CFSmm; females, n=20; males, n=8), severely affected patients (ME/CFSsa; females, n=24; males, n=6), and healthy controls (HC, females, n=12; males, n=17). RESULTS After correction for multiple testing, we observed that circulating levels of 11-deoxycortisol, 17α-hydroxyprogesterone in females, and progesterone in males were significantly different between HC, ME/CFSmm, and ME/CFSsa. Comparing two independent groups, we found that female ME/CFSsa had higher levels of 11-deoxycortisol (vs. HC and ME/CFSmm) and 17α-hydroxyprogesterone (vs. HC). In addition, female ME/CFSmm showed a significant increase in progesterone levels compared to HC. In contrast, our study found that male ME/CFSmm had lower circulating levels of cortisol and corticosterone, while progesterone levels were elevated compared to HC. In addition to these univariate analyses, our correlational and multivariate approaches identified differential associations between our study groups. Also, using two-component partial least squares discriminant analysis (PLS-DA), we were able to discriminate ME/CFS from HC with an accuracy of 0.712 and 0.846 for females and males, respectively. CONCLUSION Our findings suggest the potential value of including steroid hormones in future studies aimed at improving stratification in ME/CFS. Additionally, our results provide new perspectives to explore the clinical relevance of these differences within specific patient subgroups.
Collapse
Affiliation(s)
- Cornelia Pipper
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Linda Bliem
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Luis E León
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Daniela Mennickent
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Claudia Bodner
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Enrique Guzmán-Gutiérrez
- Machine Learning Applied in Biomedicine (MLAB), Concepción, Chile
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Bernhard Wagner
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Nuno Sepúlveda
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- CEAUL - Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria.
- Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
12
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Yagin FH, Shateri A, Nasiri H, Yagin B, Colak C, Alghannam AF. Development of an expert system for the classification of myalgic encephalomyelitis/chronic fatigue syndrome. PeerJ Comput Sci 2024; 10:e1857. [PMID: 38660205 PMCID: PMC11041999 DOI: 10.7717/peerj-cs.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/14/2024] [Indexed: 04/26/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe condition with an uncertain origin and a dismal prognosis. There is presently no precise diagnostic test for ME/CFS, and the diagnosis is determined primarily by the presence of certain symptoms. The current study presents an explainable artificial intelligence (XAI) integrated machine learning (ML) framework that identifies and classifies potential metabolic biomarkers of ME/CFS. Metabolomic data from blood samples from 19 controls and 32 ME/CFS patients, all female, who were between age and body mass index (BMI) frequency-matched groups, were used to develop the XAI-based model. The dataset contained 832 metabolites, and after feature selection, the model was developed using only 50 metabolites, meaning less medical knowledge is required, thus reducing diagnostic costs and improving prognostic time. The computational method was developed using six different ML algorithms before and after feature selection. The final classification model was explained using the XAI approach, SHAP. The best-performing classification model (XGBoost) achieved an area under the receiver operating characteristic curve (AUCROC) value of 98.85%. SHAP results showed that decreased levels of alpha-CEHC sulfate, hypoxanthine, and phenylacetylglutamine, as well as increased levels of N-delta-acetylornithine and oleoyl-linoloyl-glycerol (18:1/18:2)[2], increased the risk of ME/CFS. Besides the robustness of the methodology used, the results showed that the combination of ML and XAI could explain the biomarker prediction of ME/CFS and provided a first step toward establishing prognostic models for ME/CFS.
Collapse
Affiliation(s)
- Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Inonu University, Malatya, Türkiye
| | - Ahmadreza Shateri
- Electrical and Computer Engineering Department, Semnan University, Semnan, Iran
| | - Hamid Nasiri
- Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Burak Yagin
- Department of Biostatistics and Medical Informatics, Inonu University, Malatya, Türkiye
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Inonu University, Malatya, Türkiye
| | - Abdullah F. Alghannam
- Lifestyle and Health Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Armstrong CW, Mensah FFK, Leandro MJ, Reddy V, Gooley PR, Berkovitz S, Cambridge G. In vitro B cell experiments explore the role of CD24, CD38, and energy metabolism in ME/CFS. Front Immunol 2024; 14:1178882. [PMID: 38259473 PMCID: PMC10800820 DOI: 10.3389/fimmu.2023.1178882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Disturbances of energy metabolism contribute to the clinical manifestations of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Previously, we found that B cells from ME/CFS patients have an increased expression of CD24, a modulator of many cellular functions including those of cell stress. The relative ability of B cells from ME/CFS patients and healthy controls (HC) to respond to rapid changes in energy demand was compared. Methods CD24, the ectonucleotidases CD39 and CD73, the NAD-degrading enzyme CD38, and mitochondrial mass (MM) were measured following cross-linking of the B cell receptor and costimulation with either T-cell-dependent or Toll-like-receptor-9-dependent agonists. The levels of metabolites consumed/produced were measured using 1H-NMR spectroscopy and analyzed in relation to cell growth and immunophenotype. Results Proliferating B cells from patients with ME/CFS showed a lower mitochondrial mass and a significantly increased usage of essential amino acids compared with those from HC, with a significantly delayed loss of CD24 and an increased expression of CD38 following stimulation. Discussion The immunophenotype results suggested the triggering of a stress response in ME/CFS B cells associated with the increased usage of additional substrates to maintain necessary ATP levels. Disturbances in energy metabolism in ME/CFS B cells were thus confirmed in a dynamic in vitro model, providing the basis for further mechanistic investigations.
Collapse
Affiliation(s)
- Christopher W. Armstrong
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Fane F. K. Mensah
- Department of Medicine, University College London, London, United Kingdom
| | - Maria J. Leandro
- Department of Medicine, University College London, London, United Kingdom
| | - Venkat Reddy
- Department of Medicine, University College London, London, United Kingdom
| | - Paul R. Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Saul Berkovitz
- Chronic Fatigue Service, Royal London Hospital of Integrated Medicine, University College Hospitals National Health Service Trust, London, United Kingdom
| | | |
Collapse
|
15
|
Kaczmarek MP. Heterogenous circulating miRNA changes in ME/CFS converge on a unified cluster of target genes: A computational analysis. PLoS One 2023; 18:e0296060. [PMID: 38157384 PMCID: PMC10756525 DOI: 10.1371/journal.pone.0296060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
Myalgic Encephalomyelitis / Chronic Fatigue Syndrome is a debilitating, multisystem disease of unknown mechanism, with a currently ongoing search for its endocrine mediators. Circulating microRNAs (miRNA) are a promising candidate for such a mediator and have been reported as significantly different in the patient population versus healthy controls by multiple studies. None of these studies, however, agree with each other on which specific miRNA are under- or over-expressed. This discrepancy is the subject of the computational study presented here, in which a deep dive into the predicted gene targets and their functional interactions is conducted, revealing that the aberrant circulating miRNAs in ME/CFS, although different between patients, seem to mainly target the same specific set of genes (p ≈ 0.0018), which are very functionally related to each other (p ≲ 0.0001). Further analysis of these functional relations, based on directional pathway information, points to impairments in exercise hyperemia, angiogenic adaptations to hypoxia, antioxidant defenses, and TGF-β signaling, as well as a shift towards mitochondrial fission, corroborating and explaining previous direct observations in ME/CFS. Many transcription factors and epigenetic modulators are implicated as well, with currently uncertain downstream combinatory effects. As the results show significant similarity to previous research on latent herpesvirus involvement in ME/CFS, the possibility of a herpesvirus origin of these miRNA changes is also explored through further computational analysis and literature review, showing that 8 out of the 10 most central miRNAs analyzed are known to be upregulated by various herpesviruses. In total, the results establish an appreciable and possibly central role for circulating microRNAs in ME/CFS etiology that merits further experimental research.
Collapse
|
16
|
Li S, Guo R, Wang J, Zheng X, Zhao S, Zhang Z, Yu W, Li S, Zheng P. The effect of blood flow restriction exercise on N-lactoylphenylalanine and appetite regulation in obese adults: a cross-design study. Front Endocrinol (Lausanne) 2023; 14:1289574. [PMID: 38116312 PMCID: PMC10728722 DOI: 10.3389/fendo.2023.1289574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Background N-lactoylphenylalanine (Lac-Phe) is a new form of "exerkines" closely related to lactate (La), which may be able to inhibit appetite. Blood flow restriction (BFR) can lead to local tissue hypoxia and increase lactate accumulation. Therefore, this study investigated the effects of combining Moderate-intensity Continuous Exercise (MICE) with BFR on Lac-Phe and appetite regulation in obese adults. Methods This study employed the cross-design study and recruited 14 obese adults aged 18-24 years. The participants were randomly divided into three groups and performed several tests with specific experimental conditions: (1) M group (MICE without BFR, 60%VO2max, 200 kJ); (2) B group (MICE with BFR, 60%VO2max, 200 kJ); and (3) C group (control session without exercise). Participants were given a standardized meal 60 min before exercise and a ad libitum 60 min after exercise. In addition, blood and Visual Analogue Scale (VAS) were collected before, immediately after, and 1 hour after performing the exercise. Results No significant difference in each index was detected before exercise. After exercise, the primary differential metabolites detected in the M and B groups were xanthine, La, succinate, Lac-Phe, citrate, urocanic acid, and myristic acid. Apart from that, the major enrichment pathways include the citrate cycle, alanine, aspartate, and glutamate metabolism. The enhanced Lac-Phe and La level in the B group was higher than M and C groups. Hunger of the B group immediately after exercise substantially differed from M group. The total ghrelin, glucagon-like peptide-1 and hunger in the B group 1 hour after exercise differed substantially from M group. The results of calorie intake showed no significant difference among the indexes in each group. Conclusions In conclusion, this cross-design study demonstrated that the combined MICE and BFR exercise reduced the appetite of obese adults by promoting the secretion of Lac-Phe and ghrelin. However, the exercise did not considerably affect the subsequent ad libitum intake.
Collapse
Affiliation(s)
- Shuoqi Li
- School of Sports Science, Nantong University, Nantong, China
| | - Rong Guo
- School of Foreign Languages, Ludong University, Yantai, China
| | - Juncheng Wang
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Xinyu Zheng
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Shuo Zhao
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Zhiru Zhang
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Wenbing Yu
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Shiming Li
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Peng Zheng
- Department of Physical Education, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Yu CT, Farhat Z, Livinski AA, Loftfield E, Zanetti KA. Characteristics of Cancer Epidemiology Studies That Employ Metabolomics: A Scoping Review. Cancer Epidemiol Biomarkers Prev 2023; 32:1130-1145. [PMID: 37410086 PMCID: PMC10472112 DOI: 10.1158/1055-9965.epi-23-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
An increasing number of cancer epidemiology studies use metabolomics assays. This scoping review characterizes trends in the literature in terms of study design, population characteristics, and metabolomics approaches and identifies opportunities for future growth and improvement. We searched PubMed/MEDLINE, Embase, Scopus, and Web of Science: Core Collection databases and included research articles that used metabolomics to primarily study cancer, contained a minimum of 100 cases in each main analysis stratum, used an epidemiologic study design, and were published in English from 1998 to June 2021. A total of 2,048 articles were screened, of which 314 full texts were further assessed resulting in 77 included articles. The most well-studied cancers were colorectal (19.5%), prostate (19.5%), and breast (19.5%). Most studies used a nested case-control design to estimate associations between individual metabolites and cancer risk and a liquid chromatography-tandem mass spectrometry untargeted or semi-targeted approach to measure metabolites in blood. Studies were geographically diverse, including countries in Asia, Europe, and North America; 27.3% of studies reported on participant race, the majority reporting White participants. Most studies (70.2%) included fewer than 300 cancer cases in their main analysis. This scoping review identified key areas for improvement, including needs for standardized race and ethnicity reporting, more diverse study populations, and larger studies.
Collapse
Affiliation(s)
- Catherine T. Yu
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland
| | - Zeinab Farhat
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Alicia A. Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Krista A. Zanetti
- Office of Nutrition Research, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Komaroff AL, Lipkin WI. ME/CFS and Long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med (Lausanne) 2023; 10:1187163. [PMID: 37342500 PMCID: PMC10278546 DOI: 10.3389/fmed.2023.1187163] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Some patients remain unwell for months after "recovering" from acute COVID-19. They develop persistent fatigue, cognitive problems, headaches, disrupted sleep, myalgias and arthralgias, post-exertional malaise, orthostatic intolerance and other symptoms that greatly interfere with their ability to function and that can leave some people housebound and disabled. The illness (Long COVID) is similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as well as to persisting illnesses that can follow a wide variety of other infectious agents and following major traumatic injury. Together, these illnesses are projected to cost the U.S. trillions of dollars. In this review, we first compare the symptoms of ME/CFS and Long COVID, noting the considerable similarities and the few differences. We then compare in extensive detail the underlying pathophysiology of these two conditions, focusing on abnormalities of the central and autonomic nervous system, lungs, heart, vasculature, immune system, gut microbiome, energy metabolism and redox balance. This comparison highlights how strong the evidence is for each abnormality, in each illness, and helps to set priorities for future investigation. The review provides a current road map to the extensive literature on the underlying biology of both illnesses.
Collapse
Affiliation(s)
- Anthony L. Komaroff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, United States
| |
Collapse
|
19
|
Maksoud R, Magawa C, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. Biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a systematic review. BMC Med 2023; 21:189. [PMID: 37226227 DOI: 10.1186/s12916-023-02893-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multifaceted condition that affects most body systems. There is currently no known diagnostic biomarker; instead, diagnosis is dependent on application of symptom-based case criteria following exclusion of any other potential medical conditions. While there are some studies that report potential biomarkers for ME/CFS, their efficacy has not been validated. The aim of this systematic review is to collate and appraise literature pertaining to a potential biomarker(s) which may effectively differentiate ME/CFS patients from healthy controls. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Cochrane review guidelines. PubMed, Embase and Scopus were systematically searched for articles containing "biomarker" and "ME/CFS" keywords in the abstract or title and if they included the following criteria: (1) were observational studies published between December 1994 and April 2022; (2) involved adult human participants; (3) full text is available in English (4) original research; (5) diagnosis of ME/CFS patients made according to the Fukuda criteria (1994), Canadian Consensus Criteria (2003), International Consensus Criteria (2011) or Institute of Medicine Criteria (2015); (6) study investigated potential biomarkers of ME/CFS compared to healthy controls. Quality and Bias were assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Case Control Studies. RESULTS A total of 101 publications were included in this systematic review. Potential biomarkers ranged from genetic/epigenetic (19.8%), immunological (29.7%), metabolomics/mitochondrial/microbiome (14.85%), endovascular/circulatory (17.82%), neurological (7.92%), ion channel (8.91%) and physical dysfunction biomarkers (8.91%). Most of the potential biomarkers reported were blood-based (79.2%). Use of lymphocytes as a model to investigate ME/CFS pathology was prominent among immune-based biomarkers. Most biomarkers had secondary (43.56%) or tertiary (54.47%) selectivity, which is the ability for the biomarker to identify a disease-causing agent, and a moderate (59.40%) to complex (39.60%) ease-of-detection, including the requirement of specialised equipment. CONCLUSIONS All potential ME/CFS biomarkers differed in efficiency, quality, and translatability as a diagnostic marker. Reproducibility of findings between the included publications were limited, however, several studies validated the involvement of immune dysfunction in the pathology of ME/CFS and the use of lymphocytes as a model to investigate the pathomechanism of illness. The heterogeneity shown across many of the included studies highlights the need for multidisciplinary research and uniform protocols in ME/CFS biomarker research.
Collapse
Affiliation(s)
- Rebekah Maksoud
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia.
| | - Chandi Magawa
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
20
|
Giloteaux L, Li J, Hornig M, Lipkin WI, Ruppert D, Hanson MR. Proteomics and cytokine analyses distinguish myalgic encephalomyelitis/chronic fatigue syndrome cases from controls. J Transl Med 2023; 21:322. [PMID: 37179299 PMCID: PMC10182359 DOI: 10.1186/s12967-023-04179-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS. METHODS We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects. RESULTS ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. CONCLUSIONS These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jiayin Li
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Departments of Neurology and Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Ruppert
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
- School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Glass KA, Germain A, Huang YV, Hanson MR. Urine Metabolomics Exposes Anomalous Recovery after Maximal Exertion in Female ME/CFS Patients. Int J Mol Sci 2023; 24:3685. [PMID: 36835097 PMCID: PMC9958671 DOI: 10.3390/ijms24043685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with unknown etiology or effective treatments. Post-exertional malaise (PEM) is a key symptom that distinguishes ME/CFS patients. Investigating changes in the urine metabolome between ME/CFS patients and healthy subjects following exertion may help us understand PEM. The aim of this pilot study was to comprehensively characterize the urine metabolomes of eight female healthy sedentary control subjects and ten female ME/CFS patients in response to a maximal cardiopulmonary exercise test (CPET). Each subject provided urine samples at baseline and 24 h post-exercise. A total of 1403 metabolites were detected via LC-MS/MS by Metabolon® including amino acids, carbohydrates, lipids, nucleotides, cofactors and vitamins, xenobiotics, and unknown compounds. Using a linear mixed effects model, pathway enrichment analysis, topology analysis, and correlations between urine and plasma metabolite levels, significant differences were discovered between controls and ME/CFS patients in many lipid (steroids, acyl carnitines and acyl glycines) and amino acid subpathways (cysteine, methionine, SAM, and taurine; leucine, isoleucine, and valine; polyamine; tryptophan; and urea cycle, arginine and proline). Our most unanticipated discovery is the lack of changes in the urine metabolome of ME/CFS patients during recovery while significant changes are induced in controls after CPET, potentially demonstrating the lack of adaptation to a severe stress in ME/CFS patients.
Collapse
Affiliation(s)
| | | | | | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Xiong R, Gunter C, Fleming E, Vernon SD, Bateman L, Unutmaz D, Oh J. Multi-'omics of gut microbiome-host interactions in short- and long-term myalgic encephalomyelitis/chronic fatigue syndrome patients. Cell Host Microbe 2023; 31:273-287.e5. [PMID: 36758521 PMCID: PMC10353054 DOI: 10.1016/j.chom.2023.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/14/2022] [Accepted: 12/30/2022] [Indexed: 02/11/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive. Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79). First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations. Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate. In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.
Collapse
Affiliation(s)
- Ruoyun Xiong
- The Jackson Laboratory, Farmington, CT 06032, USA; The University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT 06032, USA.
| |
Collapse
|
23
|
Van Booven DJ, Gamer J, Joseph A, Perez M, Zarnowski O, Pandya M, Collado F, Klimas N, Oltra E, Nathanson L. Stress-Induced Transcriptomic Changes in Females with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Reveal Disrupted Immune Signatures. Int J Mol Sci 2023; 24:2698. [PMID: 36769022 PMCID: PMC9916639 DOI: 10.3390/ijms24032698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex multi-organ illness characterized by unexplained debilitating fatigue and post-exertional malaise (PEM), which is defined as a worsening of symptoms following even minor physical or mental exertion. Our study aimed to evaluate transcriptomic changes in ME/CFS female patients undergoing an exercise challenge intended to precipitate PEM. Our time points (baseline before exercise challenge, the point of maximal exertion, and after an exercise challenge) allowed for the exploration of the transcriptomic response to exercise and recovery in female patients with ME/CFS, as compared to healthy controls (HCs). Under maximal exertion, ME/CFS patients did not show significant changes in gene expression, while HCs demonstrated altered functional gene networks related to signaling and integral functions of their immune cells. During the recovery period (commonly during onset of PEM), female ME/CFS patients showed dysregulated immune signaling pathways and dysfunctional cellular responses to stress. The unique functional pathways identified provide a foundation for future research efforts into the disease, as well as for potential targeted treatment options.
Collapse
Affiliation(s)
- Derek J. Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jackson Gamer
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Andrew Joseph
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Melanie Perez
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Oskar Zarnowski
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Meha Pandya
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Farquhar Honors College, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Fanny Collado
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA
- South Florida Veterans Affairs Foundation for Research and Education Inc., Fort Lauderdale, FL 33125, USA
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
24
|
Maya J, Leddy SM, Gottschalk CG, Peterson DL, Hanson MR. Altered Fatty Acid Oxidation in Lymphocyte Populations of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2023; 24:2010. [PMID: 36768336 PMCID: PMC9916395 DOI: 10.3390/ijms24032010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disabling multisystem illness in which individuals are plagued with fatigue, inflammatory symptoms, cognitive dysfunction, and the hallmark symptom, post-exertional malaise. While the cause of this disease remains unknown, there is evidence of a potential infectious component that, along with patient symptoms and common onsets of the disease, implicates immune system dysfunction. To further our understanding of the state of ME/CFS lymphocytes, we characterized the role of fatty acids in isolated Natural Killer cells, CD4+ T cells, and CD8+ T cells in circulation and after overnight stimulation, through implicit perturbations to fatty acid oxidation. We examined samples obtained from at least 8 and as many as 20 subjects for immune cell fatty acid characterization in a variety of experiments and found that all three isolated cell types increased their utilization of lipids and levels of pertinent proteins involved in this metabolic pathway in ME/CFS samples, particularly during higher energy demands and activation. In T cells, we characterized the cell populations contributing to these metabolic shifts, which included CD4+ memory cells, CD4+ effector cells, CD8+ naïve cells, and CD8+ memory cells. We also discovered that patients with ME/CFS and healthy control samples had significant correlations between measurements of CD4+ T cell fatty acid metabolism and demographic data. These findings provide support for metabolic dysfunction in ME/CFS immune cells. We further hypothesize about the consequences that these altered fuel dependencies may have on T and NK cell effector function, which may shed light on the illness's mechanism of action.
Collapse
Affiliation(s)
- Jessica Maya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Sabrina M. Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | | - Daniel L. Peterson
- Simmaron Research, Incline Village, NV 89451, USA
- Sierra Internal Medicine, Incline Village, NV 89451, USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
25
|
Metabolomic Evidence for Peroxisomal Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2022; 23:ijms23147906. [PMID: 35887252 PMCID: PMC9320121 DOI: 10.3390/ijms23147906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS often report a prodrome consistent with infections. Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly decreased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001) and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dysregulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use of the plasma metabolome as a source of biomarkers for the disease.
Collapse
|
26
|
Germain A, Giloteaux L, Moore GE, Levine SM, Chia JK, Keller BA, Stevens J, Franconi CJ, Mao X, Shungu DC, Grimson A, Hanson MR. Plasma metabolomics reveals disrupted response and recovery following maximal exercise in myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight 2022; 7:e157621. [PMID: 35358096 PMCID: PMC9090259 DOI: 10.1172/jci.insight.157621] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Post-exertional malaise (PEM) is a hallmark symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We monitored the evolution of 1157 plasma metabolites in 60 ME/CFS (45 female, 15 male) and 45 matched healthy control participants (30 female, 15 male) before and after 2 maximal cardiopulmonary exercise test (CPET) challenges separated by 24 hours, with the intent of provoking PEM in patients. Four time points allowed exploration of the metabolic response to maximal energy-producing capacity and the recovery pattern of participants with ME/CFS compared with the healthy control group. Baseline comparison identified several significantly different metabolites, along with an enriched percentage of yet-to-be identified compounds. Additionally, temporal measures demonstrated an increased metabolic disparity between cohorts, including unknown metabolites. The effects of exertion in the ME/CFS cohort predominantly highlighted lipid-related as well as energy-related pathways and chemical structure clusters, which were disparately affected by the first and second exercise sessions. The 24-hour recovery period was distinct in the ME/CFS cohort, with over a quarter of the identified pathways statistically different from the controls. The pathways that are uniquely different 24 hours after an exercise challenge provide clues to metabolic disruptions that lead to PEM. Numerous altered pathways were observed to depend on glutamate metabolism, a crucial component of the homeostasis of many organs in the body, including the brain.
Collapse
Affiliation(s)
- Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Geoffrey E. Moore
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, New York, USA
| | - Susan M. Levine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | - Betsy A. Keller
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, New York, USA
| | | | - Carl J. Franconi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Xiangling Mao
- Department of Neuroradiology, Weill Cornell Medical College, New York, New York, USA
| | - Dikoma C. Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, New York, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
27
|
König RS, Albrich WC, Kahlert CR, Bahr LS, Löber U, Vernazza P, Scheibenbogen C, Forslund SK. The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front Immunol 2022; 12:628741. [PMID: 35046929 PMCID: PMC8761622 DOI: 10.3389/fimmu.2021.628741] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Myalgic encephalomyelitis (ME) or Chronic Fatigue Syndrome (CFS) is a neglected, debilitating multi-systemic disease without diagnostic marker or therapy. Despite evidence for neurological, immunological, infectious, muscular and endocrine pathophysiological abnormalities, the etiology and a clear pathophysiology remains unclear. The gut microbiome gained much attention in the last decade with manifold implications in health and disease. Here we review the current state of knowledge on the interplay between ME/CFS and the microbiome, to identify potential diagnostic or interventional approaches, and propose areas where further research is needed. We iteratively selected and elaborated on key theories about a correlation between microbiome state and ME/CFS pathology, developing further hypotheses. Based on the literature we hypothesize that antibiotic use throughout life favours an intestinal microbiota composition which might be a risk factor for ME/CFS. Main proposed pathomechanisms include gut dysbiosis, altered gut-brain axis activity, increased gut permeability with concomitant bacterial translocation and reduced levels of short-chain-fatty acids, D-lactic acidosis, an abnormal tryptophan metabolism and low activity of the kynurenine pathway. We review options for microbiome manipulation in ME/CFS patients including probiotic and dietary interventions as well as fecal microbiota transplantations. Beyond increasing gut permeability and bacterial translocation, specific dysbiosis may modify fermentation products, affecting peripheral mitochondria. Considering the gut-brain axis we strongly suspect that the microbiome may contribute to neurocognitive impairments of ME/CFS patients. Further larger studies are needed, above all to clarify whether D-lactic acidosis and early-life antibiotic use may be part of ME/CFS etiology and what role changes in the tryptophan metabolism might play. An association between the gut microbiome and the disease ME/CFS is plausible. As causality remains unclear, we recommend longitudinal studies. Activity levels, bedridden hours and disease progression should be compared to antibiotic exposure, drug intakes and alterations in the composition of the microbiota. The therapeutic potential of fecal microbiota transfer and of targeted dietary interventions should be systematically evaluated.
Collapse
Affiliation(s)
- Rahel S König
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Lina Samira Bahr
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Löber
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Pietro Vernazza
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia K Forslund
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Host-Microbiome Factors in Cardiovascular Disease, Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
28
|
Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022. [PMID: 35043127 PMCID: PMC8764736 DOI: 10.1101/2021.06.14.21258895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease. Methods Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls. Results In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873). Conclusion Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS. Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.
Collapse
|
29
|
Mathur R, Carnes MU, Harding A, Moore A, Thomas I, Giarrocco A, Long M, Underwood M, Townsend C, Ruiz-Esparza R, Barnette Q, Brown LM, Schu M. mapMECFS: a portal to enhance data discovery across biological disciplines and collaborative sites. J Transl Med 2021; 19:461. [PMID: 34749736 PMCID: PMC8576927 DOI: 10.1186/s12967-021-03127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease which involves multiple body systems (e.g., immune, nervous, digestive, circulatory) and research domains (e.g., immunology, metabolomics, the gut microbiome, genomics, neurology). Despite several decades of research, there are no established ME/CFS biomarkers available to diagnose and treat ME/CFS. Sharing data and integrating findings across these domains is essential to advance understanding of this complex disease by revealing diagnostic biomarkers and facilitating discovery of novel effective therapies. Methods The National Institutes of Health funded the development of a data sharing portal to support collaborative efforts among an initial group of three funded research centers. This was subsequently expanded to include the global ME/CFS research community. Using the open-source comprehensive knowledge archive network (CKAN) framework as the base, the ME/CFS Data Management and Coordinating Center developed an online portal with metadata collection, smart search capabilities, and domain-agnostic data integration to support data findability and reusability while reducing the barriers to sustainable data sharing. Results We designed the mapMECFS data portal to facilitate data sharing and integration by allowing ME/CFS researchers to browse, share, compare, and download molecular datasets from within one data repository. At the time of publication, mapMECFS contains data curated from public data repositories, peer-reviewed publications, and current ME/CFS Research Network members. Conclusions mapMECFS is a disease-specific data portal to improve data sharing and collaboration among ME/CFS researchers around the world. mapMECFS is accessible to the broader research community with registration. Further development is ongoing to include novel systems biology and data integration methods. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03127-3.
Collapse
Affiliation(s)
- Ravi Mathur
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Megan U Carnes
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Alexander Harding
- Center for Data Science, RTI International, Research Triangle Park, NC, USA
| | - Amy Moore
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Ian Thomas
- Center for Data Science, RTI International, Research Triangle Park, NC, USA
| | - Alex Giarrocco
- Center for Data Science, RTI International, Research Triangle Park, NC, USA
| | - Michael Long
- Center for Data Science, RTI International, Research Triangle Park, NC, USA
| | - Marcia Underwood
- Center for Data Science, RTI International, Research Triangle Park, NC, USA
| | | | - Roman Ruiz-Esparza
- Center for Data Science, RTI International, Research Triangle Park, NC, USA
| | - Quinn Barnette
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Linda Morris Brown
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Matthew Schu
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA.
| |
Collapse
|
30
|
Nkiliza A, Parks M, Cseresznye A, Oberlin S, Evans JE, Darcey T, Aenlle K, Niedospial D, Mullan M, Crawford F, Klimas N, Abdullah L. Sex-specific plasma lipid profiles of ME/CFS patients and their association with pain, fatigue, and cognitive symptoms. J Transl Med 2021; 19:370. [PMID: 34454515 PMCID: PMC8401202 DOI: 10.1186/s12967-021-03035-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex illness which disproportionally affects females. This illness is associated with immune and metabolic perturbations that may be influenced by lipid metabolism. We therefore hypothesized that plasma lipids from ME/CFS patients will provide a unique biomarker signature of disturbances in immune, inflammation and metabolic processes associated with ME/CFS. Methods Lipidomic analyses were performed on plasma from a cohort of 50 ME/CFS patients and 50 controls (50% males and similar age and ethnicity per group). Analyses were conducted with nano-flow liquid chromatography (nLC) and high-performance liquid chromatography (HPLC) systems coupled with a high mass accuracy ORBITRAP mass spectrometer, allowing detection of plasma lipid concentration ranges over three orders of magnitude. We examined plasma phospholipids (PL), neutral lipids (NL) and bioactive lipids in ME/CFS patients and controls and examined the influence of sex on the relationship between lipids and ME/CFS diagnosis. Results Among females, levels of total phosphatidylethanolamine (PE), omega-6 arachidonic acid-containing PE, and total hexosylceramides (HexCer) were significantly decreased in ME/CFS compared to controls. In males, levels of total HexCer, monounsaturated PE, phosphatidylinositol (PI), and saturated triglycerides (TG) were increased in ME/CFS patients compared to controls. Additionally, omega-6 linoleic acid-derived oxylipins were significantly increased in male ME/CFS patients versus male controls. Principal component analysis (PCA) identified three major components containing mostly PC and a few PE, PI and SM species—all of which were negatively associated with headache and fatigue severity, irrespective of sex. Correlations of oxylipins, ethanolamides and ME/CFS symptom severity showed that lower concentrations of these lipids corresponded with an increase in the severity of headaches, fatigue and cognitive difficulties and that this association was influenced by sex. Conclusion The observed sex-specific pattern of dysregulated PL, NL, HexCer and oxylipins in ME/CFS patients suggests a possible role of these lipids in promoting immune dysfunction and inflammation which may be among the underlying factors driving the clinical presentation of fatigue, chronic pain, and cognitive difficulties in ill patients. Further evaluation of lipid metabolism pathways is warranted to better understand ME/CFS pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03035-6.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA.
| | - Megan Parks
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Adam Cseresznye
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Sarah Oberlin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - James E Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Kristina Aenlle
- Institute for NeuroImmune Medicine, VAMC, GRECC, Nova Southeastern University, Miami, USA
| | - Daniel Niedospial
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Nancy Klimas
- Institute for NeuroImmune Medicine, VAMC, GRECC, Nova Southeastern University, Miami, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| |
Collapse
|
31
|
Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. World J Stem Cells 2021; 13:1134-1150. [PMID: 34567431 PMCID: PMC8422931 DOI: 10.4252/wjsc.v13.i8.1134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these "plasma factors", as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review. AIM To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs. METHODS A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms "metabolomic" or "metabolites" in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups. RESULTS Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies. CONCLUSION This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.
Collapse
Affiliation(s)
- María B Monzón-Nomdedeu
- School of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Elisa Oltra
- Department of Pathology, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia 46001, Spain.
| |
Collapse
|
32
|
Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A 2021; 118:e2024358118. [PMID: 34400495 PMCID: PMC8403932 DOI: 10.1073/pnas.2024358118] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although most patients recover from acute COVID-19, some experience postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC). One subgroup of PASC is a syndrome called "long COVID-19," reminiscent of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating condition, often triggered by viral and bacterial infections, leading to years-long debilitating symptoms including profound fatigue, postexertional malaise, unrefreshing sleep, cognitive deficits, and orthostatic intolerance. Some are skeptical that either ME/CFS or long COVID-19 involves underlying biological abnormalities. However, in this review, we summarize the evidence that people with acute COVID-19 and with ME/CFS have biological abnormalities including redox imbalance, systemic inflammation and neuroinflammation, an impaired ability to generate adenosine triphosphate, and a general hypometabolic state. These phenomena have not yet been well studied in people with long COVID-19, and each of them has been reported in other diseases as well, particularly neurological diseases. We also examine the bidirectional relationship between redox imbalance, inflammation, energy metabolic deficits, and a hypometabolic state. We speculate as to what may be causing these abnormalities. Thus, understanding the molecular underpinnings of both PASC and ME/CFS may lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Anthony L Komaroff
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02120
| | - Solomon H Snyder
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
33
|
Hoel F, Hoel A, Pettersen IK, Rekeland IG, Risa K, Alme K, Sørland K, Fosså A, Lien K, Herder I, Thürmer HL, Gotaas ME, Schäfer C, Berge RK, Sommerfelt K, Marti HP, Dahl O, Mella O, Fluge Ø, Tronstad KJ. A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight 2021; 6:e149217. [PMID: 34423789 PMCID: PMC8409979 DOI: 10.1172/jci.insight.149217] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease usually presenting after infection. Emerging evidence supports that energy metabolism is affected in ME/CFS, but a unifying metabolic phenotype has not been firmly established. We performed global metabolomics, lipidomics, and hormone measurements, and we used exploratory data analyses to compare serum from 83 patients with ME/CFS and 35 healthy controls. Some changes were common in the patient group, and these were compatible with effects of elevated energy strain and altered utilization of fatty acids and amino acids as catabolic fuels. In addition, a set of heterogeneous effects reflected specific changes in 3 subsets of patients, and 2 of these expressed characteristic contexts of deregulated energy metabolism. The biological relevance of these metabolic phenotypes (metabotypes) was supported by clinical data and independent blood analyses. In summary, we report a map of common and context-dependent metabolic changes in ME/CFS, and some of them presented possible associations with clinical patient profiles. We suggest that elevated energy strain may result from exertion-triggered tissue hypoxia and lead to systemic metabolic adaptation and compensation. Through various mechanisms, such metabolic dysfunction represents a likely mediator of key symptoms in ME/CFS and possibly a target for supportive intervention.
Collapse
Affiliation(s)
| | - August Hoel
- Department of Biomedicine and.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,KJ Jebsen Centre for B-cell malignancies, University of Oslo, Oslo, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | - Christoph Schäfer
- Department of Rehabilitation Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristian Sommerfelt
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
34
|
Araja D, Berkis U, Lunga A, Murovska M. Shadow Burden of Undiagnosed Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) on Society: Retrospective and Prospective-In Light of COVID-19. J Clin Med 2021; 10:jcm10143017. [PMID: 34300183 PMCID: PMC8303374 DOI: 10.3390/jcm10143017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a poorly understood, complex, multisystem disorder, with severe fatigue not alleviated by rest, and other symptoms, which lead to substantial reductions in functional activity and quality of life. Due to the unclear aetiology, treatment of patients is complicated, but one of the initial problems is the insufficient diagnostic process. The increase in the number of undiagnosed ME/CFS patients became specifically relevant in the light of the COVID-19 pandemic. The aim of this research was to investigate the issues of undiagnosed potential ME/CFS patients, with a hypothetical forecast of the expansion of post-viral CFS as a consequence of COVID-19 and its burden on society. Methods: The theoretical research was founded on the estimation of classic factors presumably affecting the diagnostic scope of ME/CFS and their ascription to Latvian circumstances, as well as a literature review to assess the potential interaction between ME/CFS and COVID-19 as a new contributing agent. The empirical study design consisted of two parts: The first part was dedicated to a comparison of the self-reported data of ME/CFS patients with those of persons experiencing symptoms similar to ME/CFS, but without a diagnosis. This part envisaged the creation of an assumption of the ME/CFS shadow burden “status quo”, not addressing the impact of COVID-19. The second part aimed to investigate data from former COVID-19 patients’ surveys on the presence of ME/CFS symptoms, 6 months after being affected by COVID-19. Descriptive and analytical statistical methods were used to analyse the obtained data. Results: The received data assumed that the previously obtained data on the ME/CFS prevalence of 0.8% in the Latvian population are appropriate, and the literature review reports a prevalence of 0.2–1.0% in developed countries. Regarding the reciprocity of ME/CFS and COVID-19, the literature review showed a lack of research in this field. The empirical results show quite similar self-esteem among ME/CFS patients and undiagnosed patients with longstanding disease experience, while former COVID-19 patients show a significantly lower severity of these problems. Notably, “psychological distress (anxiety)” and “episodic fatigue” are significantly predominant symptoms reported by former COVID-19 patients in comparison with ME/CFS patients and undiagnosed patients prior to the COVID-19 pandemic. The results of our analysis predict that the total amount of direct medical costs for undiagnosed patients (out-of-pocket payments) is more than EUR 15 million p.a. (in Latvia), and this may increase by at least 15% due to the consequences of COVID-19. Conclusions: ME/CFS creates a significant shadow burden on society, even considering only the direct medical costs of undiagnosed patients—the number of whom in Latvia is probably at least five times higher than the number of discerned patients. Simultaneously, COVID-19 can induce long-lasting complications and chronic conditions, such as post-viral CFS, and increase this burden. The Latvian research data assume that ME/CFS patients are not a high-risk group for COVID-19; however, COVID-19 causes ME/CFS-relevant symptoms in patients. This increases the need for monitoring of patients for even longer after recovering from COVID-19′s symptoms, in order to prevent complications and the progression of chronic diseases. In the context of further epidemiological uncertainty, and the possibility of severe post-viral consequences, preventive measures are becoming significantly more important; an integrated diagnostic approach and appropriate treatment could reduce this burden in the future.
Collapse
Affiliation(s)
- Diana Araja
- Department of Dosage Form Technology, Faculty of Pharmacy, Riga Stradins University, 16 Dzirciema Str, LV-1007 Riga, Latvia
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, LV-1067 Riga, Latvia; (U.B.); (M.M.)
- Correspondence:
| | - Uldis Berkis
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, LV-1067 Riga, Latvia; (U.B.); (M.M.)
- Development and Project Department, Riga Stradins University, 16 Dzirciema Str, LV-1007 Riga, Latvia;
| | - Asja Lunga
- Development and Project Department, Riga Stradins University, 16 Dzirciema Str, LV-1007 Riga, Latvia;
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, LV-1067 Riga, Latvia; (U.B.); (M.M.)
| |
Collapse
|
35
|
Insights into Metabolite Diagnostic Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2021; 22:ijms22073423. [PMID: 33810365 PMCID: PMC8037376 DOI: 10.3390/ijms22073423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, and with a minimum duration of 6 consecutive months. Its pathogenesis is not fully understood. There are no firmly established diagnostic biomarkers or treatment, due to incomplete understanding of the etiology of ME/CFS and diagnostic uncertainty. Establishing a biomarker for the objective diagnosis is urgently needed to treat a lot of patients. Recently, research on ME/CFS using metabolome analysis methods has been increasing. Here, we overview recent findings concerning the metabolic features in patients with ME/CFS and the animal models which contribute to the development of diagnostic biomarkers for ME/CFS and its treatment. In addition, we discuss future perspectives of studies on ME/CFS.
Collapse
|
36
|
Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts. Int J Mol Sci 2021; 22:ijms22042046. [PMID: 33669532 PMCID: PMC7921983 DOI: 10.3390/ijms22042046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid β-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates. In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10−4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10−4), mitochondrial fatty acid β-oxidation (p = 9.2 × 10−3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.
Collapse
|
37
|
Germain A, Levine SM, Hanson MR. In-Depth Analysis of the Plasma Proteome in ME/CFS Exposes Disrupted Ephrin-Eph and Immune System Signaling. Proteomes 2021; 9:6. [PMID: 33572894 PMCID: PMC7931008 DOI: 10.3390/proteomes9010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disease with worldwide prevalence and limited therapies exclusively aimed at treating symptoms. To gain insights into the molecular disruptions in ME/CFS, we utilized an aptamer-based technology that quantified 4790 unique human proteins, allowing us to obtain the largest proteomics dataset yet available for this disease, detecting highly abundant proteins as well as rare proteins over a nine-log dynamic range. We report a pilot study of 20 ME/CFS patients and 20 controls, all females. Significant differences in the levels of 19 proteins between cohorts implicate pathways related to the extracellular matrix, the immune system and cell-cell communication. Outputs of pathway and cluster analyses robustly highlight the ephrin pathway, which is involved in cell-cell signaling and regulation of an expansive variety of biological processes, including axon guidance, angiogenesis, epithelial cell migration, and immune response. Receiver Operating Characteristic (ROC) curve analyses distinguish the plasma proteomes of ME/CFS patients from controls with a high degree of accuracy (Area Under the Curve (AUC) > 0.85), and even higher when using protein ratios (AUC up to 0.95), that include some protein pairs with established biological relevance. Our results illustrate the promise of plasma proteomics for diagnosing and deciphering the molecular basis of ME/CFS.
Collapse
Affiliation(s)
| | | | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| |
Collapse
|
38
|
Narayan V, Shivapurkar N, Baraniuk JN. Informatics Inference of Exercise-Induced Modulation of Brain Pathways Based on Cerebrospinal Fluid Micro-RNAs in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. NETWORK AND SYSTEMS MEDICINE 2020; 3:142-158. [PMID: 33274349 PMCID: PMC7703497 DOI: 10.1089/nsm.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction: The post-exertional malaise of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) was modeled by comparing micro-RNA (miRNA) in cerebrospinal fluid from subjects who had no exercise versus submaximal exercise. Materials and Methods: Differentially expressed miRNAs were examined by informatics methods to predict potential targets and regulatory pathways affected by exercise. Results: miR-608, miR-328, miR-200a-5p, miR-93-3p, and miR-92a-3p had higher levels in subjects who rested overnight (nonexercise n=45) compared to subjects who had exercised before their lumbar punctures (n=15). The combination was examined in DIANA MiRpath v3.0, TarBase, Cytoscape, and Ingenuity software® to select the intersection of target mRNAs. DIANA found 33 targets that may be elevated after exercise, including TGFBR1, IGFR1, and CDC42. Adhesion and adherens junctions were the most frequent pathways. Ingenuity selected seven targets that had complementary mechanistic pathways involving GNAQ, ADCY3, RAP1B, and PIK3R3. Potential target cells expressing high levels of these genes included choroid plexus, neurons, and microglia. Conclusion: The reduction of this combination of miRNAs in cerebrospinal fluid after exercise suggested upregulation of phosphoinositol signaling pathways and altered adhesion during the post-exertional malaise of ME/CFS. Clinical Trial Registration Nos.: NCT01291758 and NCT00810225.
Collapse
Affiliation(s)
- Vaishnavi Narayan
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Narayan Shivapurkar
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - James N. Baraniuk
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
39
|
Mandarano AH, Maya J, Giloteaux L, Peterson DL, Maynard M, Gottschalk CG, Hanson MR. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. J Clin Invest 2020; 130:1491-1505. [PMID: 31830003 DOI: 10.1172/jci132185] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and postexertional malaise. There is little known about the metabolism of specific immune cells in patients with ME/CFS. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 patients with ME/CFS and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism and plasma cytokines. We found that ME/CFS CD8+ T cells had reduced mitochondrial membrane potential compared with those from healthy controls. Both CD4+ and CD8+ T cells from patients with ME/CFS had reduced glycolysis at rest, whereas CD8+ T cells also had reduced glycolysis following activation. Patients with ME/CFS had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from correlations seen in healthy control subjects. Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.
Collapse
Affiliation(s)
- Alexandra H Mandarano
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Jessica Maya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | - Marco Maynard
- Simmaron Research Institute, Incline Village, Nevada, USA
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
40
|
Nacul L, O'Boyle S, Palla L, Nacul FE, Mudie K, Kingdon CC, Cliff JM, Clark TG, Dockrell HM, Lacerda EM. How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS. Front Neurol 2020; 11:826. [PMID: 32849252 PMCID: PMC7431524 DOI: 10.3389/fneur.2020.00826] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states. Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production. These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS.
Collapse
Affiliation(s)
- Luis Nacul
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- B.C. Women's Hospital and Health Centre, Vancouver, BC, Canada
| | - Shennae O'Boyle
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Luigi Palla
- Department of Medical Statistics, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Flavio E. Nacul
- Pro-Cardiaco Hospital and Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kathleen Mudie
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline C. Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jacqueline M. Cliff
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hazel M. Dockrell
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eliana M. Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
41
|
Milivojevic M, Che X, Bateman L, Cheng A, Garcia BA, Hornig M, Huber M, Klimas NG, Lee B, Lee H, Levine S, Montoya JG, Peterson DL, Komaroff AL, Lipkin WI. Plasma proteomic profiling suggests an association between antigen driven clonal B cell expansion and ME/CFS. PLoS One 2020; 15:e0236148. [PMID: 32692761 PMCID: PMC7373296 DOI: 10.1371/journal.pone.0236148] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an unexplained chronic, debilitating illness characterized by fatigue, sleep disturbances, cognitive dysfunction, orthostatic intolerance and gastrointestinal problems. Using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we analyzed the plasma proteomes of 39 ME/CFS patients and 41 healthy controls. Logistic regression models, with both linear and quadratic terms of the protein levels as independent variables, revealed a significant association between ME/CFS and the immunoglobulin heavy variable (IGHV) region 3-23/30. Stratifying the ME/CFS group based on self-reported irritable bowel syndrome (sr-IBS) status revealed a significant quadratic effect of immunoglobulin lambda constant region 7 on its association with ME/CFS with sr-IBS whilst IGHV3-23/30 and immunoglobulin kappa variable region 3-11 were significantly associated with ME/CFS without sr-IBS. In addition, we were able to predict ME/CFS status with a high degree of accuracy (AUC = 0.774-0.838) using a panel of proteins selected by 3 different machine learning algorithms: Lasso, Random Forests, and XGBoost. These algorithms also identified proteomic profiles that predicted the status of ME/CFS patients with sr-IBS (AUC = 0.806-0.846) and ME/CFS without sr-IBS (AUC = 0.754-0.780). Our findings are consistent with a significant association of ME/CFS with immune dysregulation and highlight the potential use of the plasma proteome as a source of biomarkers for disease.
Collapse
Affiliation(s)
- Milica Milivojevic
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Xiaoyu Che
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Lucinda Bateman
- Bateman Horne Center, Salt Lake City, UT, United States of America
| | - Aaron Cheng
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Benjamin A. Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Manuel Huber
- German Research Center for Environmental Health, Institute for Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nancy G. Klimas
- Institute for Neuro Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Miami VA Medical Center, Miami, FL, United States of America
| | - Bohyun Lee
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Hyoungjoo Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan Levine
- Levine Clinic, New York, NY, United States of America
| | - Jose G. Montoya
- Palo Alto Medical Foundation, Jack S. Remington Laboratory for Specialty Diagnostics of Toxoplasmosis, Palo Alto, CA, United States of America
| | - Daniel L. Peterson
- Sierra Internal Medicine at Incline Village, Incline Village, NV, United States of America
| | - Anthony L. Komaroff
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, United States of America
| |
Collapse
|
42
|
Huth TK, Eaton-Fitch N, Staines D, Marshall-Gradisnik S. A systematic review of metabolomic dysregulation in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID). J Transl Med 2020; 18:198. [PMID: 32404171 PMCID: PMC7222338 DOI: 10.1186/s12967-020-02356-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chronic Fatigue Syndrome/Myalgic Encephalomyelitis/Systemic Exertion Intolerance Disease (CFS/ME/SEID) is a complex illness that has an unknown aetiology. It has been proposed that metabolomics may contribute to the illness pathogenesis of CFS/ME/SEID. In metabolomics, the systematic identification of measurable changes in small molecule metabolite products have been identified in cases of both monogenic and heterogenic diseases. Therefore, the aim of this systematic review was to evaluate if there is any evidence of metabolomics contributing to the pathogenesis of CFS/ME/SEID. Methods PubMed, Scopus, EBSCOHost (Medline) and EMBASE were searched using medical subject headings terms for Chronic Fatigue Syndrome, metabolomics and metabolome to source papers published from 1994 to 2020. Inclusion and exclusion criteria were used to identify studies reporting on metabolites measured in blood and urine samples from CFS/ME/SEID patients compared with healthy controls. The Joanna Briggs Institute Checklist was used to complete a quality assessment for all the studies included in this review. Results 11 observational case control studies met the inclusion criteria for this review. The primary outcome of metabolite measurement in blood samples of CFS/ME/SEID patients was reported in ten studies. The secondary outcome of urine metabolites was measured in three of the included studies. No studies were excluded from this review based on a low-quality assessment score, however there was inconsistency in the scientific research design of the included studies. Metabolites associated with the amino acid pathway were the most commonly impaired with significant results in seven out of the 10 studies. However, no specific metabolite was consistently impaired across all of the studies. Urine metabolite results were also inconsistent. Conclusion The findings of this systematic review reports that a lack of consistency with scientific research design provides little evidence for metabolomics to be clearly defined as a contributing factor to the pathogenesis of CFS/ME/SEID. Further research using the same CFS/ME/SEID diagnostic criteria, metabolite analysis method and control of the confounding factors that influence metabolite levels are required.
Collapse
Affiliation(s)
- Teilah Kathryn Huth
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia. .,School of Medicine, University of Notre Dame, Sydney, Australia.
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast, Australia
| |
Collapse
|
43
|
Miller JS, Rodriguez-Saona L, Hackshaw KV. Metabolomics in Central Sensitivity Syndromes. Metabolites 2020; 10:E164. [PMID: 32344505 PMCID: PMC7240948 DOI: 10.3390/metabo10040164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 01/09/2023] Open
Abstract
Central sensitization syndromes are a collection of frequently painful disorders that contribute to decreased quality of life and increased risk of opiate abuse. Although these disorders cause significant morbidity, they frequently lack reliable diagnostic tests. As such, technologies that can identify key moieties in central sensitization disorders may contribute to the identification of novel therapeutic targets and more precise treatment options. The analysis of small molecules in biological samples through metabolomics has improved greatly and may be the technology needed to identify key moieties in difficult to diagnose diseases. In this review, we discuss the current state of metabolomics as it relates to central sensitization disorders. From initial literature review until Feb 2020, PubMed, Embase, and Scopus were searched for applicable studies. We included cohort studies, case series, and interventional studies of both adults and children affected by central sensitivity syndromes. The majority of metabolomic studies addressing a CSS found significantly altered metabolites that allowed for differentiation of CSS patients from healthy controls. Therefore, the published literature overwhelmingly supports the use of metabolomics in CSS. Further research into these altered metabolites and their respective metabolic pathways may provide more reliable and effective therapeutics for these syndromes.
Collapse
Affiliation(s)
- Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA;
| | - Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1701 Trinity St, Austin, TX 78712, USA
| |
Collapse
|
44
|
Missailidis D, Sanislav O, Allan CY, Annesley SJ, Fisher PR. Cell-Based Blood Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2020; 21:ijms21031142. [PMID: 32046336 PMCID: PMC7037777 DOI: 10.3390/ijms21031142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a devastating illness whose biomedical basis is now beginning to be elucidated. We reported previously that, after recovery from frozen storage, lymphocytes (peripheral blood mononuclear cells, PBMCs) from ME/CFS patients die faster in culture medium than those from healthy controls. We also found that lymphoblastoid cell lines (lymphoblasts) derived from these PBMCs exhibit multiple abnormalities in mitochondrial respiratory function and signalling activity by the cellular stress-sensing kinase Target Of Rapamycin Complex 1 (TORC1). These differences were correlated with disease severity, as measured by the Richardson and Lidbury weighted standing test. The clarity of the differences between these cells derived from ME/CFS patient blood and those from healthy controls suggested that they may provide useful biomarkers for ME/CFS. Here, we report a preliminary investigation into that possibility using a variety of analytical classification tools, including linear discriminant analysis, logistic regression and receiver operating characteristic (ROC) curve analysis. We found that results from three different tests—lymphocyte death rate, mitochondrial respiratory function and TORC1 activity—could each individually serve as a biomarker with better than 90% sensitivity but only modest specificity vís a vís healthy controls. However, in combination, they provided a cell-based biomarker with sensitivity and specificity approaching 100% in our sample. This level of sensitivity and specificity was almost equalled by a suggested protocol in which the frozen lymphocyte death rate was used as a highly sensitive test to triage positive samples to the more time consuming and expensive tests measuring lymphoblast respiratory function and TORC1 activity. This protocol provides a promising biomarker that could assist in more rapid and accurate diagnosis of ME/CFS.
Collapse
|
45
|
Germain A, Barupal DK, Levine SM, Hanson MR. Comprehensive Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl Lipids and Steroids. Metabolites 2020; 10:E34. [PMID: 31947545 PMCID: PMC7023305 DOI: 10.3390/metabo10010034] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
The latest worldwide prevalence rate projects that over 65 million patients suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), an illness with known effects on the functioning of the immune and nervous systems. We performed an extensive metabolomics analysis on the plasma of 52 female subjects, equally sampled between controls and ME/CFS patients, which delivered data for about 1750 blood compounds spanning 20 super-pathways, subdivided into 113 sub-pathways. Statistical analysis combined with pathway enrichment analysis points to a few disrupted metabolic pathways containing many unexplored compounds. The most intriguing finding concerns acyl cholines, belonging to the fatty acid metabolism sub-pathway of lipids, for which all compounds are consistently reduced in two distinct ME/CFS patient cohorts. We compiled the extremely limited knowledge about these compounds and regard them as promising in the quest to explain many of the ME/CFS symptoms. Another class of lipids with far-reaching activity on virtually all organ systems are steroids; androgenic, progestin, and corticosteroids are broadly reduced in our patient cohort. We also report on lower dipeptides and elevated sphingolipids abundance in patients compared to controls. Disturbances in the metabolism of many of these molecules can be linked to the profound organ system symptoms endured by ME/CFS patients.
Collapse
Affiliation(s)
- Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| | - Dinesh K. Barupal
- UC Davis Genome Center—Metabolomics, University of California, Davis, CA 95616, USA;
| | - Susan M. Levine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; (A.G.); (S.M.L.)
| |
Collapse
|
46
|
Barupal DK, Zhang Y, Shen T, Fan S, Roberts BS, Fitzgerald P, Wancewicz B, Valdiviez L, Wohlgemuth G, Byram G, Choy YY, Haffner B, Showalter MR, Vaniya A, Bloszies CS, Folz JS, Kind T, Flenniken AM, McKerlie C, Nutter LMJ, Lloyd KC, Fiehn O. A Comprehensive Plasma Metabolomics Dataset for a Cohort of Mouse Knockouts within the International Mouse Phenotyping Consortium. Metabolites 2019; 9:E101. [PMID: 31121816 PMCID: PMC6571919 DOI: 10.3390/metabo9050101] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Mouse knockouts facilitate the study ofgene functions. Often, multiple abnormal phenotypes are induced when a gene is inactivated. The International Mouse Phenotyping Consortium (IMPC) has generated thousands of mouse knockouts and catalogued their phenotype data. We have acquired metabolomics data from 220 plasma samples from 30 unique mouse gene knockouts and corresponding wildtype mice from the IMPC. To acquire comprehensive metabolomics data, we have used liquid chromatography (LC) combined with mass spectrometry (MS) for detecting polar and lipophilic compounds in an untargeted approach. We have also used targeted methods to measure bile acids, steroids and oxylipins. In addition, we have used gas chromatography GC-TOFMS for measuring primary metabolites. The metabolomics dataset reports 832 unique structurally identified metabolites from 124 chemical classes as determined by ChemRICH software. The GCMS and LCMS raw data files, intermediate and finalized data matrices, R-Scripts, annotation databases, and extracted ion chromatograms are provided in this data descriptor. The dataset can be used for subsequent studies to link genetic variants with molecular mechanisms and phenotypes.
Collapse
Affiliation(s)
- Dinesh K Barupal
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Ying Zhang
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Tong Shen
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Sili Fan
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Bryan S Roberts
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Patrick Fitzgerald
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Benjamin Wancewicz
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Luis Valdiviez
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Gert Wohlgemuth
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Gregory Byram
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Ying Yng Choy
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Bennett Haffner
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Megan R Showalter
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Arpana Vaniya
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Clayton S Bloszies
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Jacob S Folz
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Tobias Kind
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada.
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada.
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| | - Kent C Lloyd
- Mouse Biology Program, University of California, Davis, Davis, CA 95616, USA.
| | - Oliver Fiehn
- NIH-West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
47
|
Theoharides TC. A Timely Multidisciplinary Update on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Clin Ther 2019; 41:610-611. [PMID: 30940402 DOI: 10.1016/j.clinthera.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|