1
|
Song Y, Duan Y, Luo H, Yun L, Zhang M, Tran NT, Zheng H, Zhou Q, Li S. Establishment of mud crab (Scylla paramamosain) spermatogonial stem cell line: A potential tool for immunological research. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110349. [PMID: 40254085 DOI: 10.1016/j.fsi.2025.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Spermatogonial stem cells (SSCs) can differentiate into sperm and are important for studying on genetic information transmission of animals. However, the establishment of the SSC line in crustaceans is still in its infancy. This study aimed to establish a method for the isolation, culture, and identification of SSCs derived from the gonad of a marine crustacean (mud crab, Scylla paramamosain), and evaluate their differentiation ability and potential application in immunological research, in vitro. SSCs showed robust growth, proliferation, and passaging ability (up to 35 passages) in germ cell culture medium. Proteomic analysis showed that the protein expression profile of SSC was closely related to the gonadal tissue. SSCs were found to be able to express male-specific and pluripotent markers, such as CD9, PIWI, DDX4, DAZL, NANOG, SOX2, and EPHA1. Furthermore, SSCs were differentiated into osteoblasts and adipocytes under in vitro induction. Green fluorescent protein (GFP), packaged by lentivirus, was able to be overexpressed in SSCs after infection. In addition, the infection of white spot syndrome virus (WSSV) simulated the expression of inflammation-associated factors, including TRAF6, TNF-α, MyD88, Dorsal, and Relish, and apoptosis-related genes (BAX and Bcl2) in SSCs. Thus, SSCs were initially isolated and characterized from mud crabs for the first time. Our results proved that SSCs can be used in reproduction technology, germplasm conservation, and immunological studies in crustaceans.
Collapse
Affiliation(s)
- Ying Song
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanchuang Duan
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Haiqing Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Linying Yun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Hussain T, Tahir HM, Ali A, Summer M, Muzamil A, Manzoor HH, Ijaz F, Ahsan MM. Effect of silkworm pupae meal on the growth of Oreochromis niloticus (Cichliformes: Cichlidae)(Order: Cichliformes, Family: Cichlidae)CichliformesCichlidae. JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf050. [PMID: 40079511 DOI: 10.1093/jee/toaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
Increasing costs and limited supply of fishmeal make fish feed more expensive. Pupa of the silkworm (Bombyx mori L.), a byproduct of the sericulture industry is a cheap and sustainable alternative to fish meal. This study aimed to examine the impact of replacing fish meal with silkworm pupae meal on the growth performance and health profile of Gift Tilapia fingerlings (Oreochromis niloticus). Gift Tilapia fingerlings (3.38 ± 0.23 g) were divided into 4 groups (n = 60 in each group). These fish were reared for 10 wk and fed at the rate of 4% body weight daily at 10 am and 3 pm. The basal standard diet was given to the control. The other 3 experimental diets were prepared with 10% (SWP10), 20% (SWP20) and 40% (SWP40) replacement of fish meal with silkworm pupae meal. The results showed that the values of weight gain, feed efficiency ratio and organosomatic indices were significantly higher (P < 0.05) in the SWP40 group as compared to all other groups. The values of red blood cells, white blood cells, hematocrit, mean corpuscular volume, and hemoglobin concentration were also significantly improved in the SWP40 group. Whole-body crude protein differed non-significantly (P > 0.05) in all the study groups. The fat content was significantly higher in the SWP20 group. It can be concluded that silkworm pupae are a suitable source of protein to be substituted in the feeds of Gift Tilapia replacing 10% to 40% of fish meal for enhanced health profile and promising growth.
Collapse
Affiliation(s)
- Tauqeer Hussain
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | | | - Aamir Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Hafiz Hamid Manzoor
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Fatima Ijaz
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | | |
Collapse
|
3
|
Walsh CJ, Sherwood TA, Tarnecki AM, Rhody NR, Main KL, Restivo J. Challenges in cellular agriculture: lessons from Pacific white shrimp, Litopenaeus vannamei. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-024-01011-0. [PMID: 39843814 DOI: 10.1007/s11626-024-01011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
The overall goal of this research was to develop an embryonic stem cell (ESC) line from the Pacific white shrimp, Litopenaeus vannamei, to support production of cell-based cultivated seafood products towards meeting a growing global demand for sustainable seafood. It was hypothesized that characteristics of ESCs, such as high proliferation and pluripotency, would facilitate development of a continuous cell line that could be triggered to differentiate into a muscle cell phenotype. The targeted approach was based on collection of ESCs from fertilized shrimp eggs at the blastomere stage. Various media, supplements, growth factors, and plate coatings were tested to achieve growth of the shrimp ESCs. Although successful in early culture, this manuscript describes substantial challenges encountered as cultures grew over time. The cell cultures were initially dominated by shrimp as indicated by 18S rDNA community analysis, but after multiple passages, thraustochytrids, a common contaminant of invertebrate cell culture, became the predominant cell type. Presence of shrimp cells was confirmed through species-specific primers for the cytochrome C oxidase subunit 1 gene. Presence of thraustochytrids was also confirmed using species-specific primers, morphological features, growth properties, and acriflavine staining. Unsuccessful attempts to eradicate thraustochytrid contamination prevented shrimp cells from thriving. The future of shrimp cell culture depends on eliminating culture contaminants while encouraging growth of shrimp ESCs.
Collapse
Affiliation(s)
- Catherine J Walsh
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA.
| | - Tracy A Sherwood
- Environmental Laboratory for Forensics, Mote Marine Laboratory, Sarasota, FL, USA
| | - Andrea M Tarnecki
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
- Auburn University Shellfish Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Dauphin Island, AL, USA
| | - Nicole R Rhody
- Mote Aquaculture Research Park, Mote Marine Laboratory, Sarasota, FL, USA
| | - Kevan L Main
- Mote Aquaculture Research Park, Mote Marine Laboratory, Sarasota, FL, USA
| | - Jessica Restivo
- Marine Immunology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 34236, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Krishnan S, Ulagesan S, Moon JS, Choi YH, Nam TJ. Establishment, characterization, and sensory characteristics (taste and flavor) of an immortalized muscle cell line from the seven-band grouper Epinephelus septemfasciatus: implications for cultured seafood applications. In Vitro Cell Dev Biol Anim 2025; 61:8-23. [PMID: 39302606 DOI: 10.1007/s11626-024-00971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Grouper muscle satellite cells (GMSCs) from the seven-band grouper (Epinephelus septemfasciatus) were isolated, and their growth conditions were optimized (10% fetal bovine serum, 24°C, 10 ng/mL bFGF). The cells were immortalized at passage 14 and designated as grouper immortalized muscle satellite cells (GIMSCs). DNA barcoding confirmed the grouper origin of both GMSC and GIMSC lines. GIMSCs exhibited enhanced proliferation, accelerated differentiation, and robust myotube formation compared to pre-crisis GMSCs. Western blot analysis showed upregulation of key myogenic factors (Pax7, MyoD, MyoG) and structural proteins (Desmin) in GIMSC, indicating the differentiation potential. The immortalized GIMSC line maintained consistent morphology, growth rates, and viability across multiple passages. Biocompatibility studies showed GIMSCs were compatible with bio-inks (sodium alginate, gelatin, κ-carrageenan) at 250 to 10,000 µg/mL, retaining ~ 80% viability at the highest concentration. Taste sensory analysis revealed GMSCs had the highest umami and lowest saltiness and sourness, contrasting with the muscle of the seven-band grouper, which had higher saltiness and sourness. Flavor analysis identified pronounced fishy, hot fat, and ethereal flavors in the cells at higher level than in the muscle. These findings suggest GMSCs and GIMSCs are promising for producing cultured meat with enhanced umami taste and flavors, advancing cellular agriculture and sustainable food production.
Collapse
Affiliation(s)
- Sathish Krishnan
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea
| | - Ji-Sung Moon
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea.
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513, Republic of Korea.
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041, Republic of Korea.
| |
Collapse
|
5
|
Zheng Z, Chen B, Liu X, Guo R, Chi H, Chen X, Pan Y, Gong H. Novel Eel Skin Fibroblast Cell Line: Bridging Adherent and Suspension Growth for Aquatic Applications Including Virus Susceptibility. BIOLOGY 2024; 13:1068. [PMID: 39765736 PMCID: PMC11673813 DOI: 10.3390/biology13121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Suspension growth can greatly increase the cell density and yield of cell metabolites. To meet the requirements of aquatic industries, a culture model derived from Anguilla anguilla skin was developed using the explant outgrowth and enzyme-digesting passaging methods. These cells were kept in vitro continuously for over 12 months and subcultured 68 times. This heteroploid cell line, designated as ES, can naturally adapt to adherent and suspension growth reversibly under certain temperatures, serum percentages, and inoculum densities, without the need for any microcarriers or special medium additives. The ES cells can continue being highly productive under a temperature range of 15-37 °C and a serum percentage ranging from 3 to 15%. An inoculum density higher than 5 × 105 cells·mL-1 is necessary for the ES cells to turn into suspension efficiently. The green fluorescent protein (GFP) reporter gene was successfully expressed in the ES cells. The ES cells demonstrated susceptibility to Anguillid herpesvirus (AngHV) and red-spotted grouper nervous necrosis virus (RGNNV). ES is the first natural suspension growth model of aquatic origin; it does not require the processes of suspension domestication and carrier dissolution, making it a promising and cost-effective model for vaccine production, bio-pharmaceutical manufacturing, and cellular agriculture.
Collapse
Affiliation(s)
- Zaiyu Zheng
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.Z.); (B.C.); (X.L.); (H.C.); (X.C.); (Y.P.)
| | - Bin Chen
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.Z.); (B.C.); (X.L.); (H.C.); (X.C.); (Y.P.)
| | - Xiaodong Liu
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.Z.); (B.C.); (X.L.); (H.C.); (X.C.); (Y.P.)
| | - Rui Guo
- Fuzhou Ocean and Fisheries Technology Center, Fuzhou 350007, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.Z.); (B.C.); (X.L.); (H.C.); (X.C.); (Y.P.)
| | - Xiuxia Chen
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.Z.); (B.C.); (X.L.); (H.C.); (X.C.); (Y.P.)
| | - Ying Pan
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.Z.); (B.C.); (X.L.); (H.C.); (X.C.); (Y.P.)
| | - Hui Gong
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.Z.); (B.C.); (X.L.); (H.C.); (X.C.); (Y.P.)
| |
Collapse
|
6
|
Ikeda D, Otsuka Y, Kan-No N. Development of a novel Japanese eel myoblast cell line for application in cultured meat production. Biochem Biophys Res Commun 2024; 734:150784. [PMID: 39366176 DOI: 10.1016/j.bbrc.2024.150784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The present study investigates the isolation, analysis, and characterization of primary cultured cells derived from the muscle tissue of Japanese eel (Anguilla japonica), culminating in establishing a spontaneously immortalized myoblast cell line, JEM1129. We isolated satellite cells from eel muscle tissue to establish a foundation for cultured eel meat production. While initial cell cultures contained myoblasts, continued passaging led to a decline in myoblast characteristics and an increase in fibroblast-like cells. RNA-Seq and RT-qPCR analyses showed significant downregulation of well-established markers for satellite cells and myoblasts, such as pax7a and myoD, over successive passages, highlighting a loss of myoblastic traits. Single-cell cloning was employed to overcome this challenge and maintain myoblast purity, leading to the successful creation of the JEM1129 cell line. These JEM1129 cells demonstrated enhanced expression of myoblast marker genes, exceeding the initial primary culture cell population. The cells showed strong myotube formation, particularly when cultured in a differentiation medium, indicating their robust potential for muscle development. The JEM1129 cell line represents a significant advancement in the cultivation of eel muscle cells, offering a promising avenue for cultured meat production. The findings contribute to a deeper understanding of muscle cell biology and provide valuable insights into using fish-derived myoblasts for cultured meat production.
Collapse
Affiliation(s)
- Daisuke Ikeda
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Yui Otsuka
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Nobuhiro Kan-No
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
7
|
Jossefa AA, dos Anjo Viagem L, Cerozi BDS, Chenyambuga SW. Microbiological contamination of lettuce (Lactuca sativa) reared with tilapia in aquaponic systems and use of bacillus strains as probiotics to prevent diseases: A systematic review. PLoS One 2024; 19:e0313022. [PMID: 39527521 PMCID: PMC11554229 DOI: 10.1371/journal.pone.0313022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Aquaponic systems are food production systems that combine aquaculture and hydroponic in a closed recirculation system where water provides nutrients to plants while plants purify water for fish. In this system, tilapia is the most commonly cultured fish and can be easily integrated with vegetable cultivation. However, tilapia host a diverse microbiota some of which are pathogenic and can infect humans. Previous studies have reported contamination of lettuce by pathogenic bacteria which can cause human diseases. Thus, there is an urgent need to employ effective methods to control those bacteria, and Bacillus strains have been successfully used in this context. This systematic review aimed to provide a comprehensive overview of lettuce contamination by pathogenic bacteria and the use of Bacillus as probiotics to prevent diseases in aquaponics systems. This systematic review was performed using Preferred Reporting Items for Systematic Review and Meta-Analysis Statement (PRISMA) Guidelines. A total of 1,239 articles were retrieved and based on eligibility criteria, six articles were included after screening. The review revealed that Enterobacteriaceae, Coliforms, and Shiga Toxin-producing E. coli are the predominant bacteria contaminating lettuce leaves in Aquaponic systems, and Shiga Toxin-Producing E. coli can internalize in the lettuce leaves, putting public health at risk. The included studies did not report the presence of V. cholerae in lettuce grown in aquaponic systems, and the use of Bacillus as probiotics to control Escherichia coli and Vibrio Cholerae. Further research is needed to explore the potential of tilapia to act as a source of pathogenic bacteria that can contaminate lettuce, as well as to investigate the effectiveness of Bacillus strains as probiotics to control these bacteria and ensure food safety.
Collapse
Affiliation(s)
- Angélica Adiação Jossefa
- Departamente of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- Higher School of Rural Development, Eduardo Mondlane University, Inhambane, Mozambique
| | - Leonildo dos Anjo Viagem
- Departamente of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Food and Agricultural, Rovuma University, Morogoro, Cabo Delgado, Mozambique
| | - Brunno da Silva Cerozi
- Department of Animal Science, College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
8
|
Malila Y, Owolabi IO, Chotanaphuti T, Sakdibhornssup N, Elliott CT, Visessanguan W, Karoonuthaisiri N, Petchkongkaew A. Current challenges of alternative proteins as future foods. NPJ Sci Food 2024; 8:53. [PMID: 39147771 PMCID: PMC11327365 DOI: 10.1038/s41538-024-00291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Global demand for food is expected to nearly double by 2050. Alternative proteins (AP) have been proposed as a sustainable solution to provide food security as natural resources become more depleted. However, the growth and consumer intake of AP remains limited. This review aims to better understand the challenges and environmental impacts of four main AP categories: plant-based, insect-based, microbe-derived, and cultured meat and seafood. The environmental benefits of plant-based and insect-based proteins have been documented but the impacts of microbe-derived proteins and cultured meat have not been fully assessed. The development of alternative products with nutritional and sensory profiles similar to their conventional counterparts remains highly challenging. Furthermore, incomplete safety assessments and a lack of clear regulatory guidelines confuse the food industry and hamper progress. Much still needs to be done to fully support AP utilization within the context of supporting the drive to make the global food system sustainable.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, Thailand.
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand.
| | - Iyiola O Owolabi
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, Thailand
| | - Tanai Chotanaphuti
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- Faculty of Biology, University of Cambridge, Cambridge, UK
| | - Napat Sakdibhornssup
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- University of Chicago, Chicago, IL, USA
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, Thailand
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, Belfast, UK
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, Thailand
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khong Luang, Pathum Thani, Thailand
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, Belfast, UK
| | - Awanwee Petchkongkaew
- International Joint Research Center on Food Security (IJC-FOODSEC), Khong Luang, Pathum Thani, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, Khong Luang, Pathum Thani, Thailand
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
9
|
Krishnan S, Ulagesan S, Cadangin J, Lee JH, Nam TJ, Choi YH. Establishment and Characterization of Continuous Satellite Muscle Cells from Olive Flounder ( Paralichthys olivaceus): Isolation, Culture Conditions, and Myogenic Protein Expression. Cells 2023; 12:2325. [PMID: 37759547 PMCID: PMC10527956 DOI: 10.3390/cells12182325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Olive flounder (Paralichthys olivaceus) muscle satellite cells (OFMCs) were obtained by enzymatic primary cell isolation and the explant method. Enzymatic isolation yielded cells that reached 80% confluence within 8 days, compared to 15 days for the explant method. Optimal OFMC growth was observed in 20% fetal bovine serum at 28 °C with 0.8 mM CaCl2 and the basic fibroblast growth factor (BFGF) to enhance cell growth. OFMCs have become permanent cell lines through the spontaneous immortalization crisis at the 20th passage. Olive flounder skeletal muscle myoblasts were induced into a mitogen-poor medium containing 2% horse serum for differentiation; they fused to form multinucleate myotubes. The results indicated complete differentiation of myoblasts into myotubes; we also detected the expression of the myogenic regulatory factors myoD, myogenin, and desmin. Upregulation (Myogenin, desmin) and downregulation (MyoD) of muscle regulation factors confirmed the differentiation in OFMCs.
Collapse
Affiliation(s)
- Sathish Krishnan
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea;
| | - Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea;
| | - Josel Cadangin
- Department of Fisheries Biology, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea; (J.C.); (J.-H.L.)
| | - Ji-Hye Lee
- Department of Fisheries Biology, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea; (J.C.); (J.-H.L.)
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea;
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Republic of Korea;
- Division of Fisheries Life Sciences, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea;
- Department of Fisheries Biology, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea; (J.C.); (J.-H.L.)
| |
Collapse
|
10
|
Yashwanth BS, Pinto N, Sathiyanarayanan A, Chaudhari A, Rasal KD, Goswami M. Functional characterization of Labeo rohita muscle cell line for in vitro research. Mol Biol Rep 2023:10.1007/s11033-023-08427-z. [PMID: 37179501 DOI: 10.1007/s11033-023-08427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Labeo rohita represents the most dominant fish species in Indian aquaculture and the fish cell lines have been used as an excellent in vitro platform for performing various biological research. METHODS AND RESULTS The LRM cell culture developed from the muscle tissue of L. rohita was used to study the in vitro applications. The developed muscle cells were maintained in a Leibovitz's-15 (L-15) supplemented with 10% FBS (Fetal Bovine Serum) and 10 ng/ml bFGF at 28 oC temperature. The LRM cells showed fibroblastic-like morphology and was authenticated by sequencing mitochondrial gene 16S rRNA. The expression of myogenic regulatory factors (MRFs) was studied in different stages of LRM cells; however, the expression patterns varied at different passages. The MEF2A, Mrf-4, and Myogenin expressions were higher in passage 25, while the expression of MyoD was maximum in passage 15, and the expression of Myf-5 was highest in passage 1. The transfection efficiency of LRM cells revealed 14 % of the GFP expression with a pmaxGFP vector DNA. The LRM cells were susceptible to the extracellular products prepared from Aeromonas hydrophilla and Edwardsiella tarda. The acute cytotoxicity of six heavy metals (Hg, Cd, Zn, Cu, Pb, Ni) was assessed in LRM cells by a dose-dependent manner in comparison to IC50 values obtained from MTT and NR assays. A revival rate of 70-75% was achieved when the LRM cells were cryopreserved at - 196 °C using liquid nitrogen. CONCLUSION The developed muscle cells serve as an functional in vitro tool for toxicological and biotechnological studies.
Collapse
Affiliation(s)
- B S Yashwanth
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Nevil Pinto
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - A Sathiyanarayanan
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
11
|
Saad MK, Yuen JSK, Joyce CM, Li X, Lim T, Wolfson TL, Wu J, Laird J, Vissapragada S, Calkins OP, Ali A, Kaplan DL. Continuous fish muscle cell line with capacity for myogenic and adipogenic-like phenotypes. Sci Rep 2023; 13:5098. [PMID: 36991012 PMCID: PMC10060565 DOI: 10.1038/s41598-023-31822-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Cell-cultivated fish offers the potential for a more ethical, sustainable, and safe seafood system. However, fish cell culture is relatively understudied in comparison to mammalian cells. Here, we established and characterized a continuous Atlantic mackerel (Scomber scombrus) skeletal muscle cell line ("Mack" cells). The cells were isolated from muscle biopsies of fresh-caught fish, with separate isolations performed from two distinct fish. Mack1 cells (cells from the first isolation) were cultured for over a year and subcultured over 130 times. The cells proliferated at initial doubling times of 63.9 h (± 19.1 SD). After a spontaneous immortalization crisis from passages 37-43, the cells proliferated at doubling times of 24.3 h (± 4.91 SD). A muscle phenotype was confirmed through characterization of muscle stemness and differentiation via paired-box protein 7 and myosin heavy chain immunostaining, respectively. An adipocyte-like phenotype was also demonstrated for the cells through lipid accumulation, confirmed via Oil Red O staining and quantification of neutral lipids. New qPCR primers (HPRT, PAX3B, MYOD1, MYOG, TNNT3A, and PPARG) were tailored to the mackerel genome and used to characterize mackerel cell genotypes. This work provides the first spontaneously immortalized fish muscle cell line for research, ideally serving as a reference for subsequent investigation.
Collapse
Affiliation(s)
- Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Connor M Joyce
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Xinxin Li
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Taehwan Lim
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Talia L Wolfson
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Justin Wu
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jason Laird
- Research Technology, Tufts University, 16 Dearborn Rd, Somerville, MA, 02144, USA
| | - Sanjana Vissapragada
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Olivia P Calkins
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Adham Ali
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
12
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
13
|
Sathiyanarayanan A, Yashwanth BS, Pinto N, Thakuria D, Chaudhari A, Gireesh Babu P, Goswami M. Establishment and characterization of a new fibroblast-like cell line from the skin of a vertebrate model, zebrafish (Danio rerio). Mol Biol Rep 2023; 50:19-29. [PMID: 36289143 DOI: 10.1007/s11033-022-08009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The available fully sequenced genome and genetic similarities compared to humans make zebrafish a prominent in vitro vertebrate model for drug discovery & screening, toxicology, and radiation biology. Zebrafish also possess well developed immune systems which is ideal for studying infectious diseases. Fish skin confers immunity by serving as a physical barrier against the invading pathogens in the aquatic habitat. Therefore in vitro models from the skin tissue of zebrafish help to study the physiology, functional genes in vitro, wound healing, and pathogenicity of microbes. Hence the study aimed to develop and characterize a skin cell line from the wild-type zebrafish Danio rerio. METHODS AND RESULTS A novel cell line designated as DRS (D. rerio skin) was established and characterized from the skin tissue of wild-type zebrafish, D. rerio, by the explant technique. The cells thrived well in the Leibovitz's -15 medium supplemented with 15% FBS and routinely passaged at regular intervals. The DRS cells mainly feature fibroblast-like morphology. The culture conditions of the cells were determined by incubating the cells at varying concentrations of FBS and temperature; the optimum was 15% FBS and 28 °C, respectively. Cells were cryopreserved and revived with 70-75% viability at different passage levels. Two extracellular products from bacterial species Aeromonas hydrophila and Edwardsiella tarda were tested and found toxic to the DRS cells. Mitochondrial genes, namely COI and 16S rRNA PCR amplification and partial sequencing authenticated the species of origin of cells. The modal diploid (2n) chromosome number of the cells was 50. The cell line DRS was found to be free from mycoplasma. The cells were transfected with pMaxGFP plasmid and tested positive for green fluorescence at 24-48 h post-transfection. CONCLUSION The findings from this study thus confirm the usefulness of the developed cell line in bacterial susceptibility and transgene expression studies.
Collapse
Affiliation(s)
- Arjunan Sathiyanarayanan
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - B S Yashwanth
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Nevil Pinto
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Industrial Area, Bhimtal, 263136, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - P Gireesh Babu
- ICAR-National Research Centre on Meat, Chengicherla, Boduppal Post, Hyderabad, 500092, India
| | - Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|