1
|
Rahman OM, Tarantino R, Waldman SD, Hwang DK. Single-Step Fabrication of V-Shaped Polymeric Microwells to Enhance Cancer Spheroid Formation. ACS Biomater Sci Eng 2025; 11:1857-1868. [PMID: 39967243 DOI: 10.1021/acsbiomaterials.4c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Traditional cancer research has long relied on two-dimensional (2D) cell cultures, which inadequately mimic the complex three-dimensional (3D) microenvironments of in vivo tumors. Recent advancements in 3D cell cultures, particularly cancer spheroids, have highlighted their superior physiological relevance. However, existing methods for spheroid generation often require complex, multistep fabrication processes that limit scalability and reproducibility. In this study, we present a novel single-step photolithographic technique to fabricate high-aspect-ratio V-slanted hydrogel microwells. By employing polyethylene glycol (PEG)-based hydrogels, we create biocompatible, extracellular matrix (ECM)-like scaffolds that enhance gas and nutrient exchange while promoting uniform spheroid formation. The hydrogel microwells allow precise control of spheroid size, achieving a physiologically relevant diameter of 425 μm within 12-24 h, and the resulting spheroids exhibiting high viability over 3 weeks. Moreover, the method facilitates the creation of scalable multiwell arrays for high-throughput applications, making it suitable for both small-scale and large-scale experimental needs. This platform addresses the limitations of traditional microwell fabrication, offering a robust, efficient, and reproducible system for generating physiologically relevant 3D models with valuable applications in cancer research, drug testing, and tissue engineering.
Collapse
Affiliation(s)
- Omar M Rahman
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto (St. Michael's Hospital), Toronto, Ontario M5B 1W8, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Roberto Tarantino
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto (St. Michael's Hospital), Toronto, Ontario M5B 1W8, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto (St. Michael's Hospital), Toronto, Ontario M5B 1W8, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto (St. Michael's Hospital), Toronto, Ontario M5B 1W8, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Unity Health Toronto and Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
2
|
Song J, Meng S, Liu J, Chen N. Processing and inspection of high-pressure microfluidics systems: A review. BIOMICROFLUIDICS 2025; 19:011501. [PMID: 39781103 PMCID: PMC11706627 DOI: 10.1063/5.0235201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.
Collapse
Affiliation(s)
- Jiangyi Song
- School Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shaoxin Meng
- State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China
| | - Jianben Liu
- State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China
| | - Naichao Chen
- Author to whom correspondence should be addressed:. Tel.: +6-21-61655270. Fax: +86-21-61655270
| |
Collapse
|
3
|
Kang M, Bresette CA, Ku DN. Advancing microfluidic point-of-care platelet function tests: opportunities and challenges from bench to market. Front Bioeng Biotechnol 2024; 12:1507972. [PMID: 39737052 PMCID: PMC11683093 DOI: 10.3389/fbioe.2024.1507972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Platelets are critical for blood clotting, with shear-induced platelet aggregation (SIPA) playing a key role in hemostasis and the prevention of excessive bleeding. SIPA function potentially leads to life-threatening diseases such as hemorrhage and myocardial infarction, which are leading causes of death globally. Point-of-care platelet function tests (POC PFTs) are developed to assess platelet dysfunction and distinguish between normal and abnormal platelet activity. Recent advances in microfluidic technology have been integrated into POC PFTs, showing promise for delivering more accurate, rapid, and differentiated results using minimal blood sample volumes, enabling more informed treatment decisions. However, current POC PFTs fall short of replicating high-shear thrombotic conditions in vitro, resulting in limited clinical SIPA diagnosis and actionable insights. In this review, we explore the current landscape of POC PFT technology, key challenges, and future opportunities. We highlight the importance of device design and scalable manufacturing to fully realize the potential of microfluidic POC PFTs and facilitate their widespread adoption in clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
| | | | - David N. Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
4
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
5
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Chandrasekharan HK, Wlodarczyk KL, MacPherson WN, Maroto-Valer MM. In-situ multicore fibre-based pH mapping through obstacles in integrated microfluidic devices. Sci Rep 2024; 14:2839. [PMID: 38310119 PMCID: PMC10838297 DOI: 10.1038/s41598-024-53106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor.
Collapse
Affiliation(s)
- Harikumar K Chandrasekharan
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Krystian L Wlodarczyk
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - William N MacPherson
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
7
|
Feitor JF, Brazaca LC, Lima AM, Ferreira VG, Kassab G, Bagnato VS, Carrilho E, Cardoso DR. Organ-on-a-Chip for Drug Screening: A Bright Future for Sustainability? A Critical Review. ACS Biomater Sci Eng 2023; 9:2220-2234. [PMID: 37014814 DOI: 10.1021/acsbiomaterials.2c01454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Globalization has raised concerns about spreading diseases and emphasized the need for quick and efficient methods for drug screening. Established drug efficacy and toxicity approaches have proven obsolete, with a high failure rate in clinical trials. Organ-on-a-chip has emerged as an essential alternative to outdated techniques, precisely simulating important characteristics of organs and predicting drug pharmacokinetics more ethically and efficiently. Although promising, most organ-on-a-chip devices are still manufactured using principles and materials from the micromachining industry. The abusive use of plastic for traditional drug screening methods and device production should be considered when substituting technologies so that the compensation for the generation of plastic waste can be projected. This critical review outlines recent advances for organ-on-a-chip in the industry and estimates the possibility of scaling up its production. Moreover, it analyzes trends in organ-on-a-chip publications and provides suggestions for a more sustainable future for organ-on-a-chip research and production.
Collapse
Affiliation(s)
- Jéssica F Feitor
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Laís C Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, 02138 Massachusetts, United States
| | - Amanda M Lima
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Vinícius G Ferreira
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Giulia Kassab
- Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, 13083-970 Campinas, SP, Brazil
| | - Daniel R Cardoso
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| |
Collapse
|
8
|
Fleck E, Keck C, Ryszka K, DeNatale E, Potkay J. Low-Viscosity Polydimethylsiloxane Resin for Facile 3D Printing of Elastomeric Microfluidics. MICROMACHINES 2023; 14:773. [PMID: 37421006 DOI: 10.3390/mi14040773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 07/09/2023]
Abstract
Microfluidics is a rapidly advancing technology with expansive applications but has been restricted by slow, laborious fabrication techniques for polydimethylsiloxane (PDMS)-based devices. Currently, 3D printing promises to address this challenge with high-resolution commercial systems but is limited by a lack of material advances in generating high-fidelity parts with micron-scale features. To overcome this limitation, a low-viscosity, photopolymerizable PDMS resin was formulated with a methacrylate-PDMS copolymer, methacrylate-PDMS telechelic polymer, photoabsorber, Sudan I, photosensitizer, 2-isopropylthioxanthone, and a photoinitiator, 2,4,6-trimethyl benzoyl diphenylphosphine oxide. The performance of this resin was validated on a digital light processing (DLP) 3D printer, an Asiga MAX X27 UV. Resin resolution, part fidelity, mechanical properties, gas permeability, optical transparency, and biocompatibility were investigated. This resin produced resolved, unobstructed channels as small as 38.4 (±5.0) µm tall and membranes as thin as 30.9 (±0.5) µm. The printed material had an elongation at break of 58.6% ± 18.8%, Young's modulus of 0.30 ± 0.04 MPa, and was highly permeable to O2 (596 Barrers) and CO2 (3071 Barrers). Following the ethanol extraction of the unreacted components, this material demonstrated optical clarity and transparency (>80% transmission) and viability as a substrate for in vitro tissue culture. This paper presents a high-resolution, PDMS 3D-printing resin for the facile fabrication of microfluidic and biomedical devices.
Collapse
Affiliation(s)
- Elyse Fleck
- ECLS Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Charlise Keck
- ECLS Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Karolina Ryszka
- ECLS Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Emma DeNatale
- ECLS Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Joseph Potkay
- ECLS Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
9
|
Cao UMN, Zhang Y, Chen J, Sayson D, Pillai S, Tran SD. Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication. Int J Mol Sci 2023; 24:3232. [PMID: 36834645 PMCID: PMC9966054 DOI: 10.3390/ijms24043232] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Organ-on-A-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
10
|
Akbari Kenari M, Rezvani Ghomi E, Akbari Kenari A, Arabi SMS, Deylami J, Ramakrishna S. Biomedical applications of microfluidic devices: Achievements and challenges. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahsa Akbari Kenari
- Department of Chemical Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | | | | | - Javad Deylami
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
11
|
Nhunduru RAE, Jahanbakhsh A, Shahrokhi O, Wlodarczyk KL, Garcia S, Maroto‐Valer MM. The Impact of Wettability on Dynamic Fluid Connectivity and Flow Transport Kinetics in Porous Media. WATER RESOURCES RESEARCH 2022; 58:e2021WR030729. [PMID: 35859620 PMCID: PMC9285789 DOI: 10.1029/2021wr030729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Usually, models describing flow and transport for sub-surface engineering processes at the Darcy-scale do not take into consideration the effects of pore-scale flow regimes and fluid connectivity on average flow functions. In this article, we investigate the impact of wettability on pore-scale flow regimes. We show that fluid connectivity at the pore scale has a significant impact on average flow kinetics and therefore its contribution should not be ignored. Immiscible two-phase flow simulations were performed in a two-dimensional model of a Berea sandstone rock for wettability conditions ranging from moderately water-wet to strongly oil-wet. The simulation results show that wettability has a strong impact on invading fluid phase connectivity, which subsequently influences flow transport resistance. The effect of invading-phase connectivity and ganglion dynamics (GD) on two-phase displacement kinetics was also investigated. It was found that invading phase connectivity decreases away from the neutrally wet (intermediate wet) state. This study provides evidence that GD accelerate fluid flow transport kinetics during immiscible displacement processes. Lastly, the impact of wettability on fluid displacement efficiency and residual saturations was investigated. Maximum displacement efficiency occurred at the neutrally wet state.
Collapse
Affiliation(s)
- Rumbidzai A. E. Nhunduru
- School of Engineering and Physical SciencesResearch Centre for Carbon Solutions (RCCS)Heriot‐Watt UniversityEdinburghUK
| | - Amir Jahanbakhsh
- School of Engineering and Physical SciencesResearch Centre for Carbon Solutions (RCCS)Heriot‐Watt UniversityEdinburghUK
| | - Omid Shahrokhi
- School of Engineering and Physical SciencesResearch Centre for Carbon Solutions (RCCS)Heriot‐Watt UniversityEdinburghUK
| | - Krystian L. Wlodarczyk
- School of Engineering and Physical SciencesResearch Centre for Carbon Solutions (RCCS)Heriot‐Watt UniversityEdinburghUK
- School of Engineering and Physical SciencesApplied Optics and Photonics (AOP) GroupHeriot‐Watt UniversityEdinburghUK
| | - Susana Garcia
- School of Engineering and Physical SciencesResearch Centre for Carbon Solutions (RCCS)Heriot‐Watt UniversityEdinburghUK
| | - M. Mercedes Maroto‐Valer
- School of Engineering and Physical SciencesResearch Centre for Carbon Solutions (RCCS)Heriot‐Watt UniversityEdinburghUK
| |
Collapse
|
12
|
Jin Y, Xiong P, Xu T, Wang J. Time-efficient fabrication method for 3D-printed microfluidic devices. Sci Rep 2022; 12:1233. [PMID: 35075184 PMCID: PMC8786882 DOI: 10.1038/s41598-022-05350-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Recent developments in 3D-printing technology have provided a time-efficient and inexpensive alternative to the fabrication of microfluidic devices. At present, 3D-printed microfluidic systems face the challenges of post-processing, non-transparency, and being time consuming, limiting their practical application. In this study, a time-efficient and inexpensive fabrication method was developed for 3D-printed microfluidic devices. The material for 3D-printed microfluidic chips is Dowsil 732, which is used as a sealant or encapsulant in various industries. The curing time and surface hydrophobicity of the materials were evaluated. The results indicated that the surface of Dowsil 732 is hydrophilic. An optimization model of the direct ink writing method is proposed to establish a time-efficient and accurate fabrication method for microfluidic devices. The results indicate that the optimization model can effectively describe the change trend between printing speed, printing pressure, and channel wall accuracy, and the model accuracy rate exceeds 95%. Three examples-a micromixer, concentration gradient generator, and droplet generator-were printed to demonstrate the functionality and feasibility of the fabrication method.
Collapse
Affiliation(s)
- Yan Jin
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Xiong
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tongyu Xu
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China.,Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang, 110866, China
| | - Jingyi Wang
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, 110866, China. .,Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang, 110866, China.
| |
Collapse
|
13
|
Manzoor AA, Hwang DK. Modeling and Numerical Studies of Three‐Dimensional Conically Shaped Microwells Using Non‐Uniform Photolithography. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmad Ali Manzoor
- Department of Chemical Engineering Ryerson University 350 Victoria Street Toronto ON M5B 2K3 Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital 30 Bond Street Toronto ON M5B 1W8 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) A Partnership Between Ryerson University and St. Michael's Hospital 30 Bond Street Toronto ON M5B 1W8 Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering Ryerson University 350 Victoria Street Toronto ON M5B 2K3 Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital 30 Bond Street Toronto ON M5B 1W8 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST) A Partnership Between Ryerson University and St. Michael's Hospital 30 Bond Street Toronto ON M5B 1W8 Canada
| |
Collapse
|
14
|
Haghayegh F, Salahandish R, Zare A, Khalghollah M, Sanati-Nezhad A. Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins. LAB ON A CHIP 2021; 22:108-120. [PMID: 34860233 DOI: 10.1039/d1lc00879j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The realization of true point-of-care (PoC) systems profoundly relies on integrating the bioanalytical assays into "on-chip" fluid handing platforms, with autonomous performance, reproducible functionality, and capacity in scalable production. Specifically for electrochemical immuno-biosensing, the complexity of the procedure used for ultrasensitive protein detection using screen-printed biosensors necessitates a lab-centralized practice, hindering the path towards near-patient use. This work develops a self-powered microfluidic chip that automates the entire assay of electrochemical immuno-biosensing, enabling controlled and sequential delivery of the biofluid sample and the sensing reagents to the surface of the embedded electrochemical biosensor. Without any need for active fluid handling, this novel sample-to-result testing kit offers antibody-antigen immunoreaction within 15 min followed by the subsequent automatic washing, redox probe delivery, and electrochemical signal recording. The redox molecules ([Fe(CN)6]3-/4-) are pre-soaked and dried in fiber and embedded inside the chip. The dimensions of the fluidic design and the parameters of the electrochemical bioassay are optimized to warrant a consistent and reproducible performance of the autonomous sensing device. The uniform diffusion of the dried redox into the injected solution and its controlled delivery onto the biosensor are modeled via a two-phase flow computational fluid dynamics simulation, determining the suitable time for electrochemical signal measurement from the biosensor. The microfluidic chip performs well with both water-based fluids and human plasma with the optimized sample volume to offer a proof-of-concept ultrasensitive biosensing of SARS-CoV-2 nucleocapsid proteins spiked in phosphate buffer saline within 15 min. The on-chip N-protein biosensing demonstrates a linear detection range of 10 to 1000 pg mL-1 with a limit of detection of 3.1 pg mL-1. This is the first self-powered microfluidic-integrated electrochemical immuno-biosensor that promises quantitative and ultrasensitive PoC biosensing. Once it is modified for its design and dimensions, it can be further used for autonomous detection of one or multiple proteins in diverse biofluid samples.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
15
|
Wlodarczyk KL, MacPherson WN, Hand DP, Maroto-Valer MM. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors. SENSORS 2021; 21:s21227493. [PMID: 34833567 PMCID: PMC8625633 DOI: 10.3390/s21227493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/04/2022]
Abstract
In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and “know-how” demanding. In this article, we describe an easy-to-implement method developed to integrate various “off-the-shelf” fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors (“pH SensorPlugs” and “FOP-MIV”, respectively), which were “reversibly” attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy’s law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device.
Collapse
Affiliation(s)
- Krystian L. Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
- Applied Optics and Photonics (AOP) Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (W.N.M.); (D.P.H.)
- Correspondence: ; Tel.: +44-(0)-131-451-3105
| | - William N. MacPherson
- Applied Optics and Photonics (AOP) Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (W.N.M.); (D.P.H.)
| | - Duncan P. Hand
- Applied Optics and Photonics (AOP) Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (W.N.M.); (D.P.H.)
| | - M. Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| |
Collapse
|
16
|
Mouskeftaras A, Beurthey S, Cogan J, Hallewell G, Leroy O, Grojo D, Perrin-Terrin M. Short-Pulse Laser-Assisted Fabrication of a Si-SiO 2 Microcooling Device. MICROMACHINES 2021; 12:1054. [PMID: 34577698 PMCID: PMC8466599 DOI: 10.3390/mi12091054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Thermal management is one of the main challenges in the most demanding detector technologies and for the future of microelectronics. Microfluidic cooling has been proposed as a fully integrated solution to the heat dissipation problem in modern high-power microelectronics. Traditional manufacturing of silicon-based microfluidic devices involves advanced, mask-based lithography techniques for surface patterning. The limited availability of such facilities prevents widespread development and use. We demonstrate the relevance of maskless laser writing to advantageously replace lithographic steps and provide a more prototype-friendly process flow. We use a 20 W infrared laser with a pulse duration of 50 ps to engrave and drill a 525 μm-thick silicon wafer. Anodic bonding to a SiO2 wafer is used to encapsulate the patterned surface. Mechanically clamped inlet/outlet connectors complete the fully operational microcooling device. The functionality of the device has been validated by thermofluidic measurements. Our approach constitutes a modular microfabrication solution that should facilitate prototyping studies of new concepts for co-designed electronics and microfluidics.
Collapse
Affiliation(s)
| | - Stephan Beurthey
- Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France; (S.B.); (J.C.); (G.H.); (O.L.); (M.P.-T.)
| | - Julien Cogan
- Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France; (S.B.); (J.C.); (G.H.); (O.L.); (M.P.-T.)
| | - Gregory Hallewell
- Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France; (S.B.); (J.C.); (G.H.); (O.L.); (M.P.-T.)
| | - Olivier Leroy
- Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France; (S.B.); (J.C.); (G.H.); (O.L.); (M.P.-T.)
| | - David Grojo
- Aix Marseille University, CNRS, LP3, UMR7341, 13284 Marseille, France;
| | - Mathieu Perrin-Terrin
- Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France; (S.B.); (J.C.); (G.H.); (O.L.); (M.P.-T.)
| |
Collapse
|
17
|
Microfabricated Devices for Confocal Microscopy on Biological Samples. Methods Mol Biol 2021. [PMID: 34028712 DOI: 10.1007/978-1-0716-1402-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Microfabricated devices have found applications in a range of biomedical research problems in recent years, with thousands of research papers published and multiple commercial devices now available. This chapter is intended to provide an overview of the available options for devices compatible with confocal microscopy, including an overview of fabrication techniques and some examples of device use. Although there are times when off-the-shelf devices are well suited for the problem at hand, in some cases customized devices are necessary or more convenient. Protocols for researchers who wish to make their own devices are outlined below; although fabricating templates for devices requires some specialized equipment, making PDMS or hydrogel devices from templates can be done in a standard laboratory setting.
Collapse
|
18
|
Liu H, Lin W, Hong M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. LIGHT, SCIENCE & APPLICATIONS 2021; 10:162. [PMID: 34354041 PMCID: PMC8342541 DOI: 10.1038/s41377-021-00596-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 05/07/2023]
Abstract
Laser has been demonstrated to be a mature and versatile tool that presents great flexibility and applicability for the precision engineering of a wide range of materials over other established micromachining techniques. Past decades have witnessed its rapid development and extensive applications ranging from scientific researches to industrial manufacturing. Transparent hard materials remain several major technical challenges for conventional laser processing techniques due to their high hardness, great brittleness, and low optical absorption. A variety of hybrid laser processing technologies, such as laser-induced plasma-assisted ablation, laser-induced backside wet etching, and etching assisted laser micromachining, have been developed to overcome these barriers by introducing additional medium assistance or combining different process steps. This article reviews the basic principles and characteristics of these hybrid technologies. How these technologies are used to precisely process transparent hard materials and their recent advancements are introduced. These hybrid technologies show remarkable benefits in terms of efficiency, accuracy, and quality for the fabrication of microstructures and functional devices on the surface of or inside the transparent hard substrates, thus enabling widespread applications in the fields of microelectronics, bio-medicine, photonics, and microfluidics. A summary and outlook of the hybrid laser technologies are also highlighted.
Collapse
Affiliation(s)
- Huagang Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore, Singapore
| | - Wenxiong Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Minghui Hong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore, Singapore.
| |
Collapse
|
19
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021; 22:2011. [PMID: 33670545 PMCID: PMC7921936 DOI: 10.3390/ijms22042011] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is a relatively newly emerged field based on the combined principles of physics, chemistry, biology, fluid dynamics, microelectronics, and material science. Various materials can be processed into miniaturized chips containing channels and chambers in the microscale range. A diverse repertoire of methods can be chosen to manufacture such platforms of desired size, shape, and geometry. Whether they are used alone or in combination with other devices, microfluidic chips can be employed in nanoparticle preparation, drug encapsulation, delivery, and targeting, cell analysis, diagnosis, and cell culture. This paper presents microfluidic technology in terms of the available platform materials and fabrication techniques, also focusing on the biomedical applications of these remarkable devices.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
20
|
Temirel M, Dabbagh SR, Tasoglu S. Hemp-Based Microfluidics. MICROMACHINES 2021; 12:mi12020182. [PMID: 33673025 PMCID: PMC7917756 DOI: 10.3390/mi12020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Hemp is a sustainable, recyclable, and high-yield annual crop that can be used to produce textiles, plastics, composites, concrete, fibers, biofuels, bionutrients, and paper. The integration of microfluidic paper-based analytical devices (µPADs) with hemp paper can improve the environmental friendliness and high-throughputness of µPADs. However, there is a lack of sufficient scientific studies exploring the functionality, pros, and cons of hemp as a substrate for µPADs. Herein, we used a desktop pen plotter and commercial markers to pattern hydrophobic barriers on hemp paper, in a single step, in order to characterize the ability of markers to form water-resistant patterns on hemp. In addition, since a higher resolution results in densely packed, cost-effective devices with a minimized need for costly reagents, we examined the smallest and thinnest water-resistant patterns plottable on hemp-based papers. Furthermore, the wicking speed and distance of fluids with different viscosities on Whatman No. 1 and hemp papers were compared. Additionally, the wettability of hemp and Whatman grade 1 paper was compared by measuring their contact angles. Besides, the effects of various channel sizes, as well as the number of branches, on the wicking distance of the channeled hemp paper was studied. The governing equations for the wicking distance on channels with laser-cut and hydrophobic side boundaries are presented and were evaluated with our experimental data, elucidating the applicability of the modified Washburn equation for modeling the wicking distance of fluids on hemp paper-based microfluidic devices. Finally, we validated hemp paper as a substrate for the detection and analysis of the potassium concentration in artificial urine.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34470, Turkey
- Correspondence:
| |
Collapse
|
21
|
Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates. MICROMACHINES 2021; 12:mi12020138. [PMID: 33525394 PMCID: PMC7911801 DOI: 10.3390/mi12020138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/17/2023]
Abstract
Laser micromachining technique offers a promising alternative method for rapid production of microfluidic devices. However, the effect of process parameters on the channel geometry and quality of channels on common microfluidic substrates has not been fully understood yet. In this research, we studied the effect of laser system parameters on the microchannel characteristics of Polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), and microscope glass substrate—three most widely used materials for microchannels. We also conducted a cell adhesion experiment using normal human dermal fibroblasts on laser-machined microchannels on these substrates. A commercial CO2 laser system consisting of a 45W laser tube, circulating water loop within the laser tube and air cooling of the substrate was used for machining microchannels in PDMS, PMMA and glass. Four laser system parameters—speed, power, focal distance, and number of passes were varied to fabricate straight microchannels. The channel characteristics such as depth, width, and shape were measured using a scanning electron microscope (SEM) and a 3D profilometer. The results show that higher speed produces lower depth while higher laser power produces deeper channels regardless of the substrate materials. Unfocused laser machining produces wider but shallower channels. For the same speed and power, PDMS channels were the widest while PMMA channels were the deepest. Results also showed that the profiles of microchannels can be controlled by increasing the number of passes. With an increased number of passes, both glass and PDMS produced uniform, wider, and more circular channels; in contrast, PMMA channels were sharper at the bottom and skewed. In rapid cell adhesion experiments, PDMS and glass microchannels performed better than PMMA microchannels. This study can serve as a quick reference in material-specific laser-based microchannel fabrications.
Collapse
|
22
|
Jahanbakhsh A, Wlodarczyk KL, Hand DP, Maier RRJ, Maroto-Valer MM. Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials. SENSORS 2020; 20:s20144030. [PMID: 32698501 PMCID: PMC7412536 DOI: 10.3390/s20144030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely “fluid flow in porous media”, “flow in heterogeneous rocks and fractures”, “reactive transport, solute and colloid transport”, and finally “porous media characterization”. In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.
Collapse
Affiliation(s)
- Amir Jahanbakhsh
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
- Correspondence:
| | - Krystian L. Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - Duncan P. Hand
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - Robert R. J. Maier
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - M. Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
| |
Collapse
|
23
|
Klein AK, Dietzel A. A Primer on Microfluidics: From Basic Principles to Microfabrication. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:17-35. [PMID: 33404675 DOI: 10.1007/10_2020_156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidic systems enable manipulating fluids in different functional units which are integrated on a microchip. This chapter describes the basics of microfluidics, where physical effects have a different impact compared to macroscopic systems. Furthermore, an overwiew is given on the microfabrication of these systems. The focus lies on clean-room fabrication methods based on photolithography and soft lithography. Finally, an outlook on advanced maskless micro- and nanofabrication methods is given. Special attention is paid to laser structuring processes.
Collapse
Affiliation(s)
- Ann-Kathrin Klein
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany
| | - Andreas Dietzel
- Institute of Microtechnology Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
24
|
Wlodarczyk KL, Hand DP, Maroto-Valer MM. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci Rep 2019; 9:20215. [PMID: 31882878 PMCID: PMC6934552 DOI: 10.1038/s41598-019-56711-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional manufacturing of glass microfluidic devices is a complex, multi-step process that involves a combination of different fabrication techniques, typically photolithography, chemical/dry etching and thermal/anodic bonding. As a result, the process is time-consuming and expensive, in particular when developing microfluidic prototypes or even manufacturing them in low quantity. This report describes a fabrication technique in which a picosecond pulsed laser system is the only tool required to manufacture a microfluidic device from transparent glass substrates. The laser system is used for the generation of microfluidic patterns directly on glass, the drilling of inlet/outlet ports in glass covers, and the bonding of two glass plates together in order to enclose the laser-generated patterns from the top. This method enables the manufacturing of a fully-functional microfluidic device in a few hours, without using any projection masks, dangerous chemicals, and additional expensive tools, e.g., a mask writer or bonding machine. The method allows the fabrication of various types of microfluidic devices, e.g., Hele-Shaw cells and microfluidics comprising complex patterns resembling up-scaled cross-sections of realistic rock samples, suitable for the investigation of CO2 storage, water remediation and hydrocarbon recovery processes. The method also provides a route for embedding small 3D objects inside these devices.
Collapse
Affiliation(s)
- Krystian L Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom. .,Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom.
| | - Duncan P Hand
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Facile Method for Fabricating Microfluidic Chip Integrated with Microwell Arrays for Cell Trapping. MICROMACHINES 2019; 10:mi10110719. [PMID: 31731448 PMCID: PMC6915356 DOI: 10.3390/mi10110719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
Abstract
With the development of biomedical technology, personalized diagnosis and treatment at the single-cell level are becoming more important in the medical field. As one of the most powerful tools, microfluidic chips have shown significant potential for various applications related to cell separation, cell proliferation, and cell behavior analysis. However, fabricating microfluidic devices requires complicated procedures and high-cost equipment. In this study, an optofluidic maskless lithography method was proposed for rapid fabrication of microfluidic devices integrated with microwells. Through the use of this approach, microwells can be on-line designed and the exposure patterns can be modulated. Single or multi polystyrene microspheres were successfully trapped by using the designed microwells. The capture of MCF-7 cells and cell arrays indicated that the microfluidic devices fabricated in the present study can be applied for cell research.
Collapse
|
26
|
Investigation of Micromachined Antenna Substrates Operating at 5 GHz for RF Energy Harvesting Applications. MICROMACHINES 2019; 10:mi10020146. [PMID: 30813276 PMCID: PMC6412937 DOI: 10.3390/mi10020146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/24/2023]
Abstract
This paper investigates micromachined antenna performance operating at 5 GHz for radio frequency (RF) energy harvesting applications by comparing different substrate materials and fabrication modes. The research aims to discover appropriate antenna designs that can be integrated with the rectifier circuit and fabricated in a CMOS (Complementary Metal-Oxide Semiconductor)-compatible process approach. Therefore, the investigation involves the comparison of three different micromachined antenna substrate materials, including micromachined Si surface, micromachined Si bulk with air gaps, and micromachined glass-surface antenna, as well as conventional RT/Duroid-5880 (Rogers Corp., Chandler, AZ, USA)-based antenna as the reference. The characteristics of the antennas have been analysed using CST-MWS (CST MICROWAVE STUDIO®-High Frequency EM Simulation Tool). The results show that the Si-surface micromachined antenna does not meet the parameter requirement for RF antenna specification. However, by creating an air gap on the Si substrate using a micro-electromechanical system (MEMS) process, the antenna performance could be improved. On the other hand, the glass-based antenna presents a good S11 parameter, wide bandwidth, VSWR (Voltage Standing Wave Ratio) ≤ 2, omnidirectional radiation pattern and acceptable maximum gain of >5 dB. The measurement results on the fabricated glass-based antenna show good agreement with the simulation results. The study on the alternative antenna substrates and structures is especially useful for the development of integrated patch antennas for RF energy harvesting systems.
Collapse
|
27
|
Interlaced Laser Beam Scanning: A Method Enabling an Increase in the Throughput of Ultrafast Laser Machining of Borosilicate Glass. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2019. [DOI: 10.3390/jmmp3010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We provide experimental evidence that the laser beam scanning strategy has a significant influence on material removal rate in the ultrafast laser machining of glass. A comparative study of two laser beam scanning methods, (i) bidirectional sequential scanning method (SM) and (ii) bidirectional interlaced scanning method (IM), is presented for micromachining 1.1-mm-thick borosilicate glass plates (Borofloat® 33). Material removal rate and surface roughness are measured for a range of pulse energies, overlaps, and repetition frequencies. With a pulse overlap of ≤90%, IM can provide double the ablation depth and double the removal rate in comparison to SM, whilst maintaining very similar surface roughness. In both cases, the root-mean-square (RMS) surface roughness (Sq) was in the range of 1 μm to 2.5 μm. For a 95% pulse overlap, the difference was more pronounced, with IM providing up to four times the ablation depth of SM; however, this is at the cost of a significant increase in surface roughness (Sq values >5 μm). The increased ablation depths and removal rates with IM are attributed to a layer-by-layer material removal process, providing more efficient ejection of glass particles and, hence, reduced shielding of the machined area. IM also has smaller local angles of incidence of the laser beam that potentially can lead to a better coupling efficiency of the laser beam with the material.
Collapse
|
28
|
Righini GC, Righini N. Editorial for the Special Issue on Glassy Materials Based Microdevices. MICROMACHINES 2019; 10:mi10010039. [PMID: 30626152 PMCID: PMC6357125 DOI: 10.3390/mi10010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 10/28/2022]
Abstract
Glassy materials, i.e., glasses and most polymers, play a very important role in microtechnologies and photonics[...].
Collapse
Affiliation(s)
- Giancarlo C Righini
- "Enrico Fermi" Historical Museum of Physics and Study & Research Centre, 00184 Roma, Italy.
- "Nello Carrara" Institute of Applied Physics (IFAC), CNR. 50019 Sesto Fiorentino, Italy.
| | - Nicoletta Righini
- Research Institute on Ecosystems and Sustainability (IIES), National Autonomous University of Mexico (UNAM), 58190 Morelia, Mexico.
| |
Collapse
|