1
|
Hajian H, Shahaboddin ME, Akhavan Taheri M, Kheiripour N, Kabiri-Arani S, Aghadavod E, Motallebi M. Therapeutic potential of heat-killed Lactobacillus reuteri against bile acid-induced male reproductive toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04092-0. [PMID: 40232374 DOI: 10.1007/s00210-025-04092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
Exposure of testicular tissue to supraphysiological concentrations of bile acids can lead to infertility. This study aimed to investigate the protective effects of heat-killed Lactobacillus reuteri (L. reuteri) against male reproductive toxicity induced by bile duct ligation (BDL). Thirty-two male Wistar rats were randomly assigned to four groups (N = 8): control normal (CN), sham-control (SC), BDL-control (underwent BDL surgery), and BDL + heat-killed L. reuteri (received probiotic supplementation for 7 days before and 21 days after BDL). At the end of the study, reproductive parameters, including sex hormones, sperm characteristics, oxidative stress markers, antioxidant status, and inflammatory gene expression in testicular tissue, were analyzed. Additionally, histological assessments of the testis and epididymis were performed. The administration of heat-killed L. reuteri significantly improved sperm viability (p ≤ 0.05) and luteinizing hormone levels (p ≤ 0.05) while reducing total oxidative status, carbonyl protein, and oxidative stress index (p ≤ 0.05) compared to the BDL-control group. Moreover, nitric oxide levels were significantly increased (p ≤ 0.05) in the probiotic-treated group. The expression levels of TNF-α and IL-6 were notably downregulated (p ≤ 0.05), indicating reduced testicular inflammation. Histological analysis demonstrated significant improvements in epithelial height, spermatogenic epithelial area ratio, lumen diameter, and lumen area (p ≤ 0.05) in the probiotic-treated group. These findings suggest that heat-killed L. reuteri alleviates cholestasis-related male reproductive toxicity through its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hajar Hajian
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akhavan Taheri
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shima Kabiri-Arani
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Pezeshk Blvd, Qotbe Ravandi Blvd, Kashan, Iran.
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. Anticancer effect of a combinatorial treatment of 5-fluorouracil and cell extract of some probiotic lactobacilli strains isolated from camel milk on colorectal cancer cells. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01228-2. [PMID: 39702737 DOI: 10.1007/s12223-024-01228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024]
Abstract
Colorectal cancer (CRC) has the highest mortality rate among cancer types, emphasizing the need for auxiliaries to 5-fluorouracil (5-FU) due to resistance and side effects. Metabolites produced by probiotic bacteria exhibit promising anticancer properties against CRC. In the current study, the anticancer effects of cell extract of three potential probiotic lactobacilli strains isolated from camel milk, Lactobacillus helveticus, Lactobacillus gallinarum, and Lactiplantibacillus plantarum, as well as that of the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG), on the human colon cancer cell line (HT-29) and the normal HEK293 cell line separately or in combination with 5-FU, were evaluated. This study isolated strains from camel milk and compared their probiotic properties to those of LGG. The cell viability, cell apoptosis, and Th17 cytokine production were assessed using the MTT assay, acridine orange/ethidium bromide (AO/EB) staining, and flow cytometry techniques, respectively. The cell extracts of lactobacilli strains combined with 5-FU reduced HT-29 cell viability effectively and increased cell apoptosis. Nevertheless, the cell extracts of lactobacilli strains combined with 5-FU controlled the cytotoxic impact of 5-FU on HEK-293 cell viability and reduced cell apoptosis. No significant differences were observed among the strains. Moreover, the cell extracts from the strains combined with 5-FU increased the levels of cytokines IFN-γ, TNF-α, and IL-17A, all of which contribute to immunity against tumors. The performance of the studied strains was similar to that of the standard probiotic strain (LGG). The investigation revealed that cell extracts from lactobacilli strains may serve as a promising complementary anticancer treatment.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Duduyemi OP, Potapenko K, Limanska N, Kotsyuda S, Petriv N, Suo H, Gudzenko T, Ivanytsia V, Yevsa T. Lactiplantibacillus plantarum inhibited the growth of primary liver cancer by inducing early apoptosis and senescence, in vitro. Front Microbiol 2024; 15:1451170. [PMID: 39600571 PMCID: PMC11590124 DOI: 10.3389/fmicb.2024.1451170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 11/29/2024] Open
Abstract
Primary liver cancer (PLC), comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), is a severe form of cancer associated with a high mortality and morbidity rate and increasing incidence worldwide. Current treatment options are limited and chemotherapeutics demonstrate strong side effects. New therapies are highly required. Lactobacilli represent the most diverse lactic acid-producing bacteria group and a prominent example of probiotics. Several studies have highlighted the anticancer efficacy of probiotics, especially of Lactiplantibacillus plantarum. However, there are limited studies on its activity on two PLC types, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). This study evaluated the inhibitory mechanism and properties of L. plantarum ONU 12 (Lp 12) and L. plantarum ONU 355 (Lp 355), isolated from grapes in Ukraine and France, in murine PLC cell lines, in vitro. Strain Lacticaseibacillus casei ATCC 393 (Lc 393) has been taken for a direct comparison, as the most studied probiotic strain. The three Lactobacillus species were used in three forms: as live and heat-killed suspensions, and as sonicated extracts, and tested either as a monotherapy or in combination with standard chemotherapeutics (sorafenib for HCC and gemcitabine for CCA). Cell proliferation and viability were assessed via crystal violet staining assay and cell counting kit-8 assay. The induction of senescence was investigated by senescence-associated β-galactosidase assay. Fluorescence-activated cell sorting analysis was used to determine the apoptotic mechanism behind the inhibitory property of lactobacilli. The results showed that the live suspensions and sonicated extracts of Lp 12, Lp 355, and Lc 393 demonstrated inhibitory properties in CCA and HCC cells after 48 h of incubation. In combinations with standard chemotherapeutics, lactobacilli treatments have shown strong synergistic effects. The combination therapy allowed to reduce the chemotherapeutic doses of gemcitabine from 50 μM to 0.1 and 0.05 μM and sorafenib from 13.8 μM to 6.9 and 3.45 μM. Successful treatment regimes induced early apoptosis and cellular senescence in PLC, as the mechanism of inhibition. Heat-killed suspensions showed no inhibitory effect in none of the cell lines. Both strains, Lp 12 and Lp 355, showed successful results and need further testing in vivo, using autochthonous HCC and CCA models.
Collapse
Affiliation(s)
- Oladimeji Paul Duduyemi
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Kateryna Potapenko
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Nataliia Limanska
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Sofiya Kotsyuda
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Nataliia Petriv
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Tetyana Gudzenko
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Volodymyr Ivanytsia
- Department of Microbiology, Virology, and Biotechnology, Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
4
|
Chen X, Wu J, Zhou B, Zhu M, Zhang J, Zhou N, Zhu YZ, Zhang X, Duan X, Men K. Bacterial Lysate-Based Bifunctional mRNA Nanoformulation for Efficient Colon Cancer Immunogene Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56580-56598. [PMID: 39397736 DOI: 10.1021/acsami.4c07684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans. Lactobacillus reuteri is a bacterial member of the gut flora, and recent research has shown that it can reduce intestinal inflammation by stimulating an immunomodulatory response. L. reuteri lysate represents an ideal resource for constructing advanced mRNA delivery systems with immune stimulation potential. Here, we prepared a bifunctional mRNA delivery system DMP-Lac (DOTAP-mPEG-PCL-L. reuteri lysate), which successfully codelivered L. reuteri lysate and IL-23A mRNA, exhibited a high mRNA delivery efficiency of 75.56% ± 0.85%, and strongly promoted the maturation and activation of the immune system in vivo. Both the CT26 abdominal metastasis model and the lung metastasis model also exhibited a good therapeutic effect, and the tumor inhibition rate of DMP-Lac/IL-23A group reached 97.92%. Protein chip technology verified that DMP acted as an immune adjuvant, demonstrating that the L. reuteri lysate could regulate the related immune cells, while IL-23 mRNA caused changes in downstream factors, thus producing the corresponding tumor treatment effect. The DMP-Lac/IL-23A complex exhibited strong anticancer immunotherapeutic effects. Our results demonstrated that this bifunctional mRNA formulation served as a tumor-specific nanomedicine, providing an advanced strategy for colon cancer immunogene therapy.
Collapse
Affiliation(s)
- Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Na Zhou
- State Key Laboratory for Quality Research of Chinese Medicines and School of Pharmacy, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yi Zhun Zhu
- State Key Laboratory for Quality Research of Chinese Medicines and School of Pharmacy, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xin Zhang
- State Key Laboratory for Quality Research of Chinese Medicines and School of Pharmacy, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
5
|
Chen L, Guo P, Zhai L, Yu L, Zhu D, Hu X, Li Z, Chen Y, Sun Q, Sun L, Luo H, Tang H. Nrf2 affects DNA damage repair and cell apoptosis through regulating HR and the intrinsic Caspase-dependent apoptosis pathway in TK6 cells exposed to hydroquinone. Toxicol In Vitro 2024; 100:105901. [PMID: 39029599 DOI: 10.1016/j.tiv.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Hydroquinone (HQ) is one of benzene metabolites that can cause oxidative stress damage and Homologous recombination repair (HR). A good deal of reactive oxygen species (ROS) generated by oxidative stress can trigger apoptotic signaling pathways. The nuclear factor erythroid 2-related factor 2 (Nrf2) can regulate the cell response to oxidative stress damage. The aim of this study was to explore whether Nrf2 participate in HQ-induced apoptosis and its mechanism. The findings displayed that HQ triggered HR, promoted Nrf2 transfer into the cell nucleus and induced cell apoptosis, while Nrf2 deficient elevated cell apoptosis, attenuated the expression of PARP1 and RAD51. We also observed that Nrf2 deficient triggered Caspase-9. Thus, we speculated that Nrf2 might participate in HQ-induced cell apoptosis through Caspase-9 dependent pathways. Meanwhile, Nrf2 participated in HQ-induced DNA damage repair by regulating the level of PARP1 and RAD51.
Collapse
Affiliation(s)
- Lin Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Pu Guo
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lu Zhai
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lingxue Yu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Delong Zhu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyi Hu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zhuanzhuan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lei Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Luo
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
Sudaarsan ASK, Ghosh AR. Appraisal of postbiotics in cancer therapy. Front Pharmacol 2024; 15:1436021. [PMID: 39372197 PMCID: PMC11449718 DOI: 10.3389/fphar.2024.1436021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a multifactorial disease with an increased mortality rate around the world for the past several decades. Despite advancements in treatment strategies, lower survival rates, drug-associated side effects, and drug resistance create a need for novel anticancer agents. Ample evidence shows that imbalances in the gut microbiota are associated with the formation of cancer and its progression. Altering the gut microbiota via probiotics and their metabolites has gained attention among the research community as an alternative therapy to treat cancer. Probiotics exhibit health benefits as well as modulate the immunological and cellular responses in the host. Apart from probiotics, their secreted products like bacteriocins, exopolysaccharides, short-chain fatty acids, conjugated linoleic acid, peptidoglycan, and other metabolites are found to possess anticancer activity. The beneficiary role of these postbiotic compounds is widely studied for characterizing their mechanism and mode of action that reduces cancer growth. The present review mainly focuses on the postbiotic components that are employed against cancer with their reported mechanism of action. It also describes recent research works carried out so far with specific strain and anticancer activity of derived compounds both in vitro and in vivo, validating that the probiotic approach would pave an alternative way to reduce the burden of cancer.
Collapse
|
7
|
Kuru-Yaşar R, Üstün-Aytekin Ö. The Crucial Roles of Diet, Microbiota, and Postbiotics in Colorectal Cancer. Curr Nutr Rep 2024; 13:126-151. [PMID: 38483752 PMCID: PMC11133122 DOI: 10.1007/s13668-024-00525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW Colorectal cancer is the second deadliest cancer in the world, and its prevalence has been increasing alarmingly in recent years. After researchers discovered the existence of dysbiosis in colorectal cancer, they considered the use of probiotics in the treatment of colorectal cancer. However, for various reasons, including the low safety profile of probiotics in susceptible and immunocompromised patient5s, and the risk of developing antibiotic resistance, researchers have shifted their focus to non-living cells, their components, and metabolites. This review aims to comprehensively evaluate the literature on the effects of diet, microbiota, and postbiotics on colorectal cancer and the future of postbiotics. RECENT FINDINGS The link between diet, gut microbiota, and colorectal cancer has been established primarily as a relationship rather than a cause-effect relationship. The gut microbiota can convert gastrointestinal tract and dietary factors into either onco-metabolites or tumor suppressor metabolites. There is serious dysbiosis in the microbiota in colorectal cancer. Postbiotics appear to be promising agents in the prevention and treatment of colorectal cancer. It has been shown that various postbiotics can selectively induce apoptosis in CRC, inhibit cell proliferation, growth, invasion, and migration, modulate the immune system, suppress carcinogenic signaling pathways, maintain intestinal epithelial integrity, and have a synergistic effect with chemotherapy drugs. However, it is also reported that some postbiotics are ineffective and may be risky in terms of safety profile in some patients. Many issues need to be researched about postbiotics. Large-scale, randomized, double-blind clinical studies are needed.
Collapse
Affiliation(s)
- Rüya Kuru-Yaşar
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, 34668, Istanbul, Türkiye
| | - Özlem Üstün-Aytekin
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, 34668, Istanbul, Türkiye.
| |
Collapse
|
8
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. The anticancer effect of potential probiotic L. fermentum and L. plantarum in combination with 5-fluorouracil on colorectal cancer cells. World J Microbiol Biotechnol 2024; 40:139. [PMID: 38514489 DOI: 10.1007/s11274-024-03929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
5-Fluorouracil (5-FU) is an effective chemotherapy drug in the treatment of colorectal cancer (CRC). However, auxiliary or alternative therapies must be sought due to its resistance and potential side effects. Certain probiotic metabolites exhibit anticancer properties. In this study evaluated the anticancer and potential therapeutic activities of cell extracts potential probiotic strains, Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from the mule milk and the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG) against the human colon cancer cell line (HT-29) and the normal cell line (HEK-293) alone or in combination with 5-FU. In this study, L. plantarum and L. fermentum, which were isolated from mule milk, were identified using biochemical and molecular methods. Their probiotic properties were investigated in vitro and compared with the standard probiotic strain of the species L. rhamnosus GG. The MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and flow cytometry were employed to measure the viability of cell lines, cell apoptosis, and production rates of Th17 cytokines, respectively. The results demonstrated that the combination of lactobacilli cell extracts and 5-FU decreased cell viability and induced apoptosis in HT-29 cells. Furthermore, this combination protected HEK-293 cells from the cytotoxic effects of 5-FU, enhancing their viability and reducing apoptosis. Moreover, the combination treatment led to an increase in the levels of IL-17A, IFN-γ, and TNF-α, which can enhance anti-tumor immunity. In conclusion, the cell extracts of the lactobacilli strains probably can act as a potential complementary anticancer therapy.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
10
|
Peng Y, Ma Y, Luo Z, Jiang Y, Xu Z, Yu R. Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Front Cell Infect Microbiol 2023; 13:1254198. [PMID: 37662007 PMCID: PMC10471993 DOI: 10.3389/fcimb.2023.1254198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Digestive system diseases have evolved into a growing global burden without sufficient therapeutic measures. Lactobacillus reuteri (L. reuteri) is considered as a new potential economical therapy for its probiotic effects in the gastrointestinal system. We have provided an overview of the researches supporting various L. reuteri strains' application in treating common digestive system diseases, including infantile colic, diarrhea, constipation, functional abdominal pain, Helicobacter pylori infection, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases. Methods The summarized literature in this review was derived from databases including PubMed, Web of Science, and Google Scholar. Results The therapeutic effects of L. reuteri in digestive system diseases may depend on various direct and indirect mechanisms, including metabolite production as well as modulation of the intestinal microbiome, preservation of the gut barrier function, and regulation of the host immune system. These actions are largely strain-specific and depend on the activation or inhibition of various certain signal pathways. It is well evidenced that L. reuteri can be effective both as a prophylactic measure and as a preferred therapy for infantile colic, and it can also be recommended as an adjuvant strategy to diarrhea, constipation, Helicobacter pylori infection in therapeutic settings. While preclinical studies have shown the probiotic potential of L. reuteri in the management of functional abdominal pain, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases, its application in these disease settings still needs further study. Conclusion This review focuses on the probiotic effects of L. reuteri on gut homeostasis via certain signaling pathways, and emphasizes the importance of these probiotics as a prospective treatment against several digestive system diseases.
Collapse
Affiliation(s)
- Yijing Peng
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Wuxi Children’s Hospital, Children’s Hospital of Jiangnan University, Wuxi, China
| | - Yizhe Ma
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Pediatric, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yifan Jiang
- School of Medicine, Nantong University, Nantong, China
| | - Zhimin Xu
- College of Resources and Environment, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
11
|
Abdullah NA, Mahmoud HE, El-Nikhely NA, Hussein AA, El-Khordagui LK. Carbon dots labeled Lactiplantibacillus plantarum: a fluorescent multifunctional biocarrier for anticancer drug delivery. Front Bioeng Biotechnol 2023; 11:1166094. [PMID: 37304143 PMCID: PMC10248154 DOI: 10.3389/fbioe.2023.1166094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
A carbon dots (CDs)-biolabeled heat-inactivated Lactiplantibacillus plantarum (HILP) hybrid was investigated as a multifunctional probiotic drug carrier with bioimaging properties using prodigiosin (PG) as anticancer agent. HILP, CDs and PG were prepared and characterized using standard methods. CDs-labeled HILP (CDs/HILP) and PG loaded CDs/HILP were characterized by transmission electron microscopy (TEM), laser scanning confocal microscopy (LSCM) and for entrapment efficiency (EE%) of CDs and PG, respectively. PG-CDs/HILP was examined for stability and PG release. the anticancer activity of PG-CDs/HILP was assessed using different methods. CDs imparted green fluorescence to HILP cells and induced their aggregation. HILP internalized CDs via membrane proteins, forming a biostructure with retained fluorescence in PBS for 3 months at 4°C. Loading PG into CDs/HILP generated a stable green/red bicolor fluorescent combination permitting tracking of both drug carrier and cargo. Cytotoxicity assay using Caco-2 and A549 cells revealed enhanced PG activity by CDs/HILP. LCSM imaging of PG-CDs/HILP-treated Caco-2 cells demonstrated improved cytoplasmic and nuclear distribution of PG and nuclear delivery of CDs. CDs/HILP promoted PG-induced late apoptosis of Caco-2 cells and reduced their migratory ability as affirmed by flow cytometry and scratch assay, respectively. Molecular docking indicated PG interaction with mitogenic molecules involved in cell proliferation and growth regulation. Thus, CDs/HILP offers great promise as an innovative multifunctional nanobiotechnological biocarrier for anticancer drug delivery. This hybrid delivery vehicle merges the physiological activity, cytocompatibility, biotargetability and sustainability of probiotics and the bioimaging and therapeutic potential of CDs.
Collapse
Affiliation(s)
- Noor A. Abdullah
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E. Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nefertiti A. El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed A. Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Labiba K. El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Ju X, Wu X, Chen Y, Cui S, Cai Z, Zhao L, Hao Y, Zhou F, Chen F, Yu Z, Yang D. Mucin Binding Protein of Lactobacillus casei Inhibits HT-29 Colorectal Cancer Cell Proliferation. Nutrients 2023; 15:nu15102314. [PMID: 37242197 DOI: 10.3390/nu15102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Many Lactobacillus casei strains are reported to exhibit anti-proliferative effects on colorectal cancer cells; however, the mechanism remains largely unknown. While there has been considerable interest in bacterial small metabolites such as short chain fatty acids, prior reports suggested that larger-sized molecules mediate the anti-proliferative effect of L. casei. Here, other possible ways of communication between gut bacteria and its host are investigated. LevH1 is a protein displayed on the surface of L. casei, and its mucin binding domain is highly conserved. Based on previous reports that the cell-free supernatant fractions decreased colorectal cell proliferation, we cloned the mucin binding domain of the LevH1 protein, expressed and purified this mucin binding protein (MucBP). It has a molecular weight of 10 kDa, is encoded by a 250 bp gene, and is composed primarily of a β-strand, β-turns, and random coils. The amino acid sequence is conserved while the 36th amino acid residue is arginine in L. casei CAUH35 and serine in L. casei IAM1045, LOCK919, 12A, and Zhang. MucBP36R exhibited dose-dependent anti-proliferative effects against HT-29 cells while a mutation of 36S abolished this activity. Predicted structures suggest that this mutation slightly altered the protein structure, thus possibly affecting subsequent communication with HT-29 cells. Our study identified a novel mode of communication between gut bacteria and their host.
Collapse
Affiliation(s)
- Xuan Ju
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yukun Chen
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shanshan Cui
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zixuan Cai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhengquan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
13
|
Ayyash M, Liu SQ. Special Issue "Probiotics, Prebiotics and Functional Foods: Health Benefits and Biosafety". Microorganisms 2023; 11:1218. [PMID: 37317192 DOI: 10.3390/microorganisms11051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Probiotics, prebiotics, and functional foods are buzzwords in the food industry for good reasons [...].
Collapse
Affiliation(s)
- Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
14
|
Song D, Wang X, Ma Y, Liu NN, Wang H. Beneficial insights into postbiotics against colorectal cancer. Front Nutr 2023; 10:1111872. [PMID: 36969804 PMCID: PMC10036377 DOI: 10.3389/fnut.2023.1111872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancer types with limited therapeutic options worldwide. Gut microbiota has been recognized as the pivotal determinant in maintaining gastrointestinal (GI) tract homeostasis, while dysbiosis of gut microbiota contributes to CRC development. Recently, the beneficial role of postbiotics, a new concept in describing microorganism derived substances, in CRC has been uncovered by various studies. However, a comprehensive characterization of the molecular identity, mechanism of action, or routes of administration of postbiotics, particularly their role in CRC, is still lacking. In this review, we outline the current state of research toward the beneficial effects of gut microbiota derived postbiotics against CRC, which will represent the key elements of future precision-medicine approaches in the development of novel therapeutic strategies targeting gut microbiota to improve treatment outcomes in CRC.
Collapse
Affiliation(s)
| | | | | | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
The Female Reproductive Tract Microbiome and Cancerogenesis: A Review Story of Bacteria, Hormones, and Disease. Diagnostics (Basel) 2023; 13:diagnostics13050877. [PMID: 36900020 PMCID: PMC10000484 DOI: 10.3390/diagnostics13050877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
The microbiota is the complex community of microorganisms that populate a particular environment in the human body, whereas the microbiome is defined by the entire habitat-microorganisms and their environment. The most abundant and, therefore, the most studied microbiome is that of the gastrointestinal tract. However, the microbiome of the female reproductive tract is an interesting research avenue, and this article explores its role in disease development. The vagina is the reproductive organ that hosts the largest number of bacteria, with a healthy profile represented mainly by Lactobacillus spp. On the other hand, the female upper reproductive tract (uterus, Fallopian tubes, ovaries) contains only a very small number of bacteria. Previously considered sterile, recent studies have shown the presence of a small microbiota here, but there are still debates on whether this is a physiologic or pathologic occurrence. Of particular note is that estrogen levels significantly influence the composition of the microbiota of the female reproductive tract. More and more studies show a link between the microbiome of the female reproductive tract and the development of gynecological cancers. This article reviews some of these findings.
Collapse
|
16
|
Yu Z, Chen J, Liu Y, Meng Q, Liu H, Yao Q, Song W, Ren X, Chen X. The role of potential probiotic strains Lactobacillus reuteri in various intestinal diseases: New roles for an old player. Front Microbiol 2023; 14:1095555. [PMID: 36819028 PMCID: PMC9932687 DOI: 10.3389/fmicb.2023.1095555] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., is a gut symbiont that can colonize many mammals. Since it was first isolated in 1962, a multitude of research has been conducted to investigate its function and unique role in different diseases as an essential probiotic. Among these, the basic functions, beneficial effects, and underlying mechanisms of L. reuteri have been noticed and understood profoundly in intestinal diseases. The origins of L. reuteri strains are diverse, with humans, rats, and piglets being the most common. With numerous L. reuteri strains playing significant roles in different intestinal diseases, DSM 17938 is the most widely used in humans, especially in children. The mechanisms by which L. reuteri improves intestinal disorders include protecting the gut barrier, suppressing inflammation and the immune response, regulating the gut microbiota and its metabolism, and inhibiting oxidative stress. While a growing body of studies focused on L. reuteri, there are still many unknowns concerning its curative effects, clinical safety, and precise mechanisms. In this review, we initially interpreted the basic functions of L. reuteri and its related metabolites. Then, we comprehensively summarized its functions in different intestinal diseases, including inflammatory bowel disease, colorectal cancer, infection-associated bowel diseases, and pediatric intestinal disorders. We also highlighted some important molecules in relation to the underlying mechanisms. In conclusion, L. reuteri has the potential to exert a beneficial impact on intestinal diseases, which should be further explored to obtain better clinical application and therapeutic effects.
Collapse
Affiliation(s)
- Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Xin Chen ✉
| |
Collapse
|
17
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
18
|
Anti-Tumor Effect of Heat-Killed Bifidobacterium bifidum on Human Gastric Cancer through Akt-p53-Dependent Mitochondrial Apoptosis in Xenograft Models. Int J Mol Sci 2022; 23:ijms23179788. [PMID: 36077182 PMCID: PMC9456556 DOI: 10.3390/ijms23179788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Paraprobiotics, inactivated microbial cells, regulate immune system and exhibit antioxidant and anti-inflammatory activities in patients with weakened immunity or the elderly. This study evaluated the anti-tumor effects of heat-killed Bifidobacterium and Lactobacillus on human gastric cancer MKN1 cells in vitro and in vivo in xenograft animal models. First, cytotoxicity and apoptosis in MKN1 cells of 11 different heat-killed Bifidobacterium or Lactobacillus strains were examined using the MTT assay or flow cytometry, respectively. Then, BALB/c nude mice xenograft animal models were implanted with human gastric cancer MKN1 cells and orally administered a selected single or a mixture of heat-killed bacterial strains to investigate their inhibitory effect on tumor growth. In addition, the expression of p-Akt, p53, Bax, Bak, cleaved caspase-9, -3, and PARP in the tumor tissues was analyzed using Western blotting assay or immunohistochemistry staining. The results show that heat-killed B. bifidum MG731 (MG731), L. reuteri MG5346 (MG5346), and L. rhamnosus MG5200 (MG5200) induced relatively greater apoptosis than other strains in MKN1 cells. Oral administration of a single dose or a mixture of MG731, MG5346, or MG5200 significantly delayed tumor growth, and MG731 had the most effective anti-tumor effect in the xenograft model. Protein expression of p-Akt, p53, Bax, cleaved caspase-3 and -9, and PARP in tumors derived from the xenograft model correlated with the results of the immunohistochemistry staining.
Collapse
|
19
|
Budu O, Banciu C, Pinzaru I, Sarău C, Lighezan D, Șoica C, Dehelean C, Drăghici G, Dolghi A, Prodea A, Mioc M. A Combination of Two Probiotics, Lactobacillus sporogenes and Clostridium butyricum, Inhibits Colon Cancer Development: An In Vitro Study. Microorganisms 2022; 10:microorganisms10091692. [PMID: 36144294 PMCID: PMC9506018 DOI: 10.3390/microorganisms10091692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer remains a leading cause of death worldwide and, even though several advances have been made in terms of specific treatment, the late-stage detection and the associated side effects of the conventional drugs sustain the search for better treatment alternatives. Probiotics are live microorganisms that have been proven to possess numerous health benefits for human hosts, including anticancer effects. In the present study, the in vitro effect of the association of two probiotic strains (PBT), Lactobacillus sporogenes and Clostridium butyricum, were tested against colon (HT-29 and HCT 116), lung (A549), and liver (HepG2) cancer cell lines, alone or in combination with 5-fluorouracil (5FU). Moreover, the underlying mechanism of PBT and PBT-5FU against the HT-29 cell line was evaluated using the Hoechst 33342 staining, revealing characteristic apoptotic modifications, such as chromatin condensation, nuclear fragmentation, and membrane blebbing. Furthermore, the increase in the expression of pro-apoptotic Bax, Bid, Bad, and Bak proteins and the inhibition of the anti-apoptotic Bcl-2 and Bcl-XL proteins were recorded. Collectively, these findings suggest that the two strains of probiotic bacteria, alone or in association with 5FU, induce apoptosis in colon cancer cells and may serve as a potential anticancer treatment.
Collapse
Affiliation(s)
- Oana Budu
- Department of Internal Medicine IV, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Iulia Pinzaru
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Correspondence: (I.P.); (C.S.); Tel.: +40-256-494-604
| | - Cristian Sarău
- Department of Medical Semiology I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Correspondence: (I.P.); (C.S.); Tel.: +40-256-494-604
| | - Daniel Lighezan
- Department of Medical Semiology I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Codruța Șoica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Cristina Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - George Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Alina Dolghi
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|