1
|
Xu Q, Zhang Y. Research progress on the bioactivity of compound polysaccharides: A review. Int J Biol Macromol 2025; 306:141693. [PMID: 40043996 DOI: 10.1016/j.ijbiomac.2025.141693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Accepted: 03/01/2025] [Indexed: 05/03/2025]
Abstract
Polysaccharides are an important biological response modifier. Due to their mild effects, low toxicity and small side effects, they are widely used. However, the pharmacological activity of compound polysaccharides (composed of two or more types of polysaccharides in a certain proportion) is stronger than that of single polysaccharides and has synergistic effects. Therefore, the research on compound polysaccharides is also increasing. This review systematically collated literature from four prominent databases-PubMed, Web of Science, Scopus, MDPI, and CNKI-up to 2024, encapsulating the current findings regarding the diverse biological activities of compound polysaccharides. Experimental investigations predominantly concentrate on immune activity, anti-tumor efficacy, modulation of gut microbiota, and antiviral activity. Among these areas, the synergistic effect of immune activity is particularly pronounced; however, research specifically addressing this phenomenon remains comparatively limited. Future research should continue to explore the ratio of compound polysaccharides and the factors affecting their biological activity through data sharing and multi-institutional cooperation. In addition, the synergistic effect of compound polysaccharides combined with other chemical components or drugs cannot be ignored.
Collapse
Affiliation(s)
- Qirui Xu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Zheng W, Chen S, Guan Y, Wu B. Effects of Yupingfeng polysaccharide in diet on slaughtering performance and meat flavor of Qingyuan partridge chicken. Food Chem 2025; 471:142814. [PMID: 39798377 DOI: 10.1016/j.foodchem.2025.142814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
With the improvement of living standards, people's expectations for chickens' quality and flavor have also grown. Yupingfeng polysaccharide (YPF-P) has pharmacological effects such as regulating fatty acid composition and gut microbiota. In this study, different doses of YPF-P were added to the feed of qingyuan partridge chickens. The results showed that 8 g/kg YPF-P increased thigh muscle yield by 16.8 % and improved chicken breast flavor by elevating its pH1h and protein content, thereby enhancing flavor richness by 17.16 %.The non-targeted metabolomics (LC-MS) analysis of chicken breast revealed significant enrichment in Arachidonic acid metabolism. Correlation analysis showed the results of LC-MS are significantly correlated with flavor, protein and fat content. Taken together, YPF-P could provide better taste by changing muscle metabolism and increasing the deposition of beneficial compounds in muscle. This study provides valuable insights into the impact of YPF-P as feed additive on the meat flavor quality of poultry.
Collapse
Affiliation(s)
- Wendan Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China.
| |
Collapse
|
3
|
Li D, Li C, Liu N, Liu H, Yu Z, Liu Q, Shu G, Lin J, Zhang W, Peng G, Zhao L, Tang H, Li H, Xu F, Fu H. Integrated metabolomics and intestinal microbiota analysis to reveal anti-post-weaning diarrhea mechanisms of Modified Yupingfeng Granule in Rex rabbits. Front Microbiol 2025; 16:1470731. [PMID: 40276219 PMCID: PMC12020438 DOI: 10.3389/fmicb.2025.1470731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Post-weaning Diarrhea (PWD) is a kind of physiological stress diarrhea in Rex rabbits after weaning, which can lead to death in severe cases. Traditional Chinese medicine (TCM) has been widely used in animal due to its advantages of natural origin, diverse functions, safety, reliability, economy and environmental protection. Modified Yupingfeng Granule (MYPFG) is an improved Yupingfeng prescription based on the famous traditional Chinese prescription Yupingfeng (YPF), which is combined with other TCM and has obvious synergistic and additive activity in order to obtain an excellent natural medicine for PWD. Methods In this study, 120 weaned Rex rabbits were randomly allocated to 4 treatment groups, including control (CON), low dose (LD), medium dose (MD), high dose (HD). Rabbits were fed a control diet or a different MYPFG proportions of diet for 30 days. The study combined 16S rRNA analysis of intestinal microbiota and cecal contents metabolomics to explore the MYPFG effect on weaned Rex rabbits. Results MYPFG increased average daily gain, villus length to crypt depth ratio and decreased the feed to meat ratio, diarrhea frequency, mortality rate, depth of crypt (p < 0.05). The intestinal microbiota test found that MYPFG could change the abundances of Patescibacteria, Sphingobium, Ruminococcus, and Oxalobacter. Metabolomics analysis found that effect may be related to its regulation of Glycine, serine and threonine metabolism, Arginine and proline metabolism. Nicotinate and nicotinamide metabolism. Discussion MYPFG could regulate intestinal microbiota and change the metabolic pathway of some amino acids to alleviate the PWD in Rex rabbits.
Collapse
Affiliation(s)
- Dongbo Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Liu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Hanzhong Liu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Zhiju Yu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Quanjin Liu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangneng Peng
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haohuan Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Funeng Xu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Wang X, Ding Y, Zhang X, Feng Y, Li C, Ge Y, Yang Y, Su J, Chu X. The effects of degraded polysaccharides from Acanthopanax senticosus on growth, antioxidant and immune effects in broiler chicks based on intestinal flora. Poult Sci 2025; 104:104933. [PMID: 40010047 PMCID: PMC11910097 DOI: 10.1016/j.psj.2025.104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
The aim of this study was to evaluate the effect of degraded polysaccharide of Acanthopanax senticosus (ASPS-1) on the immunological effects and appropriate dosage of broiler chicks with a view to developing a new feed additive. For the experimental design, 180 broiler chicks were randomly divided into six groups, ASPS-1 low, medium and high dose groups, undegraded Acanthopanax senticosus polysaccharide (ASPS) low and medium dose groups and blank control group. The drug was administered for 21 consecutive days, and the growth and data of immune organ index and immune factors were recorded on the 7th, 14th and 21st d. Finally, the effect of ASPS-1 on the intestinal flora of broiler chicks was investigated by high-throughput sequencing of the 16S rRNA gene and the correlation between the main flora and intestinal indexes was analyzed, and the function of microbial community was predicted by using PICRUSt2. The results showed that the addition of high dose of ASPS-1 could promote the body weight growth of broiler chicks, had no significant effect on immune organs, significantly promoted the increase of intestinal villi and crypt ratio, and effectively regulated the levels of serum antioxidant factors and immune indexes. Analysis of the intestinal flora showed that ASPS-1H promoted the proliferation of Lactobacillus, Faecalibacterium, Negativibacillus, and Eubacterium and inhibited the colonization of Desulfovibrio and Turicibacter, and that proliferation of Faecalibacterium, Negativibacillus and Eubacterium was associated with the development of intestinal villi. Predictive analysis of PICRUSt2 function indicates that proliferation of Lactobacillus, Faecalibacterium, Negativibacillus and Eubacterium functions through amino acid metabolism, global and overview maps, replication and repair pathways function. In summary, the addition of high doses of ASPS-1 can improve the immunity of broilers and has the potential to be used as a feed additive.
Collapse
Affiliation(s)
- Xueyan Wang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yi Ding
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Xueping Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yichao Feng
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Chenglin Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yichen Ge
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yaosen Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Jianqing Su
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Chu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
5
|
Chen R, Wang K, Lin L, Chen Y, Liu Y, Li R, Wu X, Feng P, Chen X, Xu Y, Yang Z. Exploring the action mechanism and effective components of Yupingfeng powder on influenza based on computational system pharmacology and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118678. [PMID: 39121925 DOI: 10.1016/j.jep.2024.118678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yupingfeng powder (YPF) is a classic traditional Chinese medicine prescription with a long history of clinical application. However, there is a consensus on the clinical efficacy of YPF in the prevention and treatment of influenza, the underlying pharmacological mechanisms and functional substances have not been thoroughly investigated. AIM OF THE STUDY This study aimed to elucidate the functional substances and potential mechanisms of YPF against influenza infections by integrating network analysis, metabolomics, computational system pharmacology, and in vitro experiments. MATERIALS AND METHODS In this study, the active ingredients, related targets, and potential mechanisms of YPF against influenza were identified through network pharmacology and GEO database mining. Combined with metabolomics to corroborate the results of network pharmacology analysis and construct C-T-P-D-M network. Based on this, the key network motifs (KNM) with significance were predicted by system pharmacology algorithm. Finally, the key components as functional substances in the KNM were validated by the coverage of influenza-causing genes and functional pathways, and in vitro experiments. RESULTS A total of 238 active components and 158 potential target genes intersecting with influenza infection differential genes were screened from YPF. KEGG enrichment analysis indicated that metabolism participated in YPF-provided prevention and treatment on influenza, and metabolomic results further corroborated the significance of the metabolic pathways intervened by YPF included pyruvate metabolism, Valine, leucine and isoleucine degradation, etc. The KNM prediction strategy was computed to include wogonin and isoimperaporin, a group of 48 potential functional components. This functional component group maintained a high degree of consistency with the corresponding C-T network in terms of the coverage of influenza pathogenic genes, and the coverage of functional pathways. Meanwhile, the in vitro results showed that wogonin and isoimperaporin had significant inhibitory effects on inflammation induced by influenza infection, confirming the reliability and accuracy of the KNM prediction strategy. CONCLUSION YPF against influenza has multi-target and multi-pathway effects, and the underlying mechanisms may be related to metabolism. The pharmacodynamic effects of core components such as wogonin and isoimperaporin on influenza prevention and treatment were confirmed, which represent promising functional candidates for subsequent influenza prevention and treatment, and provide references for the pharmacological and mechanistic analyses of subsequent formulas.
Collapse
Affiliation(s)
- Ruifeng Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Kexin Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Luping Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510230, China
| | - Yaorong Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Ya Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Runfeng Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Xiao Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Pei Feng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaohong Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Zifeng Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China; Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China; Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510230, China.
| |
Collapse
|
6
|
Xue LG, Guo TK, Wang J, Shan YQ, Guo L, Zhang DX, Wei Z, Wang D. Effects of in-ovo injection of Yu ping feng polysaccharides on growth performance, intestinal development, and immunity in broiler chickens. Poult Sci 2025; 104:104574. [PMID: 39616675 PMCID: PMC11648774 DOI: 10.1016/j.psj.2024.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025] Open
Abstract
This study aimed to investigate the effects of the in-ovo injection of Yu Ping Feng polysaccharides (YPF) on the immunological development, hatchability, growth performance, intestinal tissue development, intestinal IgA+ cell distribution, and intestinal secretory IgA (SIgA) production in broiler chicken. Herein, 800 chicken embryos were randomly divided into Astragalus polysaccharide (APS), Atractylodes macrocephala polysaccharide (ATR), YPF, and normal saline (control) injection groups-polysaccharide injection, 0.5 mL of 4 mg/mL polysaccharide; normal saline injection, 0.5 mL. The related indexes of hatched chicks were detected, and there were 5 repeats in each group. Compared with the other three groups, the in-ovo YPF injection did not affect the hatching rate of chicken embryos; however, the initial body weight of hatchlings significantly increased and the feed conversion ratio decreased. Additionally, at each time point, the intestinal villus height (VH) of the chicks in the YPF group increased, whereas no notable difference was observed in the crypt depth (CD), resulting in a higher VH/CD ratio. Furthermore, the YPF group exhibited a statistically significant increase in intestinal IgA+ cell count and flushing fluid SIgA level throughout various time periods compared with those in the other three groups. Additionally, the expression of intestinal mucosal immune cytokines, including interleukin (IL)-2, IL-4, IL-6, and interferon-γ, were markedly increased in the duodenum and ileum of the YPF group. Moreover, the analysis of immune development revealed that their serum levels in the polysaccharide-injected groups were also increased, with the YPF groups exhibiting superior performance than the APS and ATR groups and encouraging the development of T and B lymphocytes in the spleen and peripheral blood mononuclear cells. Altogether, the findings of this study demonstrate that the in-ovo injection of YPF can improve the growth performance, intestinal tissue development, and immune system of the broiler chicks.
Collapse
Affiliation(s)
- Li-Gang Xue
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Tian-Kui Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Juan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Quan Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Li Guo
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhong Wei
- Jilin Agricultural Science and Technology University, 1 Xuefu Road Zuojia Town, Changyi District, Jilin, 132109, China
| | - Dan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Feng X, Du Y, Luan J, Lu S, Yang D, Fang S, Liu Y, Yang X, Lin L, Yang L, Geng C. Growth Performance, Apparent Digestibility, Serum Indices, and Fecal Bacterial Community Diversity in Yanbian Cattle Fed Diets With Fermented Spent Mushroom Substrate From Pleurotus Eryngii Instead of Brewers Spent Grain. Anim Sci J 2025; 96:e70059. [PMID: 40235352 DOI: 10.1111/asj.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
This experiment was to evaluate the effect of fermented spent mushroom substrate from Pleurotus eryngii (FSMPE) instead of brewers spent grain (BSG) on growth performance, apparent digestibility, serum indices, and fecal bacterial community of Yanbian cattle. Thirty heifers were randomly divided into three groups: T0 group (control group, fed a diet without FSMPE); T1 group (fed a diet with FSMPE instead of 50% BSG); T2 group (fed a diet with FSMPE instead of 100% BSG). The results showed that replacing BSG with FSMPE increased nutrient intake (except ether extract), average daily gain and economic efficiency, among which T1 group had the best effect. The apparent digestibility of dry matter, organic matter, crude protein, and neutral detergent fiber in the T1 group was not affected by FSMPE, but decreased significantly in the T2 group. In addition, FSMPE instead of BSG improved the serum biochemical and antioxidant indices of cattle. Meanwhile, FSMPE not only had no adverse effects on the bacterial diversity, but also improved the abundance of certain cellulose-degrading bacteria and potentially probiotic bacteria in rectal feces. These findings showed that replacing 50% BSG with FSMPE had positive effects on growth performance, economic efficiency, and health status of Yanbian cattle.
Collapse
Affiliation(s)
- Xin Feng
- Agricultural College, Yanbian University, Yanji, China
| | - Yunlong Du
- Agricultural College, Yanbian University, Yanji, China
| | - Jiaming Luan
- Agricultural College, Yanbian University, Yanji, China
| | - Shihui Lu
- Agricultural College, Yanbian University, Yanji, China
| | - Dongxu Yang
- Agricultural College, Yanbian University, Yanji, China
| | - Shibin Fang
- Agricultural College, Yanbian University, Yanji, China
| | - Yutong Liu
- Agricultural College, Yanbian University, Yanji, China
| | - Xiaoxue Yang
- Agricultural College, Yanbian University, Yanji, China
| | - Lingzhu Lin
- Agricultural College, Yanbian University, Yanji, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chunyin Geng
- Agricultural College, Yanbian University, Yanji, China
- Ministry of Education, Engineering Research Center of North-East Cold Region Beef Cattle Science and Technology Innovation, Yanbian University, Yanji, China
| |
Collapse
|
8
|
Liu M, Sun C, Zhou Q, Xu P, Wang A, Zheng X, Liu B. Supplementation of Yupingfeng polysaccharides in low fishmeal diets enhances intestinal health through influencing the intestinal barrier, immunity, and microflora in Macrobrachium rosenbergii. Front Immunol 2024; 15:1480897. [PMID: 39660141 PMCID: PMC11628508 DOI: 10.3389/fimmu.2024.1480897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction This study aimed to investigate the effects of a low-fishmeal diet (LF, substituting soybean meal for 40% fish meal) and the supplementation of 500 mg/kg and 1000 mg/kg Yu Ping Feng (YPF) polysaccharides on the growth performance, antioxidant enzyme activities, intestinal ultrastructure, non-specific immunity, and microbiota of Macrobrachium rosenbergii. Methods The study involved the administration of different diets to M. rosenbergii, including a control diet, a low-fishmeal diet (LF), and LF diets supplemented with 500 mg/kg and 1000 mg/kg YPF polysaccharides. Growth performance, antioxidant enzyme activities, intestinal ultrastructure, non-specific immunity, and microbiota were assessed. Results The LF diet significantly reduced growth performance parameters compared to the control group. However, YPF supplementation notably improved these parameters, with the greatest improvement observed at a 1000 mg/kg dosage. Antioxidant enzyme activities (SOD, GSH-PX) were diminished in the LF group, accompanied by elevated MDA levels, whereas YPF supplementation restored these activities and reduced MDA levels. Ultrastructural analysis revealed that the LF diet caused intestinal villi detachment and peritrophic matrix (PM) shedding, which were alleviated by YPF. Gene expression related to PM formation (GS, CHS, EcPT) was downregulated in the LF group but significantly upregulated in the 1000P group. Non-specific immune gene expressions (IMD, Relish, IκBα) and enzyme activities (NO, iNOS) were suppressed in the LF group but enhanced by YPF supplementation. Microbial community analysis showed reduced diversity and altered composition in the LF group, with increased Proteobacteria and decreased Firmicutes, which were partially restored by YPF. Correlation analysis revealed that Lactobacillus and Chitinibacter play pivotal roles in regulating intestinal health. Lactobacillus exhibited a positive relationship with the intestinal PM and immune-related indicators, whereas Chitinibacter was negatively associated with these factors. Discussion These results highlight the adverse impacts of a low-fishmeal diet on the intestinal health of M. rosenbergii and demonstrate the beneficial effects of YPF polysaccharides in alleviating these negative consequences through various mechanisms, including improved growth performance, enhanced antioxidant enzyme activities, restored intestinal ultrastructure, and modulated immune responses. The findings suggest that YPF supplementation could be a valuable strategy for mitigating the negative effects of low-fishmeal diets in aaquaculture.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
9
|
Guan Y, Zheng W, Bai Y, Wu B. Yupingfeng polysaccharide promote the growth of chickens via regulating gut microbiota. Front Vet Sci 2024; 11:1337698. [PMID: 38464700 PMCID: PMC10920335 DOI: 10.3389/fvets.2024.1337698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Yupingfeng polysaccharide (YPF-P) is the main substance of alcohol deposition in Yupingfeng powder, which has many biological functions such as enhancing immunity, repairing intestinal barrier and enhancing antioxidant ability. This study employed in vitro growth-promoting drug feed additives and animal experiments to comprehensively evaluate the use of YPF-P in broiler production. Methods A total of 1,296 151 days-old Qingyuan Partridge chickens were randomly divided into four groups with six replicates and 54 hens per replicate: the control group was fed basal diet, and the experimental groups were fed diets supplemented with 4 g/kg, 8 g/kg, and 12 g/kg YPF-P for 14 days. Broilers were weighed before and at the end of the experiment to calculate total weight gain (GW), average daily gain (ADG), and feed compensation. At the end of the experiment, six chickens from each group were randomly selected for subwing vein blood sampling, which was used to measure serum biochemical indicators GHRH, GH, and IGF-1 by ELISA method. Randomly select chickens from control group and 8 g/kg group for slaughter, and cecal contents were collected for 16S high-throughput sequencing. Results Dietary supplementation of 8 g/kg YPF-P can significantly increase the final body weight, total weight gain, average daily gain and decrease the feed to gain ratio of chickens. During 151-165 days, serum IGF-1 concentrations increased significantly (p < 0.05). There were no significant changes in serum GH concentration (p > 0.05). In terms of gut microbiota, there was no significant difference between control group and test group in Shannon index and Simpson index. Compared with the control group,the addition of 8 g/kgYPF-P significantly increased the abundance of Firmicutes and significantly decreased the abundance of Bacteroides at the phylum level.At the genus level, the relative abundance of unclassified_Oscillospiraceae was significantly increased and the unclassified_Muribaculaceae, uncultured_Bacteroidales_bacterium, Lactobacillus, Alloprevotella, Ligilactobacillus, Prevotellaceae_UCG_001, and unclassified_Atopobiaceae was significantly decreased. Conclusion The above results showed that adding 8 mg/kg of YPF-P could increase the average daily gain of Qingyuan Partridge chickens, reduce the ratio of feed to meat, and affect the distribution proportion of intestinal microflora in chickens to some extent.
Collapse
Affiliation(s)
| | | | | | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|