1
|
Zhao X, Zang C, Zhao S, Zheng N, Zhang Y, Wang J. Assessing milk urea nitrogen as an indicator of protein nutrition and nitrogen utilization efficiency: A meta-analysis. J Dairy Sci 2025; 108:4851-4862. [PMID: 39947598 DOI: 10.3168/jds.2024-25656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/04/2025] [Indexed: 05/03/2025]
Abstract
This meta-analysis aimed to assess the effectiveness of MUN as a tool for evaluating protein feeding and nitrogen (N) use efficiency in dairy cows. In this study, we selected 48 research papers published between January 2004 and April 2024, focusing on studies involving Holstein dairy cows with detailed dietary descriptions and results, including MUN, milk protein percentage, and yield, and dietary data on CP and NFC. We employed generalized linear fixed or mixed-effects models for data analysis, utilizing forest plots to visualize the estimated effects. On average, the cows included in the study were 121 DIM, produced 34.8 kg/d of milk, with milk protein at 3.16% and milk fat at 3.69%. The average MUN levels were 12.5 mg/dL, with urine N and fecal N excretions of 193 g/d and 196 g/d, respectively. The average DMI was 23.2 kg/d, with an N intake of 596 g/d. The dietary composition averaged 16.0% CP, 43.0% NFC, 33.6% NDF, 20.9% ADF, and 1.64 Mcal/kg of NEL. Our analysis revealed a close association among dietary NFC, CP, and MUN concentrations, identifying NFC and CP as key factors affecting MUN levels. When MUN levels ranged from 8 to 16 mg/dL, the dietary NFC/CP ratio was typically between 2.15 and 3.60. Furthermore, MUN exhibited a weak positive correlation with milk yield, milk protein percentage, and milk protein yield, a strong positive correlation with urine N excretion, and a negative correlation with the ratio of milk N to intake N. These findings imply that the dietary NFC/CP ratio significantly affects the MUN concentration. Further, it seems probable that by monitoring MUN, NFC, and CP levels together, dairy producers can achieve better balance of NFC and CP in diets, thereby enabling optimization of feed formulation and enhancement of the management of dairy cows.
Collapse
Affiliation(s)
- Xiaowei Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Xinjiang Agricultural University, Urumqi 830052, China
| | | | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Wang Z, Wang Z, Wang L, Sun D. Ammoniation of filter residues from corn straw filtering the microalgae cultured in urine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124557. [PMID: 39978020 DOI: 10.1016/j.jenvman.2025.124557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Microalgae rich in enzymatic proteins and trace minerals are an increasingly favorable feed additive. Nevertheless, the harvesting and drying expenditures account for 20%-30% of the total microalgae production costs, restricting microalgae's extensive application. Unprocessed microalgae could directly participate in straw ammonification feed production by filtering microalgae solution using straw and then ammoniating the filter residues containing straw and microalgae. The microalgal biomass and turbidity removals decreased with the increase in microalgae solution volume during filtration. In contrast, they increased and gradually stabilized with the rise in corn straw height and bulk density but first increased and then decreased with the enlarging of corn straw particle size. The predominant microorganisms shifted from Actinobacteriota and Proteobacteria to the Firmicutes that can hydrolyze corn straw, containing Carnobacterium, Bacillus, and Sporosarcina, as well as Cyanobacteria generating potential Microcystin disappeared after filtration. The maximal biomass and turbidity removals after filtration reached 82.54% and 78.38% under the microalgae solution volume of 520 mL and the corn straw height, bulk density, and particle size of 45 cm, 0.20 g/cm3, and 2 mm. Ammoniation treatment increased the crude protein content while decreasing the ether extract and lignocellulose contents of corn straw, and the protein- and lipid-rich microalgae further slightly increased the dry matter, crude protein, and ether extract contents in the ammoniated corn straw. A urea addition ratio of 3%-5% at 30-40 °C for 12-16 days was favorable ammoniation conditions. Although the original microalgae were from urine wastewater cultivation, the total bacterial counts in the microalgae-containing corn straw after ammoniation were below the maximum safety threshold specified in feed standards, and the alpha diversity indices and genera species of bacteria increased, thereby enhancing the efficiency of corn straw ammoniation. Firmicutes, Actinobacteriota, and Proteobacteria degrading lignocellulose, protein, and lipid predominated during ammoniation, involving Saccharopolyspora, Sporosarcina, Bacillus, Carnobacterium, Allorhizobium-Neorhizobium-Pararhizc, Staphylococcus, Planococcus, Curtobacterium, and Pseudomonas. The involvement of unprocessed microalgae in straw ammoniation through straw filtration was a favorable approach, holding substantial significance for accelerating the low-cost application of microalgae as feedstuff and the prosperity of the straw feed industry.
Collapse
Affiliation(s)
- Zhongjiang Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Ziyue Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Lili Wang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Dongsheng Sun
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
3
|
Guo W, Na M, Liu S, Li K, Du H, Zhang J, Na R. Rumen-Degradable Starch Improves Rumen Fermentation, Function, and Growth Performance by Altering Bacteria and Its Metabolome in Sheep Fed Alfalfa Hay or Silage. Animals (Basel) 2024; 15:34. [PMID: 39794977 PMCID: PMC11870059 DOI: 10.3390/ani15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment. The four treatments were a combination of two forage types (alfalfa hay; AH vs. alfalfa silage; AS) and two rumen-degradable starch levels (low RDS; LR vs. high RDS; HR) with a 15 d adaptation and 60 d experimental period. The rumen content and rumen epithelium samples were collected after slaughter. Feeding AS increased the rumen isobutyrate, valerate, ammonia-N (NH3-N) concentration, urase activity, and papillae height (p < 0.05) and reduced the feed to gain (F:G), rumen bacterial protein (BCP), rumen lactic acid concentration, and papillae width (p < 0.05) of sheep. Increased RDS in the diet improved the daily matter intake, average daily gain, and rumen weight, reduced the F:G, and enhanced the rumen nitrogen capture rate by decreasing total amino acids and the NH3-N concentration to increase BCP, aquaporins 3 gene, and protein expression. The rumen microbiota also changed as the HR diet reduced the Chao index (p < 0.05). The metabolomics analysis showed that feeding AS upregulated the rumen tryptophan metabolism and steroid hormone biosynthesis, while the purine metabolism, linoleic acid metabolism, and amino acid biosynthesis were downregulated. Furthermore, increased RDS in the diet upregulated rumen lysine degradation and sphingolipid metabolism, while aromatic amino acid biosynthesis was downregulated. Additionally, the correlation analysis results showed that ADG was positively correlated with 5-aminopentanoic acid, and three microorganisms (unclassified_f__Selenomonadaceae, Quinella, Christensenellaceae_R-7_group) were positively correlated with the rumen isobutyrate, valerate, NH3-N concentration, urase activity, tryptophan metabolism, and steroid hormone biosynthesis and negatively correlated with linoleic acid metabolism and amino acid biosynthesis in sheep. In summary, increased RDS in the diet improved the growth performance and rumen N utilization and reduced bacterial diversity in sheep. The alfalfa silage diet only increased feed efficiency; it did not affect growth performance. Additionally, it decreased rumen nitrogen utilization, linoleic acid, and amino acid biosynthesis. Nevertheless, there were limited interactions between forage and RDS; increased RDS in the AS diet enhanced the nitrogen capture rate of rumen microorganisms for alfalfa silage, with only slight improvements in the purine metabolism, linoleic acid, and amino acid synthesis.
Collapse
Affiliation(s)
- Wenliang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.G.)
| | - Meila Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.G.)
| | - Shuwei Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.G.)
| | - Kenan Li
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Haidong Du
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.G.)
| | - Jing Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.G.)
| | - Renhua Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (W.G.)
| |
Collapse
|
4
|
Zhang J, Zhang X, Liu H, Wang P, Li L, Bionaz M, Lin P, Yao J. Altered bile acid and correlations with gut microbiome in transition dairy cows with different glucose and lipid metabolism status. J Dairy Sci 2024; 107:9915-9933. [PMID: 38908707 DOI: 10.3168/jds.2024-24658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024]
Abstract
The transition from pregnancy to lactation is critical in dairy cows. Among others, dairy cows experience a metabolic stress due to a large change in glucose and lipid metabolism. Recent studies revealed that bile acids (BA), other than being involved in both the emulsification and solubilization of fats during intestinal absorption, can also affect the metabolism of glucose and lipids, both directly or indirectly by affecting the gut microbiota. Thus, we used untargeted and targeted metabolomics and 16S rRNA gene sequencing approaches to investigate the concentration of plasma metabolites and BA, the composition of the rectum microbial community, and assess their interaction in transition dairy cows. In Experiment 1, we investigated BA and other blood parameters and gut microbiota in dairy cows without clinical diseases during the transition period, which can be seen as well adapted to the challenge of changed glucose and lipid metabolism. As expected, we detected an increased plasma concentrations of BHB and nonesterified fatty acids (NEFA) but decreased concentrations of glucose, cholesterol, and triglycerides (TG). Untargeted metabolomic analysis of the plasma revealed primary BA biosynthesis was one of the affected pathways, and was consistent with the increased concentration of BA in the plasma. A correlation approach revealed a complex association between BA and microbiota with the host plasma concentration of glucose and lipid metabolites. Among BA, chenodeoxycholic acid derivates such as glycolithocholic acid, taurolithocholic acid, lithocholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites (such as glucose, TG, and NEFA). In Experiment 2, we investigated early postpartum dairy cows with or without hyperketonemia (HPK). As expected, HPK cows had increased concentration of NEFA and decreased concentrations of glucose and triglycerides. The untargeted metabolomic analysis of the plasma revealed that primary BA biosynthesis was also one of the affected pathways. Even though the BA concentration was similar among the 2 groups, the profiles of taurine-conjugated BA changed significantly. A correlation analysis also revealed an association between BA and microbiota with the concentration in plasma of glucose and lipid metabolites (such as BHB). Among BA, cholic acid and its derivates such as taurocholic acid, tauro α-muricholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites. Our results indicated an association between BA, intestinal microbe, and glucose and lipid metabolism in transition dairy cows. These findings provide new insight into the adaptation mechanisms of dairy cows during the transition period.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peiyue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Bharanidharan R, Xaysana P, Hong WH, Kim T, Byun JS, Lee Y, Tomple BM, Kim KH, Ibidhi R. Methane emission, nitrogen excretion, and energy partitioning in Hanwoo steers fed a typical TMR diet supplemented with Pharbitis nil seeds. Front Vet Sci 2024; 11:1467077. [PMID: 39380775 PMCID: PMC11459670 DOI: 10.3389/fvets.2024.1467077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Two in vivo experiments were conducted to evaluate the potential of Pharbitis nil seeds (PA) as an anti-methanogenic additive to ruminant feed. In experiment 1, six Hanwoo steers (459.0 ± 25.8 kg) were fed either a total mixed ration (TMR; 32-d period) or TMR supplemented with PA at 5% dry matter (DM) intake (TMR-PA; 45-d period) for two consecutive periods. Fecal and urine outputs were measured in an apparent digestibility trial in both periods. Methane (CH4) yield and heat energy (HE) were measured using respiratory chambers equipped with gas analyzers. In experiment 2, five rumen cannulated Holstein steers (744 ± 35 kg) were fed the same TMR or TMR-PA diets for 40 days; rumen samples were collected at 0, 1.5, and 3 h after feeding on the last day of the feeding period. In experiment 1, although there were no differences (p > 0.05) in nutrients or gross energy intake (GEI) between the groups, an increase (p < 0.05) in the apparent digestibility of DM (9.1%) and neutral detergent fiber (22.9%) was observed in the TMR-PA fed Hanwoo steers. Pronounced decreases (p < 0.05) in CH4 (g/Kg DM; 17.1%) and urinary N excretion (% N intake; 7.6%) were observed in the TMR-PA group, leading to a 14.7% increase in metabolizable energy intake (% GEI). However, only a numerical increase (p > 0.05) in retained energy was observed due to the increase in HE loss. In experiment 2, a drastic decrease (p < 0.05) in rumen ammonia concentration (56.3%) associated with an increased (p = 0.091) rumen short-chain fatty acid concentration 1.5 h after feeding were observed in TMR-PA fed Holstein steers. A 26.6% increase (p < 0.05) in the propionate proportion during the treatment period clearly reflected a shift in the ruminal H2 sink after 3 h of feeding. A 40% reduction (p = 0.067) in the relative abundance of rumen protozoa Entodinium caudatum was also observed. It was concluded that PA could be a natural feed additive for CH4 and N emission abatement.
Collapse
Affiliation(s)
- Rajaraman Bharanidharan
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Panyavong Xaysana
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Woo Hyeong Hong
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Taehoon Kim
- Department of Geography, McGill University, Montreal, QC, Canada
| | - Jun Suk Byun
- University of Maryland Center for Environmental Science, Frostburg, MD, United States
| | - Yookyung Lee
- National Institute of Animal Sciences, Rural Development Administration, Cheonan, Republic of Korea
| | - Byamungu Mayange Tomple
- National Institute of Animal Sciences, Rural Development Administration, Hamyang, Republic of Korea
| | - Kyoung Hoon Kim
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Ridha Ibidhi
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
6
|
Zhang J, Zhang C, Yang X, Li L, Cao Y, Zhang X, Zhou S, Ma J, Li M, Hou X, Zhang Z, Yao J. Short- and long-term effects of different forage types supplemented in preweaning dairy calves on performance and milk production into first lactation. J Dairy Sci 2024; 107:7405-7422. [PMID: 38754819 DOI: 10.3168/jds.2023-24244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
We investigated the short- and long-term effects of different forage types supplemented in preweaning dairy calves on growth performance, blood metabolites, rumen fermentation, bacterial community, and milk production during first lactation. A total of 60 healthy 30-d-old female Holstein calves were blocked by birth date and body weight and randomly assigned to 1 of 3 groups (n = 20): normal milk and pelleted starter feeding (CON), supplemented with chopped oat hay (OAH; 75.0 g/d per calf [DM basis]), or alfalfa hay (ALF; 75.0 g/d per calf [DM basis]). The forage supplementation started when calves were 30 d old (d 1 of the experimental period) and ended when they were 73 d old (d 44 of the experimental period, when calves were weaned). Milk and feed intakes and fecal consistency scores were recorded daily. Growth performance, rumen fluid, and blood samples were collected biweekly. After weaning, all the calves were integrated with the same barn and diets. After calving, the milk production was recorded daily. During the experimental period, the OAH group had greater solid feed and total DM intakes and greater rumen pH than the CON group (P ≤ 0.04), but had lower forage intake and CP digestibility than the ALF group (P ≤ 0.04). The ALF group had higher rumen pH and blood BHB concentration (P ≤ 0.04), lower fecal score (P = 0.02), and greater ether extract digestibility (P = 0.02) than the CON group. The ALF and OAH groups had lower concentrations of ruminal total VFA (P = 0.01). Still, the ALF group had a greater proportion of acetate and a relative abundance of cellulose degradation-related bacteria (Lachnoclostridium_1 and Oribacterium) and a lower relative abundance of inflammation-related bacteria (Erysipelotrichaceae_UCG-009) in the rumen compared with CON. Interestingly, the average milk production from 6 to 200 DIM was greater in the ALF group (P < 0.01), even though no significant effects were found on the rumen fermentation parameters and blood metabolites at 200 DIM. Generally, alfalfa hay supplementation in preweaning dairy calves had positive effects in the short- and long-term for rumen development, health status, and future milk production.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuexin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xia Zhang
- Modern Farming (Group) Co. Ltd., Maanshan 243121, China
| | - Shuai Zhou
- Ningxia Xingyuanda Agriculture and Animal Husbandry Co. Ltd., Lingwu 750406, China
| | - Jiajun Ma
- Ningxia Xingyuanda Agriculture and Animal Husbandry Co. Ltd., Lingwu 750406, China
| | - Mengmeng Li
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinfeng Hou
- Hebei Leyuan Animal Husbandry Co. Ltd., Shijiazhuang 050000, China
| | - Zhihong Zhang
- Hebei Leyuan Animal Husbandry Co. Ltd., Shijiazhuang 050000, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Zain M, Tanuwiria UH, Syamsu JA, Yunilas Y, Pazla R, Putri EM, Makmur M, Amanah U, Shafura PO, Bagaskara B. Nutrient digestibility, characteristics of rumen fermentation, and microbial protein synthesis from Pesisir cattle diet containing non-fiber carbohydrate to rumen degradable protein ratio and sulfur supplement. Vet World 2024; 17:672-681. [PMID: 38680159 PMCID: PMC11045530 DOI: 10.14202/vetworld.2024.672-681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/26/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim To achieve optimal feed efficiency in ruminants, especially Pesisir cattle, it is necessary to maintain a harmonious equilibrium between energy and protein levels within the rumen. Sulfur supplementation can potentially escalate the energy-protein balance in the rumen. The aim of this study was to explore the formulation of ruminant diets by synchronizing rumen degradable protein (RDP) and non-fiber carbohydrate (NFC) while adding sulfur minerals at different levels. Nutrient digestibility, NH3 concentration, volatile fatty acids (VFA) production, microbial protein synthesis (MPS), and methane gas production were assessed. Materials and Methods We employed a randomized block design with a 2 × 2 × 3 factorial arrangement and examined diverse incubation periods of 6, 24, and 48 h. Treatment consisted of RDP (60% and 65%), NFC (35% and 40%), and sulfur (0%, 0.15%, and 0.3%) levels. In this study, the Tilley and Terry in vitro technique, which used Pesisir cattle's rumen fluid, was employed to assess the digestibility of dry matter, organic matter, acid detergent fiber, neutral detergent fiber, and RDP-Rumen undegradable protein. In addition, it measures various rumen fluid attributes, including pH, NH3, VFA, MPS, and methane gas production. Results Treatment with a coordinated combination of 65% RDP and 40% NFC combined with 0.15% sulfur supplement yielded significantly improved digestibility and notably reduced methane gas production (p < 0.05). Conclusion The enhancement in digestibility and reduction in methane gas emissions can be attributed to the interaction of RDP, NFC, and sulfur. Feed digestibility was increased in the 65% RDP treatment with 40% NFC and 0.15% sulfur, along with a decrease in methane gas production.
Collapse
Affiliation(s)
- Mardiati Zain
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science Andalas University, Kampus Limau Manis, Padang, West Sumatera, Indonesia
| | - Ujang Hidayat Tanuwiria
- Ruminant and Feed Chemistry Laboratory, Department of Animal Nutrition and Feed Technology, Faculty of Animal Sciences, Universitas Padjadjaran. Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang 45363, West Java, Indonesia
| | - Jasmal Ahmari Syamsu
- Department of Animal Nutrition, Faculty of Animal Sciences, Universitas Hasanuddin, Jl. Perintis Kemerdekaan KM. 10 Kampus UNHAS Tamalanrea, Makassar
| | - Yunilas Yunilas
- Faculty of Agriculture, Department of Animal Science, Universitas Sumatera Utara, Medan
| | - Roni Pazla
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science Andalas University, Kampus Limau Manis, Padang, West Sumatera, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor 11, Cibinong 16915, Indonesia
| | - Malik Makmur
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor 11, Cibinong 16915, Indonesia
| | - Ummi Amanah
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science Andalas University, Kampus Limau Manis, Padang, West Sumatera, Indonesia
| | - Putri Okta Shafura
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science Andalas University, Kampus Limau Manis, Padang, West Sumatera, Indonesia
| | - Bima Bagaskara
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science Andalas University, Kampus Limau Manis, Padang, West Sumatera, Indonesia
| |
Collapse
|
8
|
Chen P, Li Y, Wang M, Shen Y, Liu M, Xu H, Ma N, Cao Y, Li Q, Abdelsattar MM, Wang Z, Huo Z, Ren S, Hu L, Liu J, Gao Y, Li J. Optimizing dietary rumen-degradable starch to rumen-degradable protein ratio improves lactation performance and nitrogen utilization efficiency in mid-lactating Holstein dairy cows. Front Vet Sci 2024; 11:1330876. [PMID: 38487709 PMCID: PMC10938912 DOI: 10.3389/fvets.2024.1330876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
The dietary rumen-degradable starch (RDS) to rumen-degradable protein (RDP) ratio, denoted as the RDS-to-RDP ratio (SPR), has been proven to enhance in vitro rumen fermentation. However, the effects of dietary SPR in vivo remain largely unexplored. This study was conducted to investigate the effect of dietary SPR on lactation performance, nutrient digestibility, rumen fermentation patterns, blood indicators, and nitrogen (N) partitioning in mid-lactating Holstein cows. Seventy-two Holstein dairy cows were randomly assigned to three groups (24 head/group), balanced for (mean ± standard deviation) days in milk (116 ± 21.5), parity (2.1 ± 0.8), milk production (42 ± 2.1 kg/d), and body weight (705 ± 52.5 kg). The cows were fed diets with low (2.1, control), medium (2.3), or high (2.5) SPR, formulated to be isoenergetic, isonitrogenous, and iso-starch. The study consisted of a one-week adaptation phase followed by an eight-week experimental period. The results indicated that the high SPR group had a lower dry matter intake compared to the other groups (p < 0.05). A quadratic increase in milk yield and feed efficiency was observed with increasing dietary SPR (p < 0.05), peaking in the medium SPR group. The medium SPR group exhibited a lower milk somatic cell count and a higher blood total antioxidant capacity compared to other groups (p < 0.05). With increasing dietary SPR, there was a quadratic improvement (p < 0.05) in the total tract apparent digestibility of crude protein, ether extract, starch, neutral detergent fiber, and acid detergent fiber. Although no treatment effect was observed in rumen pH, the rumen total volatile fatty acids concentration and microbial crude protein synthesis increased quadratically (p < 0.05) as dietary SPR increased. The molar proportion of propionate linearly increased (p = 0.01), while branched-chain volatile fatty acids linearly decreased (p = 0.01) with increasing dietary SPR. The low SPR group (control) exhibited higher concentration of milk urea N, rumen ammonia N, and blood urea N than other groups (p < 0.05). Despite a linear decrease (p < 0.05) in the proportion of urinary N to N intake, increasing dietary SPR led to a quadratic increase (p = 0.01) in N utilization efficiency and a quadratic decrease (p < 0.05) in the proportion of fecal N to N intake. In conclusion, optimizing dietary SPR has the potential to enhance lactation performance and N utilization efficiency. Based on our findings, a medium dietary SPR (with SPR = 2.3) is recommended for mid-lactating Holstein dairy cows. Nevertheless, further research on rumen microbial composition and metabolites is warranted to elucidate the underlying mechanisms of the observed effects.
Collapse
Affiliation(s)
- Panliang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Yan Li
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
- Cangzhou Normal University, College of Life Science, Cangzhou, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Mingchao Liu
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hongjian Xu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Ning Ma
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Mahmoud M. Abdelsattar
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Zhiyuan Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Zihan Huo
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Shuai Ren
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Linqi Hu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Jie Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang, China
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang, China
| |
Collapse
|
9
|
Gionbelli MP, de Souza Duarte M, de Campos Valadares Filho S, Gionbelli TRS, Ramirez-Zamudio GD, Silva LHP, Nascimento KB, Costa TC. Effect of pregnancy and feeding level on voluntary intake, digestion, and microbial nitrogen synthesis in Zebu beef cows. Trop Anim Health Prod 2024; 56:41. [PMID: 38214773 DOI: 10.1007/s11250-024-03888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
The objective of this research was to evaluate how pregnancy and feeding regimens affect the feed intake, digestibility, and efficiency of microbial nitrogen (N) synthesis in beef cows. Forty-four multiparous Nellore cows, comprising 32 gestating and 12 non-gestating cows, with an average weight of 451 ± 10 kg, were assigned to either a HIGH (ad libitum) or LOW (limited feeding at 1.2 times maintenance based on the NRC) feeding regimen during the gestational period. The dry matter intake (DMI) in kg/d was significantly greater (P < 0.01) in HIGH-fed cows. The DMI reduced (P < 0.05) in proportion to the shrunk body weight (SBW) as days of pregnancy (DOP) increased. The interaction between feeding level and DOP was significant (P < 0.05) for the digestibility of dry matter (DM), organic matter (OM), N compounds, ether extract (EE), ash- and protein-free neutral detergent fiber (NDFap), gross energy (GE), and total digestible nutrients (TDN). Except for DM and TDN digestibility, there was a reduced nutrient digestibility as gestation progressed in HIGH-fed cows. In contrast, digestibility increased as a function of DOP in LOW-fed cows. Microbial N synthesis (g/day) was significantly higher in HIGH-fed cows (P < 0.001) compared to LOW-fed cows. The efficiency of microbial N production per g of N intake and kg of digestible OM intake was (P = 0.021) and tended (P = 0.051) to be greater in LOW-fed cows compared to HIGH-fed cows. In summary, HIGH-fed Nellore cows reduce feed intake and digestibility with advancing gestation, affecting feed utilization. In addition, LOW-fed cows, showed higher microbial protein synthesis efficiency, potentially making them more nutrient-efficient under challenging nutritional conditions.
Collapse
Affiliation(s)
- Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37203-202, Brazil.
| | | | | | | | | | - Luiz Henrique Pereira Silva
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, Kentucky, 42101-1066, USA
| | | | - Thais Correia Costa
- Department of Animal Science, Universidade Federal de Lavras, Lavras, MG, 37203-202, Brazil
| |
Collapse
|
10
|
Nguyen TTM, Badhan AK, Reid ID, Ribeiro G, Gruninger R, Tsang A, Guan LL, McAllister T. Comparative analysis of functional diversity of rumen microbiome in bison and beef heifers. Appl Environ Microbiol 2023; 89:e0132023. [PMID: 38054735 PMCID: PMC10734544 DOI: 10.1128/aem.01320-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/17/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Ruminants play a key role in the conversion of cellulolytic plant material into high-quality meat and milk protein for humans. The rumen microbiome is the driver of this conversion, yet there is little information on how gene expression within the microbiome impacts the efficiency of this conversion process. The current study investigates gene expression in the rumen microbiome of beef heifers and bison and how transplantation of ruminal contents from bison to heifers alters gene expression. Understanding interactions between the host and the rumen microbiome is the key to developing informed approaches to rumen programming that will enhance production efficiency in ruminants.
Collapse
Affiliation(s)
- Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Ajay Kumar Badhan
- Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Gabriel Ribeiro
- Department of Animal and Poultry Science, College of Agriculture and Bioresource, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robert Gruninger
- Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Tim McAllister
- Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| |
Collapse
|
11
|
Cui ZY, Li WJ, Wang WK, Wu QC, Jiang YW, Aisikaer A, Zhang F, Chen HW, Yang HJ. Wheat silage partially replacing oaten hay exhibited greater feed efficiency and fibre digestion despite low feed intake by feedlot lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:332-340. [PMID: 38053804 PMCID: PMC10694067 DOI: 10.1016/j.aninu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 12/07/2023]
Abstract
This study aimed to investigate the feeding effect of wheat silage on growth performance, nutrient digestibility, rumen fermentation, and microbiota composition in feedlot lambs. Sixty-four male crossbred Chinese Han lambs (BW = 27.8 ± 0.67 kg, 3 months of age) were randomly assigned to four ration groups with wheat silage replacing 0% (WS0), 36% (WS36), 64% (WS64), and 100% (WS100) of oaten hay on forage dry matter basis. The concentrate-to-forage ratio was 80:20 and the feeding trial lasted 52 d. Increasing wheat silage inclusion linearly decreased dry matter intake by 4% to 27% (P < 0.01). However, increasing the wheat silage replacement of oaten hay by no more than 64% improved the feed efficiency by 14% as noted by the feed-to-gain ratio (P = 0.04). Apparent digestibility of organic matter (P < 0.01), neutral detergent fibre (P = 0.04) and acid detergent fibre (P < 0.01) quadratically increased. Ammonia nitrogen (P = 0.01) decreased while microbial protein production (P < 0.01) increased with the increase of wheat silage inclusion. Total volatile fatty acids concentration increased quadratically with the increase of wheat silage inclusion (P < 0.01), and the highest occurred in WS64. The molar proportion of acetate (P < 0.01) and acetate-to-propionate ratio (P = 0.04) decreased while butyrate (P < 0.01) and isovalerate (P = 0.04) increased. Increasing wheat silage inclusion increased the Firmicutes-to-Bacteroidota ratio by 226% to 357%, resulting in Firmicutes instead of Bacteroidota being the most abundant phylum. The relative abundance of cellulolytic Ruminococcus numerically increased but that of amylolytic Prevotella (P < 0.01) decreased as increasing wheat silage inclusion. Taken together, increasing wheat silage replacement of oaten hay by no more than 64% exhibited greater feed efficiency and fibre digestion despite low feed intake by feedlot lambs due to the change of Firmicutes-to-Bacteroidota ratio in the rumen.
Collapse
Affiliation(s)
- Zhao-Yang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen-Juan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Chao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao-Wen Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ailiyasi Aisikaer
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - He-Wei Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Pfau AP, Shepherd EA, Martin MG, Ascolese S, Mason KM, Egert-McLean AM, Voy BH, Myer PR. Beta-Adrenergic Agonists, Dietary Protein, and Rumen Bacterial Community Interactions in Beef Cattle: A Review. Vet Sci 2023; 10:579. [PMID: 37756100 PMCID: PMC10537598 DOI: 10.3390/vetsci10090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Improving beef production efficiency, sustainability, and food security is crucial for meeting the growing global demand for beef while minimizing environmental impact, conserving resources, ensuring economic viability, and promoting animal welfare. Beta-adrenergic agonists and dietary protein have been critical factors in beef cattle production. Beta-agonists enhance growth, improve feed efficiency, and influence carcass composition, while dietary protein provides the necessary nutrients for muscle development and overall health. A balanced approach to their use and incorporation into cattle diets can lead to more efficient and sustainable beef production. However, microbiome technologies play an increasingly important role in beef cattle production, particularly by optimizing rumen fermentation, enhancing nutrient utilization, supporting gut health, and enhancing feed efficiency. Therefore, optimizing rumen fermentation, diet, and growth-promoting technologies has the potential to increase energy capture and improve performance. This review addresses the interactions among beta-adrenergic agonists, protein level and source, and the ruminal microbiome. By adopting innovative technologies, sustainable practices, and responsible management strategies, the beef industry can contribute to a more secure and sustainable food future. Continued research and development in this field can lead to innovative solutions that benefit both producers and the environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Phillip R. Myer
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
13
|
Inngarm E, Pilajun R, Thummasaeng K, Lunpha A, Morm S. Production performance of Charolais crossbred steers fed total mixed ration containing a high level of dried cassava top. J Adv Vet Anim Res 2023; 10:507-515. [PMID: 37969787 PMCID: PMC10636065 DOI: 10.5455/javar.2023.j704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 11/17/2023] Open
Abstract
Objective The objectives were to determine the appropriate level of dried cassava top (DCT) in total mixed ration (TMR) based on production performance and carcass characteristics of fattening Charolais crossbred steers. Materials and Methods Fifteen fattening Charolais crossbred steers were randomly assigned to a randomized complete block design with initial body weight to receive three treatments, including without DCT, 15% DCT, and 30% DCT in TMR, on a dry matter (DM) basis. The production trial lasted 120 days; then, the fattened steers were slaughtered to study the carcass characteristics. Results The in vitro gas production from the immediately soluble fraction of TMR containing 30% DCT was higher than the others (p < 0.05). However, in vitro DM and organic matter degradability were not significantly different among treatments. Feed intake, final weight, feed cost per gain, and carcass characteristics such as warm carcass percentage, marbling score, and loin eye area of feedlot steers were not affected by the inclusion of DCT in TMR. Although steers fed TMR containing 15% DCT had body weight gain, average daily gain, and feed conversion ratio lower than the control (p < 0.05); however, the use of DCT at 30% DM in TMR reduced the feed cost of feedlot beef production (p < 0.05). Conclusion Using local ingredients such as cassava tops can increase profit margins for farmers without sacrificing product quality, but they must closely look at growth performance.
Collapse
Affiliation(s)
- Ekkapan Inngarm
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Ruangyote Pilajun
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Kungwan Thummasaeng
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Areerat Lunpha
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Sophany Morm
- Department of Animal Science, Faculty of Agriculture and Food Processing, National University of Battambang, Battambang, Cambodia
| |
Collapse
|
14
|
Ferreira FG, Leite LC, Alba HDR, Pina DDS, Santos SA, Tosto MSL, Rodrigues CS, Silva RR, de Freitas Júnior JE, Mesquita BMADC, de Carvalho GGP. Licury Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production and Composition, and Nitrogen Metabolism. Animals (Basel) 2023; 13:2535. [PMID: 37570343 PMCID: PMC10416849 DOI: 10.3390/ani13152535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The objective of this study was to determine the effects of licury cake (LC) inclusion in the diets of lactating goats on productive and metabolic performance. Twelve lactating goats, eight Saanen and four Anglo-Nubian, were distributed in a triplicate 4 × 4 Latin square design, with four treatments (0, 66.7, 133.3, and 200 g kg-1 of dry matter-DM). On the one hand, the LC inclusion increased neutral detergent fiber, indigestible neutral detergent fiber, and potentially digestible neutral detergent fiber (p < 0.001) intake. On the other hand, LC inclusion reduced ether extract and non-fibrous carbohydrate (p < 0.001) intake. There was a reduction in dry matter digestibility (p = 0.018) and an increase in neutral detergent fiber digestibility (p = 0.036). Feeding (p = 0.005) and rumination (p < 0.001) efficiencies increased with LC inclusion. The nitrogen balance was similar for all tested diets; however, we observed recycling metabolism. Based on the studied parameters, mainly milk production and composition, we recommend the LC inclusion of up to 200 g kg-1 DM in diets for lactating goats.
Collapse
Affiliation(s)
- Fernanda G. Ferreira
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| | - Laudí C. Leite
- Department of Animal Science, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380000, Brazil;
| | - Henry D. R. Alba
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| | - Douglas dos S. Pina
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| | - Stefanie A. Santos
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| | - Manuela S. L. Tosto
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| | - Carlindo S. Rodrigues
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| | - Robério R. Silva
- Department of Animal Science, Universidade Federal do Sudoeste da Bahia, Itapetinga 45700000, Brazil;
| | - José E. de Freitas Júnior
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| | - Bruna M. A. de C. Mesquita
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Montes Claros 39404547, Brazil;
| | - Gleidson G. P. de Carvalho
- Department of Animal Science, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil; (F.G.F.); (H.D.R.A.); (D.d.S.P.); (S.A.S.); (M.S.L.T.); (C.S.R.); (J.E.d.F.J.)
| |
Collapse
|
15
|
Rebelo LR, Eastridge ML, Firkins JL, Lee C. Effects of corn silage and grain expressing α-amylase on ruminal nutrient digestibility, microbial protein synthesis, and enteric methane emissions in lactating cows. J Dairy Sci 2023; 106:3932-3946. [PMID: 37225579 DOI: 10.3168/jds.2022-22770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/23/2023] [Indexed: 05/26/2023]
Abstract
Increasing ruminal starch digestibility has the potential to improve microbial protein synthesis (MPS), milk production, and feed efficiency. Enogen corn (Syngenta Seeds LLC) expresses high α-amylase activity, and we evaluated effects of Enogen corn silage (CS) and grain (CG) on ruminal starch digestibility, MPS, and milk production in lactating dairy cows. Fifteen Holstein cows (6 ruminally cannulated and 9 noncannulated; average ± standard deviation at the beginning of the trial: 170 ± 40 d in milk; milk yield, 37.2 ± 7.73 kg/d; body weight, 714 ± 37 kg) were used in a replicated 3 × 3 Latin square design (28 d per period) with 3 treatments: a diet containing isoline CS and CG (control, CON); a diet with Enogen CS and isoline CG (ECS); and a diet with Enogen CS and CG (ECSCG). Dry matter (DM; 30%), starch (35% of DM), and particle size distribution of the isoline and Enogen CS were similar. However, the mean particle size of Enogen CG was larger (1.05 vs. 0.65 mm) than that of the isoline CG. Cannulated cows were used for digestibility and nutrient flow measurements, noncannulated cows were used for enteric CH4 measurements, and all cows were used for production evaluation. Dry matter intake (DMI) and milk yield were greater for ECS and ECSCG compared with CON (26.7 and 26.6 vs. 25.1 kg/d and 36.5 and 34.1 vs. 33.1 kg/d, respectively) without a difference between ECS and ECSCG. Milk protein yield was greater (1.27 vs. 1.14 and 1.17 kg/d) for ECS compared with CON and ECSCG. Milk fat content was greater (3.79 vs. 3.32%) for ECSCG compared with ECS. Milk fat yield and energy-corrected milk did not differ among treatments. Ruminal digestibilities of DM, organic matter, starch, and neutral detergent fiber were not different among treatments. However, ruminal digestibility of nonammonia, nonmicrobial N was greater (85 vs. 75%) for ECS compared with ECSCG. Total-tract apparent starch digestibility was lower (97.6 and 97.1 vs. 98.3%) for ECS and ECSCG compared with CON, respectively, and tended to be lower (97.1 vs. 98.3%) for ECSCG compared with ECS. Ruminal outflows of bacterial OM and nonammonia N tended to be greater for ECS than for ECSCG. Efficiency of MPS tended to be greater (34.1 vs. 30.6 g of N/kg of organic matter truly digested) for ECS versus ECSCG. Ruminal pH and total and individual short-chain fatty acid concentrations did not differ among treatments. Concentration of ruminal NH3 for ECS and ECSCG was lower (10.4 and 12.4 vs. 13.4 mmol/L, respectively) compared with CON. Methane per unit of DMI decreased for ECS and ECSCG compared with CON (11.4 and 12.2 vs. 13.5 g/kg of DMI, respectively) without a difference between ECS and ECSCG. In conclusion, ECS and ECSCG did not increase ruminal or total-tract starch digestibility. However, the positive effects of ECS and ECSCG on milk protein yield, milk yield, and CH4 per unit of DMI may show potential benefits of feeding Enogen corn. Effects of ECSCG were not apparent when compared with ECS, partly due to larger particle size of Enogen CG compared with its isoline counterpart.
Collapse
Affiliation(s)
- L R Rebelo
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - M L Eastridge
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - C Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| |
Collapse
|
16
|
Zhang J, Shang J, Hao Y, Wang Y, Cao Z, Yang H, Wang W, Li S. Growth performance, blood metabolites, ruminal fermentation, and bacterial community in preweaning dairy calves fed corn silage-included starter and total mixed ration. J Dairy Sci 2023:S0022-0302(23)00208-4. [PMID: 37164844 DOI: 10.3168/jds.2022-22476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
The objective of this study was to evaluate the effects of the inclusion of whole-plant corn silage (WPCS) in a starter or total mixed ration (TMR) on growth, blood metabolites, ruminal fermentation, and microbial community in preweaning dairy calves. A total of 45 healthy dairy calves were blocked by date of birth and randomly assigned to 1 of 3 treatments: 100% calf starter (CONS), a mix of 85% calf starter and 15% WPCS [dry matter (DM) basis; CSCS], or 100% WPCS-based lactation TMR (CTMR). Pasteurized normal milk was fed to all the animals under the same regimen. The experiment ran from when the calves were 2 d old to weaning at 63 d. Milk and feed intakes were recorded daily. Growth performance data and blood samples were collected on wk 3, 5, 7, and 9 of the experiment. Rumen fluid was sampled at 40 and 60 d. The 3 treatments had different particle size fractions. The CSCS group had greater medium fraction (<19 mm, >8 mm) and particles retained on 8-mm sieves than the other 2 groups, whereas the CTMR group had the greatest long (>19 mm) and fine (<4 mm) fractions and physically effective neutral detergent fiber (NDF) on 8- and 4-mm sieves, but had the smallest short fraction (<8 mm, >4 mm) and particles retained on 4-mm sieves. The 24-h in vitro digestibility of DM, crude protein (CP), NDF, and acid detergent fiber (ADF) were decreased in order by the CONS, CSCS, and CTMR groups. Compared with the CONS group, the digestibility of ether extract (EE) was lower in the CSCS and CTMR groups, whereas the digestibility of starch was similar among treatments. During the experimental period, the DM, CP, and metabolizable energy intakes from milk, solid feed, and total feed were not affected by treatments. The NDF, ADF, and EE intakes and potentially digestible intakes were greater in the CTMR group than in the other 2 groups. With the exception that body barrel was greater for calves fed CSCS, growth parameters and blood metabolites were similar among treatments. Compared with the CSCS group, the CTMR group had greater rumen pH and total volatile fatty acids, propionate, and isovalerate concentrations, but a lower acetate:propionate ratio. The CTMR group had greater relative abundances of some cellulolytic bacteria (Rikenellaceae RC9 gut group, Christensenellaceae R7, Ruminococcaceae NK4A214, Ruminococcaceae UCG, Ruminococcus, and Erysipelotrichaceae UCG) in the rumen, which may be beneficial for the early acquisition of specific adult-associated microorganisms. In summary, a WPCS-based lactation TMR, but not the WPCS-included starter, had the potential to be an alternative starter in preweaning calves without having significant adverse effects. These findings provide theoretical and practical implications for the rational application of TMR in the early life of dairy calves.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Shang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Liu S, Yu Z, Zhong H, Zheng N, Huws S, Wang J, Zhao S. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle. MICROBIOME 2023; 11:76. [PMID: 37060083 PMCID: PMC10105427 DOI: 10.1186/s40168-023-01510-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/05/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Ruminants can utilize urea as a dietary nitrogen source owing to their ability to recycle urea-N back to the rumen where numerous ureolytic bacteria hydrolyze urea into ammonia, which is used by numerous bacteria as their nitrogen source. Rumen ureolytic bacteria are the key microbes making ruminants the only type of animals independent of pre-formed amino acids for survival, thus having attracted much research interest. Sequencing-based studies have helped gain new insights into ruminal ureolytic bacterial diversity, but only a limited number of ureolytic bacteria have been isolated into pure cultures or studied, hindering the understanding of ureolytic bacteria with respect to their metabolism, physiology, and ecology, all of which are required to effectively improve urea-N utilization efficiency. RESULTS We established and used an integrated approach, which include urease gene (ureC) guided enrichment plus in situ agarose microsphere embedding and cultivation under rumen-simulating conditions, to isolate ureolytic bacteria from the rumen microbiome. We optimized the dilutions of the rumen microbiome during the enrichment, single-cell embedding, and then in situ cultivation of microsphere-embedded bacteria using dialysis bags placed in rumen fluid. Metabonomic analysis revealed that the dialysis bags had a fermentation profile very similar to the simulated rumen fermentation. In total, we isolated 404 unique strains of bacteria, of which 52 strains were selected for genomic sequencing. Genomic analyses revealed that 28 strains, which were classified into 12 species, contained urease genes. All these ureolytic bacteria represent new species ever identified in the rumen and represented the most abundant ureolytic species. Compared to all the previously isolated ruminal ureolytic species combined, the newly isolated ureolytic bacteria increased the number of genotypically and phenotypically characterized ureolytic species by 34.38% and 45.83%, respectively. These isolated strains have unique genes compared to the known ureolytic strains of the same species indicating their new metabolic functions, especially in energy and nitrogen metabolism. All the ureolytic species were ubiquitous in the rumen of six different species of ruminants and were correlated to dietary urea metabolism in the rumen and milk protein production. We discovered five different organizations of urease gene clusters among the new isolates, and they had varied approaches to hydrolyze urea. The key amino acid residues of the UreC protein that potentially plays critical regulatory roles in urease activation were also identified. CONCLUSIONS We established an integrated methodology for the efficient isolation of ureolytic bacteria, which expanded the biological resource of crucial ureolytic bacteria from the rumen. These isolates play a vital role in the incorporation of dietary nitrogen into bacterial biomass and hence contribute to ruminant growth and productivity. Moreover, this methodology can enable efficient isolation and cultivation of other bacteria of interest in the environment and help bridge the knowledge gap between genotypes and phenotypes of uncultured bacteria. Video abstract.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road Haidian, Beijing,, 100193, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Huiyue Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road Haidian, Beijing,, 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road Haidian, Beijing,, 100193, China
| | - Sharon Huws
- School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast, UK
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road Haidian, Beijing,, 100193, China.
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road Haidian, Beijing,, 100193, China.
| |
Collapse
|
18
|
Zhang J, Yang Y, Lei X, Wang Y, Li Y, Li Z, Yao J. Active dry yeast supplementation benefits ruminal fermentation, bacterial community, blood immunoglobulins, and growth performance in young dairy goats, but not for intermittent supplementation. ANIMAL NUTRITION 2023; 13:289-301. [PMID: 37168451 PMCID: PMC10165222 DOI: 10.1016/j.aninu.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
This study evaluated the effects of active dry yeast (ADY) supplementation and supplementation strategies on ruminal fermentation, bacterial community, blood metabolites, and growth performance in young dairy goats. Sixty young female Guanzhong dairy goats of similar age (4.00 ± 0.50 months) and BW (19.65 ± 0.41 kg) were randomly divided into 3 groups (n = 20): (1) basal diet group (CON); (2) basal diet continuously supplemented with 3.0 g/goat per day commercial ADY (a proprietary strain of Saccharomyces cerevisiae with 5.0 × 109 cfu/g) group (CSY); (3) basal diet with intermittently supplemented ADY group (ISY; 5 d supplementation with ADY at 4.5 g/goat per day following 5 d of no supplementation). The experiment lasted 67 d with the first 7 d as an adaptive period. Rumen fluid and blood samples were collected bi-weekly. Data were analyzed using the MIXED procedure combined with the SLICE option in SAS. Specific orthogonal contrasts of ADY vs. CON and CSY vs. ISY were also analyzed. During the experimental period, ADY supplementation resulted in greater DMI (P = 0.03), ruminal acetate proportion (P < 0.01) and acetylesterase activity (P = 0.01), and blood contents of glucose (P = 0.01) and IgM (P = 0.02) and tended to have greater ADG (P = 0.05) and paunch girth (P = 0.06) than the CON, despite the propionate proportion (P = 0.03) and contents of total protein (P = 0.04) and IgA (P = 0.03) being lower. The lower ruminal NH3-N (P < 0.01) and blood urea nitrogen (P = 0.07) contents indicated greater nitrogen utilization with ADY supplementation. ADY supplementation showed persistent effects after it was stopped because the BW at 12 months of age (P = 0.03) and birth weight of lambs (P = 0.02) were greater than the CON. However, the ISY did not show those benefits and had significantly lower relative abundances of fiber-degrading related bacteria than the CSY. In conclusion, ADY supplementation, especially continuously supplemented, may enhance ADG and ADG:DMI ratio by improving DMI, ruminal cellulolytic bacteria abundance and enzyme activity, nitrogen utilization, and immune status. These findings provide a theoretical basis for the rational application of ADY and have important practical implications for the design of nutritional strategies in growing dairy goats.
Collapse
|
19
|
Zhang J, Deng L, Zhang X, Cao Y, Li M, Yao J. Multiple Essential Amino Acids Regulate Mammary Metabolism and Milk Protein Synthesis in Lactating Dairy Cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Sui Y, Lu Y, Zuo S, Wang H, Bian X, Chen G, Huang S, Dai H, Liu F, Dong H. Aflatoxin B 1 Exposure in Sheep: Insights into Hepatotoxicity Based on Oxidative Stress, Inflammatory Injury, Apoptosis, and Gut Microbiota Analysis. Toxins (Basel) 2022; 14:toxins14120840. [PMID: 36548738 PMCID: PMC9787800 DOI: 10.3390/toxins14120840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The widespread fungal toxin Aflatoxin B1 (AFB1) is an inevitable pollutant affecting the health of humans, poultry, and livestock. Although studies indicate that AFB1 is hepatotoxic, there are few studies on AFB1-induced hepatotoxicity in sheep. Thus, this study examined how AFB1 affected sheep liver function 24 h after the animals received 1 mg/kg bw of AFB1 orally (dissolved in 20 mL, 4% v/v ethanol). The acute AFB1 poisoning caused histopathological injuries to the liver and increased total bilirubin (TBIL) and alkaline phosphatase (AKP) levels. AFB1 also markedly elevated the levels of the pro-inflammatory cytokines TNF-α and IL-6 while considerably reducing the expression of antioxidation-related genes (SOD-1 and SOD-2) and the anti-inflammatory gene IL-10 in the liver. Additionally, it caused apoptosis by dramatically altering the expression of genes associated with apoptosis including Bax, Caspase-3, and Bcl-2/Bax. Notably, AFB1 exposure altered the gut microbiota composition, mainly manifested by BF311 spp. and Alistipes spp. abundance, which are associated with liver injury. In conclusion, AFB1 can cause liver injury and liver dysfunction in sheep via oxidative stress, inflammation, apoptosis, and gut-microbiota disturbance.
Collapse
|
21
|
Chen P, Li Y, Shen Y, Cao Y, Li Q, Wang M, Liu M, Wang Z, Huo Z, Ren S, Gao Y, Li J. Effect of Dietary Rumen-Degradable Starch to Rumen-Degradable Protein Ratio on In Vitro Rumen Fermentation Characteristics and Microbial Protein Synthesis. Animals (Basel) 2022; 12:ani12192633. [PMID: 36230374 PMCID: PMC9559263 DOI: 10.3390/ani12192633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate the effects of dietary rumen-degradable starch (RDS, g/kg of DM) to rumen-degradable protein (RDP, g/kg of DM) ratios (SPR) on in vitro rumen fermentation characteristics and microbial protein synthesis (MCPS). Treatments were eight diets with SPR of 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 and were formulated to be isoenergetic, isonitrogenous, and isostarch. Substrates were anaerobically incubated in sealed culture vials (100 mL) for 6, 24 or 48 h. Three incubation runs were conducted within two consecutive weeks. With the increase of the dietary SPR, the gas production (GP), in vitro dry matter disappearance (IVDMD) and concentration of MCPS and total volatile fatty acids (TVFA) linearly increased after 6 h of incubation (p ≤ 0.01), whereas they quadratically increased and peaked at the SPR of 2.3 after 24 and 48 h of incubation (p < 0.05). In response to dietary SPR increasing, the in vitro neutral detergent fiber disappearance (IVNDFD) quadratically increased (p < 0.01), and the ammonia nitrogen (NH3-N) concentration linearly decreased (p < 0.01) after 6, 24 and 48 h of incubation. Based on the presented results, an SPR of 2.3 is recommended for formulating a diet due to its greatest IVDMD, IVNDFD, GP, TVFA and MCPS. However, as the results obtained are strictly dependent on the in vitro conditions, further in vivo studies are needed to verify our findings.
Collapse
Affiliation(s)
- Panliang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Yan Li
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Yufeng Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Meimei Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Mingchao Liu
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zhiyuan Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Zihan Huo
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Shuai Ren
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071001, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang 050221, China
- Correspondence: (Y.G.); (J.L.)
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Healthy Breeding in Dairy Cattle (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hebei Agricultural University, Baoding 071001, China
- Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071001, China
- Hebei Research Institute of Dairy Industry Technology, Shijiazhuang 050221, China
- Correspondence: (Y.G.); (J.L.)
| |
Collapse
|
22
|
Liu H, Zhou J, Degen A, Liu H, Cao X, Hao L, Shang Z, Ran T, Long R. A comparison of average daily gain, apparent digestibilities, energy balance, rumen fermentation parameters, and serum metabolites between yaks ( Bos grunniens) and Qaidam cattle ( Bos taurus) consuming diets differing in energy level. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:77-86. [PMID: 36514373 PMCID: PMC9735264 DOI: 10.1016/j.aninu.2022.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022]
Abstract
Yaks (Bos grunniens), indigenous to the harsh Qinghai-Tibetan Plateau, are well adapted to the severe conditions, and graze natural pasture without supplements all year round. Qaidam cattle (Bos taurus), introduced to the Qinghai-Tibetan Plateau 1,700 years ago, are raised at a lower altitude than yaks, provided with shelter at night and offered supplements in winter. Based on their different backgrounds, we hypothesized that yaks have lower energy requirements for maintenance than cattle. To test this hypothesis, we measured average daily gain (ADG), apparent digestibilities, energy balance, rumen fermentation parameters, and serum metabolites in growing yaks and cattle offered diets differing in metabolizable energy (ME) levels (6.62, 8.02, 9.42 and 10.80 MJ/kg), but with the same crude protein concentration. Six castrated yaks (155 ± 5.8 kg) and 6 castrated Qaidam cattle (154 ± 8.0 kg), all 2.5 years old, were used in 2 concurrent 4 × 4 Latin square designs. Neutral and acid detergent fiber digestibilities were greater (P < 0.05) in yaks than in cattle, and decreased linearly (P < 0.05) with increasing dietary energy level; whereas, digestibilities of dry matter, organic matter, crude protein and ether extract increased (P < 0.05) linearly with increasing energy level. The ADG was greater (P < 0.001) in yaks than in cattle, and increased (P < 0.05) linearly with increasing energy levels. From the regressions of ADG on ME intake, the estimated ME requirement for maintenance was lower (P < 0.05) in yaks than in cattle (0.43 vs. 0.57 MJ/kg BW0.75). The ratios of digestible energy (DE):gross energy and ME:DE were higher (P < 0.05) in yaks than in cattle, and increased (P < 0.05) linearly with increasing dietary energy level. Ruminal pH decreased (P < 0.05), whereas concentrations of total volatile fatty acids (VFAs) and ammonia increased (P < 0.01) with increasing dietary energy level, and all were greater (P < 0.05) in yaks than in cattle. Concentrations of ruminal acetate and iso-VFAs were greater (P < 0.05), whereas propionate was lower (P < 0.05) in yaks than in cattle; acetate decreased (P < 0.001), whereas butyrate and propionate increased (P < 0.001) linearly with increasing dietary energy level. Serum concentrations of β-hydroxybutyrate were lower (interaction, P < 0.001) in yaks than in cattle fed diets of 9.42 and 10.80 MJ/kg, whereas non-esterified fatty acids were greater (interaction, P < 0.01) in yaks than in cattle fed diets of 6.62 and 8.02 MJ/kg. Concentrations of serum leptin and growth hormone were greater in yaks than in cattle and serum insulin and growth hormone increased (P < 0.01) linearly with increasing dietary energy level. Our hypothesis that yaks have lower energy requirements for maintenance than cattle was supported. This lower requirement confers an advantage to yaks over Qaidam cattle in consuming low energy diets during the long winter on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China,International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Zhou
- State Key Laboratory of Grassland Agro-Ecosystems Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China,Corresponding author.
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva, 8410500, Israel
| | - Hongshan Liu
- State Key Laboratory of Grassland Agro-Ecosystems Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xuliang Cao
- State Key Laboratory of Grassland Agro-Ecosystems Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Academy of Animal Science and Veterinary Medicine, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Zhanhuan Shang
- International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ran
- State Key Laboratory of Grassland Agro-Ecosystems Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Ruijun Long
- International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
23
|
Guimarães Júnior R, de Oliveira AF, Ferreira IC, Pereira LGR, Tomich TR, Menezes GL, Vilela L, Lana ÂMQ. Methane emissions and milk yields from zebu cows under integrated systems. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
da Silva VP, Pereira OG, da Silva LD, Agarussi MCN, Filho SDCV, Ribeiro KG. Stylosanthes silage as an alternative to reduce the protein concentrate in diets for finishing beef cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Mi H, Ren A, Zhu J, Ran T, Shen W, Zhou C, Zhang B, Tan Z. Effects of different protein sources on nutrient disappearance, rumen fermentation parameters and microbiota in dual-flow continuous culture system. AMB Express 2022; 12:15. [PMID: 35142936 PMCID: PMC8831666 DOI: 10.1186/s13568-022-01358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
Scarce high-quality protein feed resources has limited the development of animal husbandry. In this study, we used a dual-flow continuous culture system to evaluate effects of difference dietary protein sources including soybean meal (SBM), cottonseed meal (CSM), and rapeseed meal (RSM), on nutrient disappearance, rumen fermentation, and microbiota of XiongDong black goats. Dietary proteins of either CSM, RSM or SBM had no effect on nutrient disappearance (P > 0.05). CSM or RSM significantly reduced (P < 0.01) the pH and enhanced (P < 0.01) the ammonia nitrogen (NH3-N) concentration in fermentation liquid compared to SBM. The short-chain fatty acids (SCFAs) contents were greater (P = 0.05) and acetate was lower (P < 0.01) in SBM than those in RSM and CSM, whereas propionate was greater (P < 0.01) in RSM than that in SBM, consequently reducing the acetate to propionate ratio (A/P) in RSM. Bacteroidetes, Firmicutes, and Proteobacteria were detected as the dominant phyla, and the relative abundances of Spirochaetae (P < 0.01) and Chlorobi (P < 0.05) declined in the CSM and RSM groups as compared to those in the SBM group. At the genus level, Prevotella_1 was the dominant genus; as compared to SBM, its relative abundance was greater (P < 0.01) in CSM and RSM. The abundances of Prevotellaceae_Ga6A1 and Christensenellaceae_R7 were lower (P < 0.05) in CSM, whereas Eubacterium_oxidoreducens_group, and Treponema_2 were lower (P < 0.01) in both CSM and RSM, and other genera were not different (P > 0.10). Although the bacterial community changed with different dietary protein sources, the disappearances of nutrients were not affected, suggesting that CSM and RSM could be used by rumen bacteria, as in case with SBM, and are suitable protein sources for ruminant diets.
Collapse
|
26
|
Santos ACPD, Santos EM, Carvalho GGPD, Pinto LFB, Pina DS, Perazzo AF, Oliveira JSD, Mourão GB, Nascimento TVC, Cruz GFDL. Productive and metabolic parameters, carcass and meat characteristics of lambs fed sorghum silage treated with urea and Lactobacillus buchneri. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Santos SA, de Carvalho GGP, Azevêdo JAG, Zanetti D, Santos EM, Pereira MLA, Pereira ES, Pires AJV, Valadares Filho SDC, Teixeira IAMDA, Tosto MSL, Leite LC, Mariz LDS. Metabolizable Protein: 1. Predicting Equations to Estimate Microbial Crude Protein Synthesis in Small Ruminants. Front Vet Sci 2021; 8:650248. [PMID: 34179156 PMCID: PMC8222605 DOI: 10.3389/fvets.2021.650248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
Microbial crude protein (MCP) produced in rumen could be estimated by a variety of protocols of experimental sampling and analysis. However, a model to estimate this value is necessary when protein requirements are calculated for small ruminants. This model could be useful to calculate rumen degradable protein (RDP) requirements from metabolizable protein (MP). Then, our objective was to investigate if there is a difference in MCP efficiency between sheep and goats, and to fit equations to predict ruminal MCP production from dietary energy intake. The database consisted of 19 studies with goats (n = 176) and sheep (n = 316), and the variables MCP synthesis (g/day), total digestible nutrients (TDN), and organic matter (OM) intakes (g/day), and OM digestibility (g/kg DM) were registered for both species. The database was used for two different purposes, where 70% of the values were sorted to fit equations, and 30% for validation. A meta-analytical procedure was carried out using the MIXED procedure of SAS, specie was considered as the fixed dummy effect, and the intercept and slope nested in the study were considered random effects. No effect of specie was observed for the estimation of MCP from TDN, digestible Organic Matter (dOM), or metabolizable energy (ME) intakes (P > 0.05), considering an equation with or without an intercept. Therefore, single models including both species at the same fitting were validated. The following equations MCP (g/day) = 12.7311 + 59.2956 × TDN intake (AIC = 3,004.6); MCP (g/day) = 15.7764 + 62.2612 × dOM intake (AIC = 2,755.1); and MCP (g/day) = 12.7311 + 15.3000 × ME intake (AIC = 3,007.3) presented lower values for the mean square error of prediction (MSEP) and its decomposition, and similar values for the concordance correlation coefficient (CCC) and for the residual mean square error (RMSE) when compared with equations fitted without an intercept. The intercept and slope pooled test was significant for equations without an intercept (P < 0.05), indicating that observed and predicted data differed. In contrast, predicted and observed data for complete equations were similar (P > 0.05).
Collapse
Affiliation(s)
| | | | - José Augusto Gomes Azevêdo
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Diego Zanetti
- Department of Animal Science, Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Pouso Alegre, Brazil
| | - Edson Mauro Santos
- Center of Agrarian Sciences, Universidade Federal da Paraíba, Areia, Brazil
| | | | | | | | | | | | | | - Laudi Cunha Leite
- Department of Agricultural and Environmental Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | | |
Collapse
|
28
|
Wang X, Wang M, Zhang J, Kong Z, Wang X, Liu D, Shen Q. Contributions of the biochemical factors and bacterial community to the humification process of in situ large-scale aerobic composting. BIORESOURCE TECHNOLOGY 2021; 323:124599. [PMID: 33373802 DOI: 10.1016/j.biortech.2020.124599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Multiple types of biochemical parameters were determined in the course of the composting process with rice straw and Chinese traditional medicine residues as substrates. The water-soluble fractions (WSFs) were analyzed by excitation-emission-matrix fluorescence (EEM-FL), and the maximum PV/III value (1.2) was observed in thermophilic phase (THP). Bacterial community analysis results indicated that the genera with the capacity of degrading lignocellulose dominated in mesophilic phase (MEP) and THP. The metabolic pathways based on KEGG analysis revealed that the amino acid, carbohydrate and energy metabolism pathways in THP were higher than the other two phases. The correlation analysis between EEM-FL and the bacterial community revealed that the genera with high abundances in the THP were significantly positively correlated with fulvic acid-like materials and humic acid-like organics. The quantification results of the lignocellulose-degrading genes in different phases further verified the key functional bacteria obtained by correlation analysis during the composting process.
Collapse
Affiliation(s)
- Xuanqing Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mengmeng Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Juan Zhang
- Shandong Institute for Product Quality Inspection, People's Republic of China
| | - Zhijian Kong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xiaosong Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
29
|
Ma Y, Chen X, Zahoor Khan M, Xiao J, Liu S, Wang J, He Z, Li C, Cao Z. The Impact of Ammoniation Treatment on the Chemical Composition and In Vitro Digestibility of Rice Straw in Chinese Holsteins. Animals (Basel) 2020; 10:ani10101854. [PMID: 33053682 PMCID: PMC7599958 DOI: 10.3390/ani10101854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Rice straw has many essential uses as a byproduct of agriculture. As a feed source, due to low digestibility, low crude protein and minerals contents, the pretreatment of rice straw is required before use in ruminant feeding. To enhance the nutritive value of rice straw, different methods are practiced. Among them, treatment with ammoniation might be effective regarding the rice straw intake, enhancement of straw digestibility and crude protein levels, which are essential for enhancing the productive ability of dairy cattle. In the current study, we experimentally proved the efficiency of ammoniation treatment to enhance the different feed value parameters (dry matter digestibility, neutral detergent fiber, crude protein, gas production, acetic acid, butyric acid, and total volatile fatty acid) of rice straw. Abstract The current study was conducted to explore the ammoniation treatment effects on the chemical composition and in vitro digestibility of rice straw in Chinese Holsteins. For this purpose, rice straw was stored in polyethylene bags (35 × 25 cm, 350 g per bag) including (i) no additives (RS); (ii) 5% urea (5U, dry matter (DM) basis); (iii) 9% corn steep liquor + 5% urea (9C5U, DM basis); (iv) 9C2.5U; and (v) 9C2.5U + 3% molasses (9C2.5U3M, DM basis). The air-dry matter of the mixture was kept at the same level at 55% for all treatments. Fifteen bags (5 treatments × 3 repeats) were prepared and stored at ambient temperature (25 ± 3 °C). The chemical composition and in vitro digestibility were measured at day 60 after storage. Our analysis revealed that all the four ammoniation treatments improved the in vitro DM and neutral detergent fiber (IVNDFD) digestibility. In addition, all the four ammoniation treatments significantly (P < 0.001) increased the levels of crude protein (CP), gas production (GP), acetic acid (AA), butyric acid (BA) and total volatile fatty acid (TVFA) contents of the rice straw and decreased the neutral detergent fiber (NDF) and acid detergent fiber (ADF) of the rice straw compared to the control. Within four treated groups, the 9C5U treatment was most effective. Finally, we concluded that ammoniation treatments increased the nutritive value of rice straw. In addition the 9C5U treatment could be an effective ammoniation treatment for the better utilization of rice straw.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
| | - Zhiyuan He
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
| | - Congcong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.M.); (X.C.); (M.Z.K.); (J.X.); (S.L.); (J.W.); (Z.H.)
- Correspondence: ; Tel.: +86-10-62733746
| |
Collapse
|
30
|
Zheng Y, Xue S, Zhao Y, Li S. Effect of Cassava Residue Substituting for Crushed Maize on In Vitro Ruminal Fermentation Characteristics of Dairy Cows at Mid-Lactation. Animals (Basel) 2020; 10:ani10050893. [PMID: 32443917 PMCID: PMC7278478 DOI: 10.3390/ani10050893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cassava processing and utilization generates many byproducts, such as cassava residue. On one hand, this residue still contains many nutrients like starch, fiber and minerals. On the other hand, it pollutes the environment if not be utilized properly. Lactating dairy cows need to control the body weight for smooth calving, but too much high energy feed material like maize can influence their lipid metabolism. Cassava residue may be a good option for them since it can be used not only as roughage, but also can provide energy for dairy cows. Therefore, this study was conducted to investigate the effect replacing high energy feedstuff crushed maize with cassava residue on in vitro fermentation characteristics of dairy cows in mid-lactation. This may help provide further in vivo tests with data support, which finally, could alleviate feed shortages, reduce environmental pollution and improve economic benefits of dairy farming. Abstract This study was conducted to investigate the effect of using cassava residue to replace crushed maize on in vitro fermentation characteristics of dairy cows at mid-lactation and provide guidance for its utilization. The study included seven treatments with four replicates, which used 0% (control, CON), 5%, 10%, 15%, 20%, 25% and 30% cassava residue to replace crushed maize (air-dried matter basis), respectively. A China-patented automated trace gas recording system was used to perform in vitro gas tests; rumen fluids were collected from three dairy cows at mid-lactation. In vitro dry matter digestibility (IVDMD), gas production (GP), pH, ammonia–N (NH3-N) and microbial protein (MCP) content were analyzed after in vitro incubating for 3, 6, 12, 24 and 48 h, respectively; volatile fatty acid (VFA) content was analyzed after in vitro culturing for 48 h. The results showed that with the increase of substitution ratio of cassava residue, the asymptotic gas production (A) increased quadratically (p < 0.05), cumulative gas production at 48 h (GP48) and the maximum rate of substrate digestion (RmaxS) increased linearly and quadratically (p < 0.05), the time at which the maximum gas production rate is reached (TRmaxG) increases linearly (p < 0.05). In addition, asymptotic gas production in 30% was significantly higher than the other treatments (p < 0.05), RmaxS in 25% and 30% were significantly higher than CON, 5% and 10% (p < 0.05). In addition, with the increase of substitution ratio of cassava residue, when in vitro cultured for 6 h and 12 h, NH3–N content decreased linearly and quadratically (p < 0.05). NH3–N content in 30% was significantly lower than the other treatments except 20% and 25% (p < 0.05) after cultivating for 6 h. Moreover, the content of iso-butyrate, iso-valerate, valerate and total VFA (tVFA) decreased linearly and quadratically (p < 0.05), acetate decreased quadratically (p < 0.05) with the increase of substitution ratio of cassava residue. In conclusion, when the cassava residue substitution ratio for crushed maize was 25% or less, there were no negative effects on in vitro ruminal fermentation characteristics of dairy cows at mid-lactation.
Collapse
Affiliation(s)
| | | | | | - Shengli Li
- Correspondence: ; Tel.: +86-133-3116-8629
| |
Collapse
|