1
|
Lin Y, Wang J, Bu F, Zhang R, Wang J, Wang Y, Huang M, Huang Y, Zheng L, Wang Q, Hu X. Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis. Gut Microbes 2025; 17:2452229. [PMID: 39840620 DOI: 10.1080/19490976.2025.2452229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.
Collapse
Affiliation(s)
- Yuling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Sepúlveda-Pontigo A, Chávez-Villacreses K, Madrid-Muñoz C, Conejeros-Lillo S, Parra F, Melo-González F, Regaldiz A, González VPI, Méndez-Pérez I, Castillo-Godoy DP, Soto JA, Fuentes JA, Schinnerling K. Segatella copri Outer-Membrane Vesicles Are Internalized by Human Macrophages and Promote a Pro-Inflammatory Profile. Int J Mol Sci 2025; 26:3630. [PMID: 40332148 PMCID: PMC12027123 DOI: 10.3390/ijms26083630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Increased abundance of Segatella copri (S. copri) within the gut microbiota is associated with systemic inflammatory diseases, including rheumatoid arthritis. Although outer-membrane vesicles (OMVs) of Gram-negative bacteria are important players in microbiota-host communication, the effect of S. copri-derived OMVs on immune cells is unknown. Macrophages engulf and eliminate foreign material and are conditioned by environmental signals to promote either homeostasis or inflammation. Thus, we aimed to explore the impact of S. copri-OMVs on human macrophages in vitro, employing THP-1 and monocyte-derived macrophage models. The uptake of DiO-labeled S. copri-OMVs into macrophages was monitored by confocal microscopy and flow cytometry. Furthermore, the effect of S. copri and S. copri-OMVs on the phenotype and cytokine secretion of naïve (M0), pro-inflammatory (M1), and anti-inflammatory (M2) macrophages was analyzed by flow cytometry and ELISA, respectively. We show that S. copri-OMVs enter human macrophages through macropinocytosis and clathrin-dependent mechanisms. S. copri-OMVs, but not the parental bacterium, induced a dose-dependent increase in the expression of M1-related surface markers in M0 and M2 macrophages and activated the secretion of large amounts of pro-inflammatory cytokines in M1 macrophages. These results highlight an important role of S. copri-OMVs in promoting pro-inflammatory macrophage responses, which might contribute to systemic inflammatory diseases.
Collapse
Affiliation(s)
- Alison Sepúlveda-Pontigo
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
| | - Karissa Chávez-Villacreses
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
- Programa de Doctorado en Biociencias Moleculares, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Cristóbal Madrid-Muñoz
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
- Programa de Doctorado en Biociencias Moleculares, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Sabrina Conejeros-Lillo
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
| | - Francisco Parra
- Laboratorio de Genética y Patogénesis Bacteriana, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Felipe Melo-González
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
| | - Alejandro Regaldiz
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
- Programa de Doctorado en Biociencias Moleculares, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Valentina P. I. González
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
| | - Isabel Méndez-Pérez
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
- Programa de Doctorado en Biociencias Moleculares, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Daniela P. Castillo-Godoy
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Jorge A. Soto
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Katina Schinnerling
- Laboratorio de Inmunología Traslacional, Centro de Investigación de Resiliencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370186, Chile; (A.S.-P.); (K.C.-V.); (C.M.-M.); (S.C.-L.); (F.M.-G.); (A.R.); (V.P.I.G.); (I.M.-P.); (D.P.C.-G.); (J.A.S.)
| |
Collapse
|
3
|
Okamoto A, Shibuta T, Morita N, Fujinuma R, Shiraishi M, Matsuda R, Okada M, Watanabe S, Umemura T, Takeuchi H. Identification of Released Bacterial Extracellular Vesicles Containing Lpp20 from Helicobacter pylori. Microorganisms 2025; 13:753. [PMID: 40284590 PMCID: PMC12029599 DOI: 10.3390/microorganisms13040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
Helicobacter pylori is a pathogenic bacterium that causes gastric and extragastric diseases. We have previously demonstrated that one of the mechanisms of H. pylori-associated chronic immune thrombocytopenia involves immune complexes of platelets, a H. pylori protein Lpp20 and an anti-Lpp20 antibody. However, it remains unclear how Lpp20 enters the body. We hypothesize that bacterial extracellular vesicles (bEVs) transport Lpp20. Thus, this study assessed Lpp20 in the bEVs released from seven clinical H. pylori isolates, using immunoprecipitation (IP), immunoblotting (IB), and surface plasmon resonance imaging (SPRi), with anti-GroEL (a marker of bEVs) and anti-Lpp20 antibodies. Lpp20 and bEVs were each detected in lysates of all seven strains. IP-IB experiments demonstrated that bEVs containing Lpp20 were produced by five of the strains (J99, SS1, HPK5, JSHR3, and JSHR31). SPRi using an anti-Lpp20 antibody demonstrated significantly higher reflectance from the strain HPK5 than from its lpp20-disrupted strains (p < 0.01), indicating localization of Lpp20 on the bEVs' surface; Lpp20 may also be contained within bEVs. The bEVs containing Lpp20 were not detected from two clinical H. pylori strains (26695 and JSHR6) or from two lpp20-disrupted strains (26695ΔLpp20 and HPK5ΔLpp20). Differences in Lpp20 detection in bEVs are likely due to variations in bEV production resulting from strain diversity.
Collapse
Affiliation(s)
- Aoi Okamoto
- Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (A.O.); (M.S.); (R.M.); (M.O.)
| | - Tatsuki Shibuta
- Department of Medical Science Technology, School of Health Science at Fukuoka, International University of Health and Welfare, 137-1 Enokiz, Okawa 831-8501, Japan; (T.S.); (T.U.)
| | - Nanaka Morita
- Department of Medical Science Technology, School of Health Science at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (N.M.); (R.F.); (S.W.)
| | - Ryota Fujinuma
- Department of Medical Science Technology, School of Health Science at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (N.M.); (R.F.); (S.W.)
| | - Masaya Shiraishi
- Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (A.O.); (M.S.); (R.M.); (M.O.)
| | - Reimi Matsuda
- Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (A.O.); (M.S.); (R.M.); (M.O.)
| | - Mayu Okada
- Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (A.O.); (M.S.); (R.M.); (M.O.)
| | - Satoe Watanabe
- Department of Medical Science Technology, School of Health Science at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (N.M.); (R.F.); (S.W.)
| | - Tsukuru Umemura
- Department of Medical Science Technology, School of Health Science at Fukuoka, International University of Health and Welfare, 137-1 Enokiz, Okawa 831-8501, Japan; (T.S.); (T.U.)
| | - Hiroaki Takeuchi
- Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (A.O.); (M.S.); (R.M.); (M.O.)
- Department of Medical Science Technology, School of Health Science at Narita, International University of Health and Welfare, 4-3 Kozunomori, Narita 286-8686, Japan; (N.M.); (R.F.); (S.W.)
| |
Collapse
|
4
|
Liu J, Chen S, Zhao J. The role and mechanisms of Helicobacter pylori outer membrane vesicles in the pathogenesis of extra-gastrointestinal diseases. Microb Pathog 2025; 200:107312. [PMID: 39855489 DOI: 10.1016/j.micpath.2025.107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/20/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Helicobacter pylori (H. pylori) infection have been closely associated with several extra-gastrointestinal disorders. Outer membrane vesicles (OMVs), as lipid-membrane-bounded nanoparticles, are usually shed from Gram-negative both in vitro and in vivo. H. pylori is also capable of producing OMVs, which can enter the systemic circulation and be delivered to various cells, tissues or organs, eliciting a range of inflammatory and immune modulation responses. In this current review, we summarize the biogenesis and functions of H. pylori OMVs, describe the contribution of H. pylori OMVs to the generation and progression of extra-gastrointestinal diseases, such as neuronal damage, Alzheimer disease, hepatic fibrosis and atherosclerosis. We also explored the effect of H. pylori OMVs in inflammatory and immune modulation of diverse immune cells, including macrophages, mononuclear cells and dendritic cells. By elucidating the molecular mechanism of H. pylori OMVs-mediated extra-gastrointestinal diseases and immunomodulatory effect, it may promote the development of efficient treatments and vaccinations against H. pylori.
Collapse
Affiliation(s)
- Jin Liu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Sheqing Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jingjing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
5
|
Wang J, Wang X, Luo H, Xie Y, Cao H, Mao L, Liu T, Yue Y, Qian H. Extracellular vesicles in Helicobacter pylori-mediated diseases: mechanisms and therapeutic potential. Cell Commun Signal 2025; 23:79. [PMID: 39934861 PMCID: PMC11816533 DOI: 10.1186/s12964-025-02074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Extracellular vesicles (EVs) are relevant elements for cell-to-cell communication and are considered crucial in host-pathogen interactions by transferring molecules between the pathogen and the host during infections. These structures participate in various physiological and pathological processes and are considered promising candidates as disease markers, therapeutic reagents, and drug carriers. Both H. pylori and the host epithelial cells infected by H. pylori secrete EVs, which contribute to inflammation and the development of disease phenotypes. However, many aspects of the cellular and molecular biology of EV functions remain incompletely understood due to methodological challenges in studying these small structures. This review also highlights the roles of EVs derived from H. pylori-infected cells in the pathogenesis of gastric and extragastric diseases. Understanding the specific functions of these EVs during H. pylori infections, whether are advantageous to the host or the pathogen, may help the development new therapeutic approaches to prevent disease.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Xiuping Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Lingxiang Mao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Tingting Liu
- Science and Technology Talent Department, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Yushan Yue
- Department of Rehabilitative Medicine, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhengjiang, Jiangsu, 212013, China.
| |
Collapse
|
6
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
7
|
Manna OM, Caruso Bavisotto C, Gratie MI, Damiani P, Bonaventura G, Cappello F, Tomasello G, D’Andrea V. Targeting Helicobacter pylori Through the "Muco-Microbiotic Layer" Lens: The Challenge of Probiotics and Microbiota Nanovesicles. Nutrients 2025; 17:569. [PMID: 39940427 PMCID: PMC11819664 DOI: 10.3390/nu17030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The muco-microbiotic layer represents a critical biological frontier in gastroenterology, emphasizing the intricate interplay between the protective mucus, its resident microbiota, and extracellular vesicles. This review explores the functional morphology of the gastric mucosa, focusing on the gastric muco-microbiotic layer, its role as a protective barrier, and its dynamic interaction with some of the most insidious pathogens such as Helicobacter pylori (H. pylori). Highlighting the multifaceted mechanisms of H. pylori pathogenesis, we have delved into bacterial virulence factors, host immune responses, and the microbiota's regulatory effects. Novel therapeutic strategies for H. pylori eradication, including traditional antibiotic therapies and emerging adjuvant treatments like probiotics and probiotic-derived extracellular vesicles, are critically examined. These findings underscore the potential of targeting nanovesicular interactions in the gastric mucosa, proposing a paradigm shift in the management of H. pylori infections to improve patient outcomes while mitigating antibiotic resistance.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Sciences for Promotion of Health and Mother and Child Care, Surgical Pathology Unit, University of Palermo, 90133 Palermo, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
| | - Celeste Caruso Bavisotto
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Melania Ionelia Gratie
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Provvidenza Damiani
- Risk Management and Quality Unit, Hospital University “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Giuseppe Bonaventura
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy; (M.I.G.); (F.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Giovanni Tomasello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (G.B.); (G.T.)
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
8
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
9
|
Mohammadi Azad Z, Moosazadeh Moghaddam M, Fasihi-Ramandi M, Haghighat S, Mirnejad R. Evaluation of the effect of Helicobacter pylori -derived OMVs and released exosomes from stomach cells treated with OMVs on the expression of genes related to the TGF-β/SMAD signaling pathway in hepatocellular carcinoma. J Recept Signal Transduct Res 2024; 44:181-190. [PMID: 39628127 DOI: 10.1080/10799893.2024.2436461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
OMVs derived from Helicobacter pylori can lead to cell transformation in gastric epithelium and cancer. Additionally, exosomes (Exos) released by host cells infected with H. pylori can significantly contribute to the development of diseases such as cancer. In this study, the effects of both Exos from AGS cells treated with H. pylori-derived OMVs on the expression of genes related to the TGF-β/SMAD signaling pathway in hepatocellular carcinoma (HCC) cells were investigated. The TGF-β/SMAD pathway is one of the most important pathways that regulate the development and progression of HCC. For this purpose, after treating HepG2 cells with H. pylori-derived OMVs (directly) and Exos from AGS cells treated with H. pylori-derived OMVs (indirectly), the expression levels of TGF-β, SMAD2, SMAD3, SMAD4, and ERK genes were analyzed using Real-time PCR. The findings showed that OMVs derived from H. pylori can significantly increase the expression of genes involved in the TGF-β signaling pathway, which can affect the aggressive behavior of HepG2 cells. Additionally, exosomes secreted from AGS cells or AGS cells treated with OMVs had no effect on changing the expression of the studied genes. Therefore, only the OMVs released from H. pylori can affect the TGF-β/SMAD signaling pathway in HCC cells.
Collapse
Affiliation(s)
- Zohreh Mohammadi Azad
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran Iran
| | - Reza Mirnejad
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
11
|
Peng C, Feng Z, Zou Y, Ou L, Lai Y, Su B, Chen M, Zhang C, Zhu W, Gan G, Zhang G, Yao M. Studies on the mechanisms of Helicobacter pylori inhibition by Syzygium aromaticum aqueous extract. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155540. [PMID: 38810548 DOI: 10.1016/j.phymed.2024.155540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The aqueous extract of the dried buds of Syzygium aromaticum (SAAE) have the potential to alleviate Helicobacter pylori infection, but the specific molecular mechanism has not been fully elucidated. PURPOSE This study aimed to investigate the underlying mechanisms of SAAE on H. pylori pathogenicity. METHODS The inhibitory kinetics and anti-H. pylori adhesive capacity assays were conducted to examine the effects of SAAE on the growth and adhesive capability of H. pylori. The H. pylori outer membrane vesicles (OMVs) were purified from the culture supernatant through high-speed centrifugation, filtration, and two rounds of ultracentrifugation. Their characteristics and protein composition were then identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and qualitative proteomics study. Subsequently, the effect of SAAE on the pathogenicity of H. pylori OMVs was investigated using the Griess reagent assay, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics study, TEM, and western blotting assay. RESULTS SAAE exhibited inhibitory effects on H. pylori growth and adhesion. The isolated H. pylori OMVs showed particle size of 27-242 nm and Zeta potential of -9.67 ± 0.53 mV. A total of 599 proteins were identified in the OMVs. Proteomics study indicated that the differential expressed proteins induced by OMVs with or without SAAE commonly enriched in P53 and autophagy pathways. Besides, SAAE counteracted the increased production of pro-inflammatory cytokines and attenuated the induction of cell autophagy caused by H. pylori OMVs. Furthermore, SAAE normalized the abnormal regulation of downstream targets (AIFM2 and IGFBP3) in the P53 signaling pathway caused by H. pylori OMVs. CONCLUSION SAAE can inhibit the growth and adhesion of H. pylori, reduce the inflammation and autophagy induced by H. pylori OMVs, and combated the abnormal regulation of P53 signaling pathway caused by H. pylori OMVs. These findings may help elucidate the mechanisms through which SAAE reduces the pathogenicity of H. pylori.
Collapse
Affiliation(s)
- Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Chuqiu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan 511500, PR China
| | - Guoxing Gan
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan 511500, PR China
| | - Guimin Zhang
- International Pharmaceutical Engineering Lab of Shandong Province, Shandong 273400, PR China; Lunan Pharmaceutical Group Co., Ltd, Linyi 276000, Shandong, PR China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China; Nanchang Research Institute, Sun Yat-sen University, Jiangxi, 330096, PR China.
| |
Collapse
|
12
|
Hurtado-Monzón EG, Valencia-Mayoral P, Silva-Olivares A, Bañuelos C, Velázquez-Guadarrama N, Betanzos A. The Helicobacter pylori infection alters the intercellular junctions on the pancreas of gerbils (Meriones unguiculatus). World J Microbiol Biotechnol 2024; 40:273. [PMID: 39030443 PMCID: PMC11271430 DOI: 10.1007/s11274-024-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, β-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.
Collapse
Affiliation(s)
- Edgar G Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, CINVESTAV-IPN, Ciudad de Mexico, México
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México.
| |
Collapse
|
13
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Sharafutdinov I, Tegtmeyer N, Rohde M, Olofsson A, Rehman ZU, Arnqvist A, Backert S. Campylobacter jejuni Surface-Bound Protease HtrA, but Not the Secreted Protease nor Protease in Shed Membrane Vesicles, Disrupts Epithelial Cell-to-Cell Junctions. Cells 2024; 13:224. [PMID: 38334616 PMCID: PMC10854787 DOI: 10.3390/cells13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Fundamental functions of the intestinal epithelium include the digestion of food, absorption of nutrients, and its ability to act as the first barrier against intruding microbes. Campylobacter jejuni is a major zoonotic pathogen accounting for a substantial portion of bacterial foodborne illnesses. The germ colonizes the intestines of birds and is mainly transmitted to humans through the consumption of contaminated poultry meat. In the human gastrointestinal tract, the bacterium triggers campylobacteriosis that can progress to serious secondary disorders, including reactive arthritis, inflammatory bowel disease and Guillain-Barré syndrome. We recently discovered that C. jejuni serine protease HtrA disrupts intestinal epithelial barrier functions via cleavage of the tight and adherens junction components occludin, claudin-8 and E-cadherin. However, it is unknown whether epithelial damage is mediated by the secreted soluble enzyme, by HtrA contained in shed outer-membrane vesicles (OMVs) or by another mechanism that has yet to be identified. In the present study, we investigated whether soluble recombinant HtrA and/or purified OMVs induce junctional damage to polarized intestinal epithelial cells compared to live C. jejuni bacteria. By using electron and confocal immunofluorescence microscopy, we show that HtrA-expressing C. jejuni bacteria trigger efficient junctional cell damage, but not soluble purified HtrA or HtrA-containing OMVs, not even at high concentrations far exceeding physiological levels. Instead, we found that only bacteria with active protein biosynthesis effectively cleave junctional proteins, which is followed by paracellular transmigration of C. jejuni through the epithelial cell layer. These findings shed new light on the pathogenic activities of HtrA and virulence strategies of C. jejuni.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Annelie Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Zia ur Rehman
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| |
Collapse
|
15
|
Ahmed AAQ, McKay TJM. Environmental and ecological importance of bacterial extracellular vesicles (BEVs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168098. [PMID: 37884154 DOI: 10.1016/j.scitotenv.2023.168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Extracellular vesicles are unique structures released by the cells of all life forms. Bacterial extracellular vesicles (BEVs) were found in various ecosystems and natural habitats. They are associated with bacterial-bacterial interactions as well as host-bacterial interactions in the environment. Moreover, BEVs facilitate bacterial adaptation to a variety of environmental conditions. BEVs were found to be abundant in the environment, and therefore they can regulate a broad range of environmental processes. In the environment, BEVs can serve as tools for cell-to-cell interaction, secreting mechanism of unwanted materials, transportation, genetic materials exchange and storage, defense and protection, growth support, electron transfer, and cell-surface interplay regulation. Thus, BEVs have a great potential to be used in a variety of environmental applications such as serving as bioremediating reagents for environmental disaster mitigation as well as removing problematic biofilms and waste treatment. This research area needs to be investigated further to disclose the full environmental and ecological importance of BEVs as well as to investigate how to harness BEVs as effective tools in a variety of environmental applications.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa.
| | - Tracey Jill Morton McKay
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
16
|
Jarzab M, Skorko-Glonek J. There Are No Insurmountable Barriers: Passage of the Helicobacter pylori VacA Toxin from Bacterial Cytoplasm to Eukaryotic Cell Organelle. MEMBRANES 2023; 14:11. [PMID: 38248700 PMCID: PMC10821523 DOI: 10.3390/membranes14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
The Gram-negative bacterium Helicobacter pylori is a very successful pathogen, one of the most commonly identified causes of bacterial infections in humans worldwide. H. pylori produces several virulence factors that contribute to its persistence in the hostile host habitat and to its pathogenicity. The most extensively studied are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA). VacA is present in almost all H. pylori strains. As a secreted multifunctional toxin, it assists bacterial colonization, survival, and proliferation during long-lasting infections. To exert its effect on gastric epithelium and other cell types, VacA undergoes several modifications and crosses multiple membrane barriers. Once inside the gastric epithelial cell, VacA disrupts many cellular-signaling pathways and processes, leading mainly to changes in the efflux of various ions, the depolarization of membrane potential, and perturbations in endocytic trafficking and mitochondrial function. The most notable effect of VacA is the formation of vacuole-like structures, which may lead to apoptosis. This review focuses on the processes involved in VacA secretion, processing, and entry into host cells, with a particular emphasis on the interaction of the mature toxin with host membranes and the formation of transmembrane pores.
Collapse
Affiliation(s)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
17
|
Zhang X, Zhang K, Yan L, Wang P, Zhao F, Hu S. The role of toll-like receptors in immune tolerance induced by Helicobacter pylori infection. Helicobacter 2023; 28:e13020. [PMID: 37691007 DOI: 10.1111/hel.13020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, microaerobic bacterium that colonizes the gastric mucosa in about half of the world's population. H. pylori infection can lead to various diseases. Chronic infection by H. pylori exposes the gastric mucosa to bacterial components such as lipopolysaccharide (LPS), outer membrane vesicles (OMVs), and several toxic proteins. Infected with H. pylori activates the release of pro-inflammatory factors and triggers inflammatory responses that damage the gastric mucosa. As the only microorganism that permanently colonizes the human stomach, H. pylori can suppress host immunity to achieve long-term colonization. Toll-like receptors (TLRs) play a crucial role in T-cell activation, promoting innate immune responses and immune tolerance during H. pylori infection. Among the 10 TLRs found in humans, TLR2, TLR4, TLR5, and TLR9 have been thoroughly investigated in relation to H. pylori-linked immune regulation. In the present review, we provide a comprehensive analysis of the various mechanisms employed by different TLRs in the induction of immune tolerance upon H. pylori infection, which will contribute to the research of pathogenic mechanism of H. pylori.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Linlin Yan
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Pengfei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
18
|
Alajmi SM, Alsulami TM, Ben Mudayhish MA, Alhawas MA, Alangari MS, Alfarhan A, Omair A. Knowledge and Attitude of Medical Students Towards Helicobacter pylori Infection and Its Prevention and Management: A Study From Riyadh, Saudi Arabia. Cureus 2023; 15:e51174. [PMID: 38283522 PMCID: PMC10815785 DOI: 10.7759/cureus.51174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) is a virulent pathogen causing gastritis and ulcers followed by serious complications. Despite being a heavy burden to eradicate, there are not many studies that assess the comprehension of future physicians regarding this bacterium. The objective of this study was to assess medical students' knowledge and attitude toward H. pylori while evaluating the variations based on their socio-demographic factors at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) in Riyadh, Saudi Arabia. Methods A cross-sectional study was conducted among students in all four years of medical college. The data was collected by distributing an online questionnaire which included three following sections: demographic data, knowledge regarding H. pylori infection, and attitude toward H. pylori infection. Total knowledge and attitude levels were grouped into three and two categories, respectively, and compared between the respondents' socio-demographics. Results Out of 330 respondents, the majority were females (n=185, 56%), and the mean age was 22.8±2.1 years. There were 184 students (56%) who had an excellent attitude (>70%) and 140 (44%) students had average knowledge (34-70%). The medical students' knowledge level was significantly (p<0.001) different between the participants according to their year of study and gender, with higher scores reported by male students in their clinical years (sixth and fifth years). Conclusion Medical students of KSAU-HS, Riyadh, had an overall average knowledge and excellent attitude towards H. pylori infection, and its prevention and management which emphasize the need for more comprehensive education and awareness programs throughout the medical curriculum to ensure future physicians are well-prepared to address the challenges associated with H. pylori-related health issues.
Collapse
Affiliation(s)
- Shahad M Alajmi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Taeef M Alsulami
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | | | - Maylan A Alhawas
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Mona S Alangari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAU
| | - Ali Alfarhan
- Family Medicine/Primary Health Care, Ministry of National Guard - Health Affairs, Riyadh, SAU
| | - Aamir Omair
- Medical Education, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, SAU
| |
Collapse
|
19
|
Wang C, Li W, Shao L, Zhou A, Zhao M, Li P, Zhang Z, Wu J. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res 2023; 28:484. [PMID: 37932800 PMCID: PMC10626716 DOI: 10.1186/s40001-023-01458-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesicles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomarkers, therapeutic targets, and vehicles for targeted delivery.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Linlin Shao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Anni Zhou
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mengran Zhao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Peng Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zheng Zhang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
20
|
Kaisanlahti A, Salmi S, Kumpula S, Amatya SB, Turunen J, Tejesvi M, Byts N, Tapiainen T, Reunanen J. Bacterial extracellular vesicles - brain invaders? A systematic review. Front Mol Neurosci 2023; 16:1227655. [PMID: 37781094 PMCID: PMC10537964 DOI: 10.3389/fnmol.2023.1227655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Knowledge on the human gut microbiota in health and disease continues to rapidly expand. In recent years, changes in the gut microbiota composition have been reported as a part of the pathology in numerous neurodegenerative diseases. Bacterial extracellular vesicles (EVs) have been suggested as a novel mechanism for the crosstalk between the brain and gut microbiota, physiologically connecting the observed changes in the brain to gut microbiota dysbiosis. Methods Publications reporting findings on bacterial EVs passage through the blood-brain barrier were identified in PubMed and Scopus databases. Results The literature search yielded 138 non-duplicate publications, from which 113 records were excluded in title and abstract screening step. From 25 publications subjected to full-text screening, 8 were excluded. The resulting 17 publications were considered for the review. Discussion Bacterial EVs have been described with capability to cross the blood-brain barrier, but the mechanisms behind the crossing remain largely unknown. Importantly, very little data exists in this context on EVs secreted by the human gut microbiota. This systematic review summarizes the present evidence of bacterial EVs crossing the blood-brain barrier and highlights the importance of future research on gut microbiota-derived EVs in the context of gut-brain communication across the blood-brain barrier.
Collapse
Affiliation(s)
- Anna Kaisanlahti
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Sonja Salmi
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sohvi Kumpula
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Jenni Turunen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Mysore Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Nadiya Byts
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Justus Reunanen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
22
|
Karayiannis I, Martinez-Gonzalez B, Kontizas E, Kokkota AV, Petraki K, Mentis A, Kollia P, Sgouras DN. Induction of MMP-3 and MMP-9 expression during Helicobacter pylori infection via MAPK signaling pathways. Helicobacter 2023; 28:e12987. [PMID: 37139985 DOI: 10.1111/hel.12987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Helicobacter pylori (H. pylori)-induced gastric pathology involves remodeling of extracellular matrix mediated by aberrant activity of matrix metalloproteinases (MMPs). We have previously shown that in vitro H. pylori infection leads to MMP-3 and MMP-9 overexpression, associated with phosphorylation of bacterial oncoprotein CagA. We extended these findings in an in vivo model of H. pylori infection and further assessed the involvement of MAPK pathways in MMP expression. MATERIALS AND METHODS C57BL/6 mice were infected with H. pylori strains HPARE, HPARE ΔCagA, and SS1, for 6 and 9 months. Transcriptional expression of Mmp-3 and Mmp-9 was evaluated via qPCR while respective protein levels in the gastric mucosa were determined immunohistochemically. Epithelial cell lines AGS and GES-1 were infected with H. pylori strain P12 in the presence of chemical inhibitors of JNK, ERK1/2, and p38 pathways, for 24 h. mRNA and protein expression of MMP-3 and MMP-9 were determined via qPCR and Western blot, respectively. RESULTS We observed transcriptional activation of Mmp-3 and Mmp-9 as well as aberrant MMP-3 and MMP-9 protein expression in murine gastric tissue following H. pylori infection. CagA expression was associated with MMP upregulation, particularly during the early time points of infection. We found that inhibition of ERK1/2 resulted in reduced mRNA and protein expression of MMP-3 and MMP-9 during H. pylori infection, in both cell lines. Expressed protein levels of both MMPs were also found reduced in the presence of JNK pathway inhibitors in both cell lines. However, p38 inhibition resulted in a more complex effect, probably attributed to the accumulation of phospho-p38 and increased phospho-ERK1/2 activity due to crosstalk between MAPK pathways. CONCLUSIONS H. pylori colonization leads to the upregulation of MMP-3 and MMP-9 in vivo, which primarily involves ERK1/2 and JNK pathways. Therefore, their inhibition may potentially offer a protective effect against gastric carcinogenesis and metastasis.
Collapse
Affiliation(s)
- Ioannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Genetics and Biotechnology, Faculty of Biology, School of Physical Sciences, University of Athens, Athens, Greece
| | | | | | | | | | - Andreas Mentis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagoula Kollia
- Department of Genetics and Biotechnology, Faculty of Biology, School of Physical Sciences, University of Athens, Athens, Greece
| | | |
Collapse
|
23
|
Ahmed AAQ, Besio R, Xiao L, Forlino A. Outer Membrane Vesicles (OMVs) as Biomedical Tools and Their Relevance as Immune-Modulating Agents against H. pylori Infections: Current Status and Future Prospects. Int J Mol Sci 2023; 24:ijms24108542. [PMID: 37239888 DOI: 10.3390/ijms24108542] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
24
|
Palacios E, Lobos-González L, Guerrero S, Kogan MJ, Shao B, Heinecke JW, Quest AFG, Leyton L, Valenzuela-Valderrama M. Helicobacter pylori outer membrane vesicles induce astrocyte reactivity through nuclear factor-κappa B activation and cause neuronal damage in vivo in a murine model. J Neuroinflammation 2023; 20:66. [PMID: 36895046 PMCID: PMC9996972 DOI: 10.1186/s12974-023-02728-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), βIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVβ3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.
Collapse
Affiliation(s)
- Esteban Palacios
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de La Salud, Universidad Central de Chile, 8330546, Santiago, Chile.,Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo-Clínica Alemana, 7590943, Santiago, Chile
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Facultad de Medicina, Universidad de Atacama, 153601, Copiapó, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98195-8055, USA
| | - Jay W Heinecke
- Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98195-8055, USA
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile
| | - Lisette Leyton
- Laboratory of Cellular Communication, Center for Studies On Exercise Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.
| | - Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de La Salud, Universidad Central de Chile, 8330546, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380494, Santiago, Chile.
| |
Collapse
|
25
|
Saberi S, Esmaeili M, Saghiri R, Shekari F, Mohammadi M. Assessment of the mixed origin of the gastric epithelial extracellular vesicles in acellular transfer of Helicobacter pylori toxins and a systematic review. Microb Pathog 2023; 177:106024. [PMID: 36758823 DOI: 10.1016/j.micpath.2023.106024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND H. pylori are generally considered as extracellular organisms, with exclusive colonization of the gastric milieu. Yet, several extra gastric manifestations are associated with this infection. The aim of the present study was to investigate the feasibility of toxin transfer by extracellular vesicles, from bacterial and epithelial origins. METHODS Tox-positive H. pylori and its two cagA and vacA mutant strains were used to produce bacterial vesicles (BVs) and to infect AGS cells. The produced BVs and the infected cell vesicles (ICVs) were collected by ultracentrifugation and evaluated by western blotting, DLS and electron microscopy. These two sets of vesicles were applied to a second set of recipient AGS cells, in which the acellular transfer of toxins, IL-8 production and downstream morphologic changes were assessed, by western blotting, ELISA and light microscopy, respectively. RESULTS The BVs were positive for H. pylori membrane markers (BabA and UreB), VacA and CagA toxins, except for from the corresponding mutant strains. The ICVs were larger in size and positive for bacterial markers, as well as epithelial markers of CD9, LGR5, but negative for nuclear (Ki76) or cytoplasmic (β-actin) markers. Bacteria-independent transfer of CagA and VacA into the recipient cells occurred upon treatment of cells with BVs and ICVs, followed by cellular vacuolation and elongation. IL-8 production was induced in recipient AGS cells, treated with BVs (1279.4 ± 19.79 pg/106 cells), early (8 h, 1171.4 ± 11.31 pg/106 cells) and late (48 h, 965.4 ± 36.77 pg/106 cells) ICVs (P < 0.0001). CONCLUSION Our data indicates that ICVs, with mixed bacterial and epithelial constituents, similar to BVs, are capable of transferring bacterial toxins into the recipient cells, inducing IL-8 production and subsequent morphologic changes, in an acellular manner.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Krzyżek P, Puca V, Grande R. Editorial: Helicobacter pylori and its mechanisms of antibiotic survival. Front Cell Infect Microbiol 2023; 13:1164227. [PMID: 36909728 PMCID: PMC9996122 DOI: 10.3389/fcimb.2023.1164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Paweł Krzyżek,
| | - Valentina Puca
- Department of Pharmacy, University “G. d’Annunzio” of Cheti-Pescara, Chieti, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Cheti-Pescara, Chieti, Italy
| |
Collapse
|
27
|
Wang Y, Xu S, He Q, Sun K, Wang X, Zhang X, Li Y, Zeng J. Crosstalk between microbial biofilms in the gastrointestinal tract and chronic mucosa diseases. Front Microbiol 2023; 14:1151552. [PMID: 37125198 PMCID: PMC10133492 DOI: 10.3389/fmicb.2023.1151552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
The gastrointestinal (GI) tract is the largest reservoir of microbiota in the human body; however, it is still challenging to estimate the distribution and life patterns of microbes. Biofilm, as the predominant form in the microbial ecosystem, serves ideally to connect intestinal flora, molecules, and host mucosa cells. It gives bacteria the capacity to inhabit ecological niches, communicate with host cells, and withstand environmental stresses. This study intends to evaluate the connection between GI tract biofilms and chronic mucosa diseases such as chronic gastritis, inflammatory bowel disease, and colorectal cancer. In each disease, we summarize the representative biofilm makers including Helicobacter pylori, adherent-invasive Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. We address biofilm's role in causing inflammation and the pro-carcinogenic stage in addition to discussing the typical resistance, persistence, and recurrence mechanisms seen in vitro. Biofilms may serve as a new biomarker for endoscopic and pathologic detection of gastrointestinal disease and suppression, which may be a useful addition to the present therapy strategy.
Collapse
Affiliation(s)
- Yumeng Wang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shixi Xu
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kun Sun
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaorui Zhang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yuqing Li,
| | - Jumei Zeng
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jumei Zeng,
| |
Collapse
|
28
|
Wang H, Zhao M, Shi F, Zheng S, Xiong L, Zheng L. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Front Cell Infect Microbiol 2023; 13:1062803. [PMID: 37124036 PMCID: PMC10140366 DOI: 10.3389/fcimb.2023.1062803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Gastric cancer (GC), a common and high-mortality disease, still occupies an important position in current cancer research, and Helicobacter pylori (H. pylori) infection as its important risk factor has been a hot and challenging research area. Among the numerous pathogenic factors of H. pylori, the virulence protein CagA has been widely studied as the only bacterial-derived oncoprotein. It was found that CagA entering into gastric epithelial cells (GECs) can induce the dysregulation of multiple cellular pathways such as MAPK signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, Wnt/β-catenin signaling pathway, JAK-STAT signaling pathway, Hippo signaling pathway through phosphorylation and non-phosphorylation. These disordered pathways cause pathological changes in morphology, adhesion, polarity, proliferation, movement, and other processes of GECs, which eventually promotes the occurrence of GC. With the deepening of H. pylori-related research, the research on CagA-induced abnormal signaling pathway has been updated and deepened to some extent, so the key signaling pathways activated by CagA are used as the main stem to sort out the pathogenesis of CagA in this paper, aiming to provide new strategies for the H. pylori infection and treatment of GC in the future.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
29
|
Zhang Y, Li X, Shan B, Zhang H, Zhao L. Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 2022; 27:e12926. [PMID: 36134470 DOI: 10.1111/hel.12926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main factor leading to some gastric diseases. Currently, H. pylori infection is primarily treated with antibiotics. However, with the widespread application of antibiotics, H. pylori resistance to antibiotics has also gradually increased year by year. Vaccines may be an alternative solution to clear H. pylori. AIMS By reviewing the recent progress on H. pylori vaccines, we expected it to lead to more research efforts to accelerate breakthroughs in this field. MATERIALS & METHODS We searched the research on H. pylori vaccine in recent years through PubMed®, and then classified and summarized these studies. RESULTS The study of the pathogenic mechanism of H. pylori has led to the development of vaccines using some antigens, such as urease, catalase, and heat shock protein (Hsp). Based on these antigens, whole-cell, subunit, nucleic acid, vector, and H. pylori exosome vaccines have been tested. DISCUSSION At present, researchers have developed many types of vaccines, such as whole cell vaccines, subunit vaccines, vector vaccines, etc. However, although some of these vaccines induced protective immunity in mouse models, only a few were able to move into human trials. We propose that mRNA vaccine may play an important role in preventing or treating H. pylori infection. The current study shows that we have developed various types of vaccines based on the virulence factors of H. pylori. However, only a few vaccines have entered human clinical trials. In order to improve the efficacy of vaccines, it is necessary to enhance T-cell immunity. CONCLUSION We should fully understand the pathogenic mechanism of H. pylori and find its core antigen as a vaccine target.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Park AM, Tsunoda I. Helicobacter pylori infection in the stomach induces neuroinflammation: the potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer's disease. Inflamm Regen 2022; 42:39. [PMID: 36058998 PMCID: PMC9442937 DOI: 10.1186/s41232-022-00224-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/09/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (HP) is a Gram-negative bacterium that colonizes the human stomach chronically. Colonization of HP in the gastric mucosa not only causes gastrointestinal diseases, but also is associated with extra-gastric diseases, such as idiopathic thrombocytopenic purpura and neurological diseases. Among neurological diseases, epidemiological studies have shown that HP infection increases the prevalence of Alzheimer's disease (AD) and Parkinson's disease (PD). Since HP does not invade the central nervous system (CNS), it has been considered that systemic immunological changes induced by HP infection may play pathogenic roles in AD and PD. Here, we investigated the effects of HP infection on the CNS in vivo and in vitro. In the CNS, chronically HP-infected mice had microglial activation without HP colonization, although systemic immunological changes were not observed. This led us to explore the possibility that HP-derived outer membrane vesicles (HP-OMVs) could cause neuroinflammation. OMVs are small, spherical bilayer vesicles (20-500 nm) released into the extracellular space from the outer membrane of Gram-negative bacteria; OMVs contain lipopolysaccharide, proteins, peptidoglycan, DNA, and RNA. OMVs have also been shown to activate both innate and acquired immune cells in vitro, and to disrupt the tight junctions of the gastric epithelium ("leaky gut") as well as cross the blood-brain barrier in vivo. Thus, in theory, OMVs can activate immune responses in the remote organs, including the lymphoid organs and CNS, if only OMVs enter the systemic circulation. From the exosome fraction of sera from HP-infected mice, we detected HP-specific DNA, suggesting the presence of HP-OMVs. We also found that microglia incubated with HP-OMVs in vitro increased the cell proliferation, inflammatory cytokine production, and migration. On the other hand, HP-OMVs suppressed the cell proliferation of neuroblastoma in vitro. Lastly, we found that AD model mice infected with HP had amyloid plaques adjacent to activated microglia and astrocytes in vivo. Based on the literature review and our experimental data, we propose our working hypothesis that OMVs produced in chronic HP infection in the gut induce neuroinflammation in the CNS, explaining the higher prevalence of AD in HP-infected people.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
31
|
Intestinal microbiota-derived membrane vesicles and their role in chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166478. [PMID: 35787946 DOI: 10.1016/j.bbadis.2022.166478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022]
Abstract
Intestinal microbiota-derived membrane vesicles (MVs) play essential roles in immunomodulation and maintenance of the intestinal micro-ecosystem. The relationship between MVs and chronic kidney disease (CKD) has remained undefined. This review provides a survey of the structure and biological function of different vesicle types and summarizes the possible pathogenic mechanisms mediated by MVs, which may be of great clinical significance in the diagnosis and treatment of chronic kidney disease.
Collapse
|
32
|
Zahmatkesh ME, Jahanbakhsh M, Hoseini N, Shegefti S, Peymani A, Dabin H, Samimi R, Bolori S. Effects of Exosomes Derived From Helicobacter pylori Outer Membrane Vesicle-Infected Hepatocytes on Hepatic Stellate Cell Activation and Liver Fibrosis Induction. Front Cell Infect Microbiol 2022; 12:857570. [PMID: 35832384 PMCID: PMC9271900 DOI: 10.3389/fcimb.2022.857570] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 01/03/2023] Open
Abstract
Liver fibrosis is a multifactorial disease with microbial and non-microbial causes. In recent years, Helicobacter pylori infection has been thought to play a critical role in some extra-gastrointestinal manifestations especially liver disorders. Outer membrane vesicles (OMVs) are one of the most important discussed H. pylori virulence factors. In the current study, four different clinical strains of H. pylori were collected and their OMVs were purified using ultra-centrifugation. To investigate their effects on liver cell exosomes, co-incubation with hepatocytes was applied. After a while, hepatocyte-derived exosomes were extracted and incubated with hepatic stellate cells (HSCs) to investigate the HSC activation and fibrosis marker induction. The expression of α-SMA, TIMP-1, β-catenin, vimentin, and e-cadherin messenger RNAs (mRNA) was assessed using real-time RT-PCR, and the protein expression of α-SMA, TIMP-1, β-catenin, vimentin, and e-cadherin was evaluated by Western blotting. Our results showed that infected hepatocyte-derived exosomes induced the expression of α-SMA, TIMP-1, β-catenin, and vimentin in HSCs and e-cadherin gene and protein expression was downregulated. In the current study, we found that H. pylori-derived OMVs may aid the exosome alternation and modified exosomes may have a possible role in HSC activation and liver fibrosis progression.
Collapse
Affiliation(s)
| | - Mariyeh Jahanbakhsh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Negin Hoseini
- Microbiology Department, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saina Shegefti
- Microbiology Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Dabin
- Microbiology Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Samimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- *Correspondence: Shahin Bolori, ; Rasoul Samimi,
| | - Shahin Bolori
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Microbiology Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Shahin Bolori, ; Rasoul Samimi,
| |
Collapse
|
33
|
Qiang L, Hu J, Tian M, Li Y, Ren C, Deng Y, Jiang Y. Extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles in atherosclerosis. Helicobacter 2022; 27:e12877. [PMID: 35099837 DOI: 10.1111/hel.12877] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The role of H. pylori infection has been reported in various extragastric diseases, particularly, the correlation between H. pylori and atherosclerosis (AS) have received lots of attention. Some scholars demonstrated that the presence of H. pylori-specific DNA in the sclerotic plaques of atheromatous patients provides biological evidences, with indicating that H. pylori infection is a potential factor of AS. However, the underlying mechanism of H. pylori or their products cross the epithelial barriers to enter the blood circulation remains unclear. Recent studies have shown that the extracellular vesicles (EVs) derived from H. pylori-infected gastric epithelial cells encapsulated H. pylori virulence factor cytotoxin-associated gene A (CagA) and existed in the blood samples of patients or mice, which indicating that they can carry CagA into the blood circulation. Based on these findings, some researchers proposed a hypothesis that H. pylori is involved in the pathogenesis of AS via EVs-based mechanisms. In addition, outer membrane vesicles (OMVs) serve as transport vehicles to deliver H. pylori virulence factors to epithelial cells. It is necessary to discuss the role of H. pylori OMVs in the development of AS. OBJECTIVES This review will focus on the correlation between H. pylori infection and AS and tried to unveil the possible role of EVs from H. pylori-infected cells and H. pylori OMVs in the pathogenesis of AS, with a view to providing help in refining our knowledge in this aspect. METHODS All of information included in this review was retrieved from published studies on H. pylori infection in AS. RESULTS H. pylori infection may be an atherosclerotic risk factor and drives researchers to reevaluate the role of H. pylori in the pathogenesis of AS. Some findings proposed a new hypothesis that H. pylori may be involved in the pathogenesis of AS through EVs-based mechanisms. Besides EVs from H. pylori-infected cells, whether H. pylori OMVs may play some role in the pathogenesis of AS is still remain unclear. CONCLUSION Existing epidemiological and clinical evidence had shown that there is a possible association between H. pylori and AS. However, except for the larger randomized controlled trials, more basic research about EVs from H. pylori-infected cells and H. pylori OMVs is the need of the hour to unveil the possible role of H. pylori infection in the pathogenesis of AS.
Collapse
Affiliation(s)
- Liming Qiang
- Department of Gastroenterology, West China-Guang'an Hospital, Sichuan University, Guang'an, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingyuan Tian
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Li
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chao Ren
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Deng
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan Jiang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
34
|
Xia X, Zhang L, Wu H, Chen F, Liu X, Xu H, Cui Y, Zhu Q, Wang M, Hao H, Li DP, Fay WP, Martinez-Lemus LA, Hill MA, Xu C, Liu Z. CagA+Helicobacter pylori, Not CagA–Helicobacter pylori, Infection Impairs Endothelial Function Through Exosomes-Mediated ROS Formation. Front Cardiovasc Med 2022; 9:881372. [PMID: 35433874 PMCID: PMC9008404 DOI: 10.3389/fcvm.2022.881372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundHelicobacter pylori (H. pylori) infection increases the risk for atherosclerosis, and ROS are critical to endothelial dysfunction and atherosclerosis. CagA is a major H. pylori virulence factor associated with atherosclerosis. The present study aimed to test the hypothesis that CagA+H. pylori effectively colonizes gastric mucosa, and CagA+H. pylori, but not CagA–H. pylori, infection impairs endothelial function through exosomes-mediated ROS formation.MethodsC57BL/6 were used to determine the colonization ability of CagA+H. pylori and CagA–H. pylori. ROS production, endothelial function of thoracic aorta and atherosclerosis were measured in CagA+H. pylori and CagA–H. pylori infected mice. Exosomes from CagA+H. pylori and CagA–H. pylori or without H. pylori infected mouse serum or GES-1 were isolated and co-cultured with bEND.3 and HUVECs to determine how CagA+H. pylori infection impairs endothelial function. Further, GW4869 was used to determine if CagA+H. pylori infection could lead to endothelial dysfunction and atherosclerosis through an exosomes-mediated mechanism.ResultsCagA+H. pylori colonized gastric mucosa more effectively than CagA–H. pylori in mice. CagA+H. pylori, not CagA–H. pylori, infection significantly increased aortic ROS production, decreased ACh-induced aortic relaxation, and enhanced early atherosclerosis formation, which were prevented with N-acetylcysteine treatment. Treatment with CagA-containing exosomes significantly increased intracellular ROS production in endothelial cells and impaired their function. Inhibition of exosomes secretion with GW4869 effectively prevented excessive aortic ROS production, endothelial dysfunction, and atherosclerosis in mice with CagA+H. pylori infection.ConclusionThese data suggest that CagA+H. pylori effectively colonizes gastric mucosa, impairs endothelial function, and enhances atherosclerosis via exosomes-mediated ROS formation in mice.
Collapse
Affiliation(s)
- Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linfang Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Feng Chen
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Huifang Xu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - De-Pei Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - William P. Fay
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, Columbia, MO, United States
| | - Canxia Xu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- *Correspondence: Zhenguo Liu,
| |
Collapse
|
35
|
Helicobacter pylori Pathogen-Associated Molecular Patterns: Friends or Foes? Int J Mol Sci 2022; 23:ijms23073531. [PMID: 35408892 PMCID: PMC8998707 DOI: 10.3390/ijms23073531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Microbial infections are sensed by the host immune system by recognizing signature molecules called Pathogen-Associated Molecular Patterns—PAMPs. The binding of these biomolecules to innate immune receptors, called Pattern Recognition Receptors (PRRs), alerts the host cell, activating microbicidal and pro-inflammatory responses. The outcome of the inflammatory cascade depends on the subtle balance between the bacterial burn and the host immune response. The role of PRRs is to promote the clearance of the pathogen and to limit the infection by bumping inflammatory response. However, many bacteria, including Helicobacter pylori, evolved to escape PRRs’ recognition through different camouflages in their molecular pattern. This review examines all the different types of H. pylori PAMPs, their roles during the infection, and the mechanisms they evolved to escape the host recognition.
Collapse
|
36
|
Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, Wang H. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [PMID: 35283837 PMCID: PMC8905621 DOI: 10.3389/fmicb.2022.835058] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/22/2023] Open
Abstract
Both Gram-positive and Gram-negative bacteria can secrete extracellular vesicles (EVs), which contain numerous active substances. EVs mediate bacterial interactions with their hosts or other microbes. Bacterial EVs play a double-edged role in infections through various mechanisms, including the delivery of virulence factors, modulating immune responses, mediating antibiotic resistance, and inhibiting competitive microbes. The spread of antibiotic resistance continues to represent a difficult clinical challenge. Therefore, the investigation of novel therapeutics is a valuable research endeavor for targeting antibiotic-resistant bacterial infections. As a pathogenic substance of bacteria, bacterial EVs have gained increased attention. Thus, EV inhibitors are expected to function as novel antimicrobial agents. The inhibition of EV production, EV activity, and EV-stimulated inflammation are considered potential pathways. This review primarily introduces compounds that effectively inhibit bacterial EVs and evaluates the prospects of their application.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongfang Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
37
|
Han L, Shu X, Wang J. Helicobacter pylori-Mediated Oxidative Stress and Gastric Diseases: A Review. Front Microbiol 2022; 13:811258. [PMID: 35211104 PMCID: PMC8860906 DOI: 10.3389/fmicb.2022.811258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is considered to be a type of gastrointestinal tumor and is mostly accompanied by Helicobacter pylori (HP) infection at the early stage. Hence, the long-term colonization of the gastric mucosa by HP as a causative factor for gastrointestinal diseases cannot be ignored. The virulence factors secreted by the bacterium activate the signaling pathway of oxidative stress and mediate chronic inflammatory response in the host cells. The virulence factors also thwart the antibacterial effect of neutrophils. Subsequently, DNA methylation is induced, which causes continuous cell proliferation and evolution toward low-grade-differentiated gastric cells. This process provides the pathological basis for the occurrence of progressive gastric cancer. Therefore, this review aims to summarize the oxidative stress response triggered by HP in the gastric mucosa and the subsequent signaling pathways. The findings are expected to help in the formulation of new targeted drugs for preventing the occurrence of early gastric cancer and its progression to middle and advanced cancer.
Collapse
Affiliation(s)
- Lu Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
38
|
The Effects of HP0044 and HP1275 Knockout Mutations on the Structure and Function of Lipopolysaccharide in Helicobacter pylori Strain 26695. Biomedicines 2022; 10:biomedicines10010145. [PMID: 35052824 PMCID: PMC8773439 DOI: 10.3390/biomedicines10010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori infection is associated with several gastric diseases, including gastritis, peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphatic tissue (MALT) lymphoma. Due to the prevalence and severeness of H. pylori infection, a thorough understanding of this pathogen is necessary. Lipopolysaccharide, one of the major virulence factors of H. pylori, can exert immunomodulating and immunostimulating functions on the host. In this study, the HP0044 and HP1275 genes were under investigation. These two genes potentially encode GDP-D-mannose dehydratase (GMD) and phosphomannomutase (PMM)/phosphoglucomutase (PGM), respectively, and are involved in the biosynthesis of fucose. HP0044 and HP1275 knockout mutants were generated; both mutants displayed a truncated LPS, suggesting that the encoded enzymes are not only involved in fucose production but are also important for LPS construction. In addition, these two gene knockout mutants exhibited retarded growth, increased surface hydrophobicity and autoaggregation as well as being more sensitive to the detergent SDS and the antibiotic novobiocin. Furthermore, the LPS-defective mutants also had significantly reduced bacterial infection, adhesion and internalization in the in vitro cell line model. Moreover, disruptions of the HP0044 and HP1275 genes in H. pylori altered protein sorting into outer membrane vesicles. The critical roles of HP0044 and HP1275 in LPS biosynthesis, bacterial fitness and pathogenesis make them attractive candidates for drug inventions against H. pylori infection.
Collapse
|
39
|
Wang N, Zhou F, Chen C, Luo H, Guo J, Wang W, Yang J, Li L. Role of Outer Membrane Vesicles From Helicobacter pylori in Atherosclerosis. Front Cell Dev Biol 2021; 9:673993. [PMID: 34790655 PMCID: PMC8591407 DOI: 10.3389/fcell.2021.673993] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023] Open
Abstract
Infection is thought to be involved in the pathogenesis of atherosclerosis. Studies have shown the association between helicobacter pylori (H. pylori) and coronary artery disease. It is interesting to find H. pylori DNA and cytotoxin-associated gene A (CagA) protein in atherosclerotic plaque. Outer membrane vesicles (OMVs), secreted by H. pylori, exert effects in the distant organ or tissue. However, whether or not OMVs from H. pylori are involved in the pathogenesis of atherosclerosis remains unknown. Our present study found that treatment with OMVs from CagA-positive H. pylori accelerated atherosclerosis plaque formation in ApoE–/– mice. H. pylori-derived OMVs inhibited proliferation and promoted apoptosis of human umbilical vein endothelial cells (HUVECs), which was also reflected in in vivo studies. These effects were normalized to some degree after treatment with lipopolysaccharide (LPS)-depleted CagA-positive OMVs or CagA-negative OMVs. Treatment with H. pylori-derived OMVs increased reactive oxygen species (ROS) levels and enhanced the activation of nuclear factor-κB (NF-κB) in HUVECs, which were reversed to some degree in the presence of a superoxide dismutase mimetic TEMPOL and a NF-κB inhibitor BAY11-7082. Expressions of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), two inflammatory factors, were augmented after treatment with OMVs from H. pylori. These suggest that H. pylori-derived OMVs accelerate atherosclerosis plaque formation via endothelium injury. CagA and LPS from H. pylori-OMVs, at least in part, participate in these processes, which may be involved with the activation of ROS/NF-κB signaling pathway. These may provide a novel strategy to reduce the incidence and development of atherosclerosis.
Collapse
Affiliation(s)
- Na Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Faying Zhou
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Jingwen Guo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Hypertension Research, Chongqing Institute of Cardiology, Chongqing, China
| |
Collapse
|
40
|
Melo J, Pinto V, Fernandes T, Malheiro AR, Osório H, Figueiredo C, Leite M. Isolation Method and Characterization of Outer Membranes Vesicles of Helicobacter pylori Grown in a Chemically Defined Medium. Front Microbiol 2021; 12:654193. [PMID: 34149641 PMCID: PMC8206784 DOI: 10.3389/fmicb.2021.654193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Outer membrane vesicles (OMVs) are small vesicles constitutively shed by all Gram-negative bacterium, which have been proposed to play a role in Helicobacter pylori persistence and pathogenesis. The methods currently available for the isolation of H. pylori OMVs are diverse and time-consuming, raising the need for a protocol standardization, which was the main aim of this study. Here, we showed that the chemically defined F12 medium, supplemented with cholesterol, nutritionally supports bacterial growth and maintains H. pylori viability for at least 72 h. Additionally, we developed an abridged protocol for isolation of OMVs from these bacterial cultures, which comprises a low-speed centrifugation, supernatant filtration through a 0.45 μm pore, and two ultracentrifugations for OMVs’ recovery and washing. Using this approach, a good yield of highly pure bona fide OMVs was recovered from cultures of different H. pylori strains and in different periods of bacterial growth, as assessed by nanoparticle tracking analysis, transmission electron microscopy (TEM), and proteomic analyses, confirming the reliability of the protocol. Analysis of the proteome of OMVs isolated from H. pylori F12-cholesterol cultures at different time points of bacterial growth revealed differentially expressed proteins, including the vacuolating cytotoxin VacA. In conclusion, this work proposes a time- and cost-efficient protocol for the isolation of H. pylori OMVs from a chemically defined culture medium that is suitable for implementation in research and in the biopharmaceutical field.
Collapse
Affiliation(s)
- Joana Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Vanessa Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Tânia Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Ana R Malheiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Marina Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
41
|
Ahmed AAQ, Qi F, Zheng R, Xiao L, Abdalla AME, Mao L, Bakadia BM, Liu L, Atta OM, Li X, Shi Z, Yang G. The impact of ExHp-CD (outer membrane vesicles) released from Helicobacter pylori SS1 on macrophage RAW 264.7 cells and their immunogenic potential. Life Sci 2021; 279:119644. [PMID: 34048813 DOI: 10.1016/j.lfs.2021.119644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Bacterial-derived extracellular vesicles could play a major role in attenuating and treating diseases. They play a major anti-infection role by modulating immune responses against pathogens and preventing infection by inhibiting pathogen localization and proliferation. In this study, outer membrane vesicles (ExHp-CD) released by Helicobacter pylori SS1 (H. pylori) and total antigens isolated from H. pylori SS1 (AgHp) were evaluated for their immunogenic potential and their effect on macrophage RAW 264.7 cells. Results demonstrated that both ExHp-CD and AgHp induced T helper 2 (Th2) immune response, which was reported to be important in immune protection against H. pylori infections. Both ExHp-CD and AgHp produced high levels of IL-10 and IL-4, while no significant levels of IL-12 p70 or IFN-γ were detected. However, ExHp-CD showed a better effect on macrophage RAW 264.7 cells compared to AgHp. Macrophage RAW 264.7 cells stimulated with 5, and 10 μg/mL of ExHp-CD showed an increased ratio of CD206 (M2 phenotype marker) and a decreased ratio of CD86 (M1 phenotype marker). Moreover, results suggested that the immunogenic effect that ExHp-CD possesses was attributed to their cargo of Epimerase_2 domain-containing protein (Epi_2D), Probable malate:quinone oxidoreductase (Pro_mqo), and Probable cytosol aminopeptidase (Pro_ca). Results demonstrated that ExHp-CD possesses an immunological activity to induce Th2 immune response against H. pylori infection with results comparable to AgHp. However, ExHp-CD showed higher efficacy regarding safety, biocompatibility, lack of toxicity, and hemocompatibility. Thus, it could serve as an immunogenic candidate with more desired characteristics.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ahmed M E Abdalla
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum 1660/11111, Sudan
| | - Lin Mao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Omar Mohammad Atta
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
42
|
Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication. Int J Mol Sci 2021; 22:ijms22084235. [PMID: 33921831 PMCID: PMC8073592 DOI: 10.3390/ijms22084235] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Human intestinal microbiota comprise of a dynamic population of bacterial species and other microorganisms with the capacity to interact with the rest of the organism and strongly influence the host during homeostasis and disease. Commensal and pathogenic bacteria coexist in homeostasis with the intestinal epithelium and the gastrointestinal tract’s immune system, or GALT (gut-associated lymphoid tissue), of the host. However, a disruption to this homeostasis or dysbiosis by different factors (e.g., stress, diet, use of antibiotics, age, inflammatory processes) can cause brain dysfunction given the communication between the gut and brain. Recently, extracellular vesicles (EVs) derived from bacteria have emerged as possible carriers in gut-brain communication through the interaction of their vesicle components with immune receptors, which lead to neuroinflammatory immune response activation. This review discusses the critical role of bacterial EVs from the gut in the neuropathology of brain dysfunctions by modulating the immune response. These vesicles, which contain harmful bacterial EV contents such as lipopolysaccharide (LPS), peptidoglycans, toxins and nucleic acids, are capable of crossing tissue barriers including the blood-brain barrier and interacting with the immune receptors of glial cells (e.g., Toll-like receptors) to lead to the production of cytokines and inflammatory mediators, which can cause brain impairment and behavioral dysfunctions.
Collapse
|
43
|
Outer Membrane Vesicle Production by Helicobacter pylori Represents an Approach for the Delivery of Virulence Factors CagA, VacA and UreA into Human Gastric Adenocarcinoma (AGS) Cells. Int J Mol Sci 2021; 22:ijms22083942. [PMID: 33920443 PMCID: PMC8069053 DOI: 10.3390/ijms22083942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Helicobacter pylori infection is the etiology of several gastric-related diseases including gastric cancer. Cytotoxin associated gene A (CagA), vacuolating cytotoxin A (VacA) and α-subunit of urease (UreA) are three major virulence factors of H. pylori, and each of them has a distinct entry pathway and pathogenic mechanism during bacterial infection. H. pylori can shed outer membrane vesicles (OMVs). Therefore, it would be interesting to explore the production kinetics of H. pylori OMVs and its connection with the entry of key virulence factors into host cells. Here, we isolated OMVs from H. pylori 26,695 strain and characterized their properties and interaction kinetics with human gastric adenocarcinoma (AGS) cells. We found that the generation of OMVs and the presence of CagA, VacA and UreA in OMVs were a lasting event throughout different phases of bacterial growth. H. pylori OMVs entered AGS cells mainly through macropinocytosis/phagocytosis. Furthermore, CagA, VacA and UreA could enter AGS cells via OMVs and the treatment with H. pylori OMVs would cause cell death. Comparison of H. pylori 26,695 and clinical strains suggested that the production and characteristics of OMVs are not only limited to laboratory strains commonly in use, but a general phenomenon to most H. pylori strains.
Collapse
|
44
|
Nara PL, Sindelar D, Penn MS, Potempa J, Griffin WST. Porphyromonas gingivalis Outer Membrane Vesicles as the Major Driver of and Explanation for Neuropathogenesis, the Cholinergic Hypothesis, Iron Dyshomeostasis, and Salivary Lactoferrin in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1417-1450. [PMID: 34275903 PMCID: PMC8461682 DOI: 10.3233/jad-210448] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis (Pg) is a primary oral pathogen in the widespread biofilm-induced "chronic" multi-systems inflammatory disease(s) including Alzheimer's disease (AD). It is possibly the only second identified unique example of a biological extremophile in the human body. Having a better understanding of the key microbiological and genetic mechanisms of its pathogenesis and disease induction are central to its future diagnosis, treatment, and possible prevention. The published literature around the role of Pg in AD highlights the bacteria's direct role within the brain to cause disease. The available evidence, although somewhat adopted, does not fully support this as the major process. There are alternative pathogenic/virulence features associated with Pg that have been overlooked and may better explain the pathogenic processes found in the "infection hypothesis" of AD. A better explanation is offered here for the discrepancy in the relatively low amounts of "Pg bacteria" residing in the brain compared to the rather florid amounts and broad distribution of one or more of its major bacterial protein toxins. Related to this, the "Gingipains Hypothesis", AD-related iron dyshomeostasis, and the early reduced salivary lactoferrin, along with the resurrection of the Cholinergic Hypothesis may now be integrated into one working model. The current paper suggests the highly evolved and developed Type IX secretory cargo system of Pg producing outer membrane vesicles may better explain the observed diseases. Thus it is hoped this paper can provide a unifying model for the sporadic form of AD and guide the direction of research, treatment, and possible prevention.
Collapse
Affiliation(s)
| | | | - Marc S. Penn
- Summa Heart Health and Vascular Institute, Akron, OH, USA
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases in the School of Dentistry, University of Louisville, Louisville, KY, USA
| | - W. Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
45
|
Biofilm Formation as a Complex Result of Virulence and Adaptive Responses of Helicobacter pylori. Pathogens 2020; 9:pathogens9121062. [PMID: 33353223 PMCID: PMC7766044 DOI: 10.3390/pathogens9121062] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a bacterium that is capable of colonizing a host for many years, often for a lifetime. The survival in the gastric environment is enabled by the production of numerous virulence factors conditioning adhesion to the mucosa surface, acquisition of nutrients, and neutralization of the immune system activity. It is increasingly recognized, however, that the adaptive mechanisms of H. pylori in the stomach may also be linked to the ability of this pathogen to form biofilms. Initially, biofilms produced by H. pylori were strongly associated by scientists with water distribution systems and considered as a survival mechanism outside the host and a source of fecal-oral infections. In the course of the last 20 years, however, this trend has changed and now the most attention is focused on the biomedical aspect of this structure and its potential contribution to the therapeutic difficulties of H. pylori. Taking into account this fact, the aim of the current review is to discuss the phenomenon of H. pylori biofilm formation and present this mechanism as a resultant of the virulence and adaptive responses of H. pylori, including morphological transformation, membrane vesicles secretion, matrix production, efflux pump activity, and intermicrobial communication. These mechanisms will be considered in the context of transcriptomic and proteomic changes in H. pylori biofilms and their modulating effect on the development of this complex structure.
Collapse
|
46
|
Extracellular RNAs in Bacterial Infections: From Emerging Key Players on Host-Pathogen Interactions to Exploitable Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21249634. [PMID: 33348812 PMCID: PMC7766527 DOI: 10.3390/ijms21249634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous RNAs, which are exported to the extracellular medium, mainly through vesicles. In bacteria, membrane vesicles (MVs) seem to be the more common way of extracellular communication. In several bacterial pathogens, MVs have been described as a delivery system of ncRNAs that upon entry into the host cell, regulate their immune response. The aim of the present work is to review this recently described mode of host-pathogen communication and to foster further research on this topic envisaging their exploitation in the design of novel therapeutic and diagnostic strategies to fight bacterial infections.
Collapse
|