1
|
Genitsaris S, Stefanidou N, Kourkoutmani P, Michaloudi E, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Do coastal bacterioplankton communities hold the molecular key to the rapid biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) from shipping scrubber effluent? ENVIRONMENTAL RESEARCH 2025; 277:121563. [PMID: 40203979 DOI: 10.1016/j.envres.2025.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Shipping scrubber effluents, containing a cocktail of Polycyclic Aromatic Hydrocarbons (PAHs), show undisputed effects at single-species experiments while PAHs fate in the marine environment after effluent discharge is still investigated. Bacterioplankton, composed of abundant diverse taxa with xenobiotic-degrading capabilities, are the first responders to scrubber emissions and can affect PAHs impacts on marine life. This work aims to examine the fate of scrubber effluent PAHs and alkyl-PAHs in mesocosms of coastal bacterioplankton communities from a pristine (phytoplankton carbon biomass was 8.16 μg C L-1) and a eutrophic (105.35 μg C L-1) coastal site. High-throughput 16S rRNA metabarcoding revealed differential responses of the bacterioplankton linked to their initial community structure and population abundances. Taxa known for their PAHs-degrading capacity were retrieved, including the genera Roseobacter, Porticoccus, Marinomonas, Arcobacter, Lentibacter, Lacinutrix, Pseudospirillum, Glaciecola, Vibrio, Marivita, and Mycobacterium, and were found to have increased roles in shifted communities by increasing their relative abundances at least 5-fold in treatments with high scrubber effluent additions. Additionally, metagenomic analysis of shotgun sequencing, indicated an increase on the number of Clusters of Orthologous Genes (COGs) associated with pathways involved in PAHs degradation. Up to 198 more COGs involved in signal transduction were retrieved in scrubber effluent enriched mesocosms compared to controls, while 15, 86, and 136 more COGs associated with naphthalene, aromatic compound, and benzoate degradation, respectively, were detected in the pristine mesocosms after effluent additions. In both experiments, bacterioplankton responses towards xenobiotic degradation under increased PAHs and alkyl-PAHs were coupled with a drop in their concentrations, below the limit of detection by Day 3 of the experiment in the eutrophic community, and by half in Day 6 in the pristine environment's community. Our findings indicate that PAHs and alkyl-PAHs impacts can be rapidly reduced in natural systems of high bacterial activity.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
2
|
Cheng Q, Tian H, Nie WB, Li J, Zuo Y, Nengzi L, Du E, Peng M. Enhanced nitrogen removal from secondary effluent of municipal wastewater using denitrification filter: Feasibility of refractory organics as a carbon source. BIORESOURCE TECHNOLOGY 2024; 414:131660. [PMID: 39424010 DOI: 10.1016/j.biortech.2024.131660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Conventional advanced nitrogen removal in municipal wastewater is hindered by the limited availability of carbon sources in the secondary effluent. However, refractory organics present in it had the potential to serve as intrinsic carbon sources after hydrolysis for nitrogen removal via simultaneous denitrification and partial-denitrification anammox (PDA) processes. To assess this potential, a denitrification filter was set up in this study to evaluate its feasibility of concurrent processes. Results showed that increasing influent ammonium (NH4+-N) from 1.0 to 7.0 mg/L increased total nitrogen (TN) removal from 52.4 % to 89.9 %. Simultaneous occurrence of PDA and denitrification process were confirmed by the actual chemical oxygen demand (COD) consumption (0.8-1.2 mg/mg TN removal) from non-fluorescent organics. The presence of the anammox, hydrolytic and denitrifying bacteria further supported the achievement of nitrogen removal through PDA and denitrification processes by utilizing hydrolytic products biodegraded from refractory organics.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Hui Tian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Wen-Bo Nie
- College of Environmental and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jun Li
- College of Environmental and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yanting Zuo
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Lichao Nengzi
- Academy of Environment and Economics Sciences, Xichang University, Xichang 615000, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Diner RE, Allard SM, Gilbert JA. Host-associated microbes mitigate the negative impacts of aquatic pollution. mSystems 2024; 9:e0086824. [PMID: 39207151 PMCID: PMC11495061 DOI: 10.1128/msystems.00868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pollution can negatively impact aquatic ecosystems, aquaculture operations, and recreational water quality. Many aquatic microbes can sequester or degrade pollutants and have been utilized for bioremediation. While planktonic and benthic microbes are well-studied, host-associated microbes likely play an important role in mitigating the negative impacts of aquatic pollution and represent an unrealized source of microbial potential. For example, aquatic organisms that thrive in highly polluted environments or concentrate pollutants may have microbiomes adapted to these selective pressures. Understanding microbe-pollutant interactions in sensitive and valuable species could help protect human well-being and improve ecosystem resilience. Investigating these interactions using appropriate experimental systems and overcoming methodological challenges will present novel opportunities to protect and improve aquatic systems. In this perspective, we review examples of how microbes could mitigate negative impacts of aquatic pollution, outline target study systems, discuss challenges of advancing this field, and outline implications in the face of global changes.
Collapse
Affiliation(s)
- Rachel E. Diner
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Sarah M. Allard
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
de Vogel FA, Goudriaan M, Zettler ER, Niemann H, Eich A, Weber M, Lott C, Amaral-Zettler LA. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172288. [PMID: 38599394 DOI: 10.1016/j.scitotenv.2024.172288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.
Collapse
Affiliation(s)
- Fons A de Vogel
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands; CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Andreas Eich
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Yuliani D, Morishita F, Imamura T, Ueki T. Vanadium Accumulation and Reduction by Vanadium-Accumulating Bacteria Isolated from the Intestinal Contents of Ciona robusta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:338-350. [PMID: 38451444 PMCID: PMC11043195 DOI: 10.1007/s10126-024-10300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.
Collapse
Affiliation(s)
- Dewi Yuliani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
- Chemistry Department, Faculty of Mathematics and Natural Sciences, State Islamic University of Malang, Malang, 65145, Indonesia
| | - Fumihiro Morishita
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Tatsuya Ueki
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan.
| |
Collapse
|
7
|
Genitsaris S, Stefanidou N, Hatzinikolaou D, Kourkoutmani P, Michaloudi E, Voutsa D, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Marine Microbiota Responses to Shipping Scrubber Effluent Assessed at Community Structure and Function Endpoints. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415986 DOI: 10.1002/etc.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Hatzinikolaou
- Department of Botany, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain
- University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Xu Y, Ou Q, van der Hoek JP, Liu G, Lompe KM. Photo-oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:991-1009. [PMID: 38166393 PMCID: PMC10795193 DOI: 10.1021/acs.est.3c07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
Micro- and nanoplastics (MNPs) are attracting increasing attention due to their persistence and potential ecological risks. This review critically summarizes the effects of photo-oxidation on the physical, chemical, and biological behaviors of MNPs in aquatic and terrestrial environments. The core of this paper explores how photo-oxidation-induced surface property changes in MNPs affect their adsorption toward contaminants, the stability and mobility of MNPs in water and porous media, as well as the transport of pollutants such as organic pollutants (OPs) and heavy metals (HMs). It then reviews the photochemical processes of MNPs with coexisting constituents, highlighting critical factors affecting the photo-oxidation of MNPs, and the contribution of MNPs to the phototransformation of other contaminants. The distinct biological effects and mechanism of aged MNPs are pointed out, in terms of the toxicity to aquatic organisms, biofilm formation, planktonic microbial growth, and soil and sediment microbial community and function. Furthermore, the research gaps and perspectives are put forward, regarding the underlying interaction mechanisms of MNPs with coexisting natural constituents and pollutants under photo-oxidation conditions, the combined effects of photo-oxidation and natural constituents on the fate of MNPs, and the microbiological effect of photoaged MNPs, especially the biotransformation of pollutants.
Collapse
Affiliation(s)
- Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet,
Department Research & Innovation,
P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kim Maren Lompe
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
9
|
Adam-Beyer N, Laufer-Meiser K, Fuchs S, Schippers A, Indenbirken D, Garbe-Schönberg D, Petersen S, Perner M. Microbial ecosystem assessment and hydrogen oxidation potential of newly discovered vent systems from the Central and South-East Indian Ridge. Front Microbiol 2023; 14:1173613. [PMID: 37886064 PMCID: PMC10598711 DOI: 10.3389/fmicb.2023.1173613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
In order to expand the knowledge of microbial ecosystems from deep-sea hydrothermal vent systems located on the Central and South-East Indian Ridge, we sampled hydrothermal fluids, massive sulfides, ambient water and sediments of six distinct vent fields. Most of these vent sites were only recently discovered in the course of the German exploration program for massive sulfide deposits and no previous studies of the respective microbial communities exist. Apart from typically vent-associated chemosynthetic members of the orders Campylobacterales, Mariprofundales, and Thiomicrospirales, high numbers of uncultured and unspecified Bacteria were identified via 16S rRNA gene analyses in hydrothermal fluid and massive sulfide samples. The sampled sediments however, were characterized by an overall lack of chemosynthetic Bacteria and the presence of high proportions of low abundant bacterial groups. The archaeal communities were generally less diverse and mostly dominated by members of Nitrosopumilales and Woesearchaeales, partly exhibiting high proportions of unassigned Archaea. Correlations with environmental parameters were primarily observed for sediment communities and for microbial species (associated with the nitrogen cycle) in samples from a recently identified vent field, which was geochemically distinct from all other sampled sites. Enrichment cultures of diffuse fluids demonstrated a great potential for hydrogen oxidation coupled to the reduction of various electron-acceptors with high abundances of Hydrogenovibrio and Sulfurimonas species. Overall, given the large number of currently uncultured and unspecified microorganisms identified in the vent communities, their respective metabolic traits, ecosystem functions and mediated biogeochemical processes have still to be resolved for estimating consequences of potential environmental disturbances by future mining activities.
Collapse
Affiliation(s)
- Nicole Adam-Beyer
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Katja Laufer-Meiser
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sebastian Fuchs
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | | | | | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mirjam Perner
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
10
|
Al-Marri S, Eldos H, Ashfaq M, Saeed S, Skariah S, Varghese L, Mohamoud Y, Sultan A, Raja M. Isolation, identification, and screening of biosurfactant-producing and hydrocarbon-degrading bacteria from oil and gas industrial waste. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00804. [PMID: 37388572 PMCID: PMC10300049 DOI: 10.1016/j.btre.2023.e00804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023]
Abstract
Qatar is one of the biggest oil and gas producers in the world, coupled with it is challenging environmental conditions (high average temperature: >40 °C, low annual rainfall: 46.71 mm, and high annual evaporation rate: 2200 mm) harbors diverse microbial communities that are novel and robust, with the potential to biodegrade hydrocarbons. In this study, we collected hydrocarbon contaminated sludge, wastewater and soil samples from oil and gas industries in Qatar. Twenty-six bacterial strains were isolated in the laboratory from these samples using high saline conditions and crude oil as the sole carbon source. A total of 15 different bacterial genera were identified in our study that have not been widely reported in the literature or studied for their usage in the biodegradation of hydrocarbons. Interestingly, some of the bacteria that were identified belonged to the same genus however, demonstrated variable growth rates and biosurfactant production. This indicates the possibility of niche specialization and specific evolution to acquire competitive traits for better survival. The most potent strain EXS14, identified as Marinobacter sp., showed the highest growth rate in the oil-containing medium as well as the highest biosurfactant production. When this strain was further tested for biodegradation of hydrocarbons, the results showed that it was able to degrade 90 to 100% of low and medium molecular weight hydrocarbons and 60 to 80% of high molecular weight (C35 to C50) hydrocarbons. This study offers many promising leads for future studies of microbial species and their application for the treatment of hydrocarbon contaminated wastewater and soil in the region and in other areas with similar environmental conditions.
Collapse
Affiliation(s)
| | | | | | - S. Saeed
- ExxonMobil Research Qatar, Doha, Qatar
| | - S. Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | | | - Y.A. Mohamoud
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | - A.A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Education City, Qatar Foundation, P. O. Box 24144, Doha, Qatar
| | - M.M. Raja
- Qatargas Operating Company, Doha, Qatar
| |
Collapse
|
11
|
Nathani NM, Mootapally C, Sharma P, Solomon S, Kumar R, Fulke AB, Kumar M. Microbial machinery dealing diverse aromatic compounds: Decoded from pelagic sediment ecogenomics in the gulfs of Kathiawar Peninsula and Arabian Sea. ENVIRONMENTAL RESEARCH 2023; 225:115603. [PMID: 36863652 DOI: 10.1016/j.envres.2023.115603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 05/25/2023]
Abstract
Aromatic hydrocarbons are persistent pollutants in aquatic systems as endocrine disruptors, significantly impacting natural ecosystems and human health. Microbes perform as natural bioremediators to remove and regulate aromatic hydrocarbons in the marine ecosystem. The present study focuses upon the comparative diversity and abundance of various hydrocarbon-degrading enzymes and their pathways from deep sediments along the Gulf of Kathiawar Peninsula and Arabian Sea, India. The elucidation of large number of degradation pathways in the study area under the presence of a wide range of pollutants whose fate needs to be addressed. Sediment core samples were collected, and the whole microbiome was sequenced. Analysis of the predicted ORFs (open reading frames) against the AromaDeg database revealed 2946 aromatic hydrocarbon-degrading enzyme sequences. Statistical analysis portrayed that the Gulfs were more diverse in degradation pathways compared to the open sea, with the Gulf of Kutch being more prosperous and more diverse than the Gulf of Cambay. The vast majority of the annotated ORFs belonged to groups of dioxygenases that included catechol, gentisate, and benzene dioxygenases, along with Rieske (2Fe-2S) and vicinal oxygen chelate (VOC) family proteins. From the sampling sites, only 960 of the total predicted genes were given taxonomic annotations, which mention the presence of many under-explored marine microorganism-derived hydrocarbon degrading genes and pathways. Through the present study, we tried to unveil the array of catabolic pathways of aromatic hydrocarbon degradation and genes from a marine ecosystem that upholds economic and ecological significance in India. Thus, this study provides vast opportunities and strategies for microbial resource recovery in marine ecosystems, which can be investigated to explore aromatic hydrocarbon degradation and their potential mechanisms under various oxic or anoxic environments. Future studies should focus on aromatic hydrocarbon degradation by considering degradation pathways, biochemical analysis, enzymatic, metabolic, and genetic systems, and regulations.
Collapse
Affiliation(s)
- Neelam M Nathani
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Marine Science, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Parth Sharma
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India
| | - Solly Solomon
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Kochi, 682022, Kerala, India; Cochin Base of Fishery Survey of India, Post Box 853 Kochangady, Cochin, 682005, Kerala, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Abhay B Fulke
- Microbiology Division, CSIR - National Institute of Oceanography (CSIR-NIO), Regional Centre, Andheri (West), Maharashtra, 400053, India
| | - Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| |
Collapse
|
12
|
Wróbel M, Śliwakowski W, Kowalczyk P, Kramkowski K, Dobrzyński J. Bioremediation of Heavy Metals by the Genus Bacillus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20064964. [PMID: 36981874 PMCID: PMC10049623 DOI: 10.3390/ijerph20064964] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023]
Abstract
Environmental contamination with heavy metals is one of the major problems caused by human activity. Bioremediation is an effective and eco-friendly approach that can reduce heavy metal contamination in the environment. Bioremediation agents include bacteria of the genus Bacillus, among others. The best-described species in terms of the bioremediation potential of Bacillus spp. Are B. subtilis, B. cereus, or B. thuringiensis. This bacterial genus has several bioremediation strategies, including biosorption, extracellular polymeric substance (EPS)-mediated biosorption, bioaccumulation, or bioprecipitation. Due to the above-mentioned strategies, Bacillus spp. strains can reduce the amounts of metals such as lead, cadmium, mercury, chromium, arsenic or nickel in the environment. Moreover, strains of the genus Bacillus can also assist phytoremediation by stimulating plant growth and bioaccumulation of heavy metals in the soil. Therefore, Bacillus spp. is one of the best sustainable solutions for reducing heavy metals from various environments, especially soil.
Collapse
Affiliation(s)
- Monika Wróbel
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wojciech Śliwakowski
- Institute of Technology and Life Sciences—National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Kilińskiego 1 Str., 15-089 Białystok, Poland
| | - Jakub Dobrzyński
- Institute of Technology and Life Sciences—National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| |
Collapse
|
13
|
Oyetibo GO, Adebusoye SA, Ilori MO, Amund OO. Heavy metals assessment of ecosystem polluted with wastewaters and taxonomic profiling of multi-resistant bacteria with potential for petroleum hydrocarbon catabolism in nitrogen-limiting medium. World J Microbiol Biotechnol 2023; 39:84. [PMID: 36693977 DOI: 10.1007/s11274-023-03524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
The coexistence of heavy metals (HMs) and petroleum hydrocarbons (PHs) exacerbates ecotoxicity and impair the drivers of eco-functionalities that stimulate essential nutrients for the productivity of the impacted environment. Profiling the bacteria that stem the ecological impact via HMs sequestration and PHs catabolism with nitrogen fixation is imperative to bioremediation of the polluted sites. The sediment of site that was consistently contaminated with industrial wastewaters was analysed for ecological toxicants and the bacterial strains that combined HMs resistance with PHs catabolism in a nitrogen-limiting system were isolated from the sediment and characterized. The geochemistry of the samples revealed the co-occurrence of the above-benchmark concentrations of HMs with the derivatives of hydrocarbons. Notwithstanding, nickel and mercury (with 5% each of the total metal concentrations in the polluted site) exhibited probable effect concentrations on the biota and thus hazardous to the ecosystem. Approx. 31% of the bacterial community, comprising unclassified Planococcaceae, unclassified Bradyrhizobiaceae, Rhodococcus, and Bacillus species, resisted 160 µmol Hg2+ in the nitrogen-limiting system within 24 h post-inoculation. The bacterial strains adopt volatilization, and sometimes in combination with adsorption/bioaccumulation strategies to sequester Hg2+ toxicity while utilizing PHs as sources of carbon and energy. Efficient metabolism of petroleum biomarkers (> 87%) and Hg2+ sequestration (≥ 75% of 40 µmol Hg2+) displayed by the selected bacterial strains portend the potential applicability of the bacilli for biotechnological restoration of the polluted site.
Collapse
Affiliation(s)
- Ganiyu O Oyetibo
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, 101017, Lagos State, Nigeria. .,Institute of Maritime Studies, University of Lagos, Akoka, Yaba, 101017, Lagos State, Nigeria.
| | - Sunday A Adebusoye
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, 101017, Lagos State, Nigeria
| | - Matthew O Ilori
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, 101017, Lagos State, Nigeria.,Institute of Maritime Studies, University of Lagos, Akoka, Yaba, 101017, Lagos State, Nigeria
| | - Olukayode O Amund
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, 101017, Lagos State, Nigeria.,Office of the Vice Chancellor, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| |
Collapse
|
14
|
Dell'Anno F, Joaquim van Zyl L, Trindade M, Buschi E, Cannavacciuolo A, Pepi M, Sansone C, Brunet C, Ianora A, de Pascale D, Golyshin PN, Dell'Anno A, Rastelli E. Microbiome enrichment from contaminated marine sediments unveils novel bacterial strains for petroleum hydrocarbon and heavy metal bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120772. [PMID: 36455775 DOI: 10.1016/j.envpol.2022.120772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Milva Pepi
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| |
Collapse
|
15
|
Priyashantha AKH, Pratheesh N, Pretheeba P. E-waste scenario in South-Asia: an emerging risk to environment and public health. Environ Anal Health Toxicol 2022; 37:e2022022-0. [PMID: 36262066 PMCID: PMC9582420 DOI: 10.5620/eaht.2022022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/28/2022] [Indexed: 08/14/2023] Open
Abstract
Over the past decade, e-waste generation has been accelerated in the world as never before, particularly South-Asia is confronted with an enormous risk of e-waste intensification owing to both locally generated and internationally imported. There has been a gradual increase of e-waste generated in South-Asia and in 2019, 4,057 Kilo tons (kt) of e-waste was generated, which is about 16% of the Asian region. Though there is an urgent requirement to rectify the catastrophic accumulation of e-waste and for its effective eco-friendly management, inadequate legal implementation and poor enforcement, lack of awareness, weak formal e-waste collection and recycling process allow for escalating problems associated with e-waste, particularly towards the environmental and public health concern. Under these circumstances, this paper has been written by reviewing the available research findings, since 2000 to find out the current scenario of South-Asia. Unfortunately, the problem is also not seen as a hot topic to address by the researchers, there are only 106 research studies conducted in South-Asia. Out of that, a considerable number of studies were conducted only in India (54%), Bangladesh (23%), and Pakistan (16%). Sri Lanka, Nepal, and Bhutan shared the rest. As a matter of fact, many more studies are needed on environmental and human health effects, legal implementations, awareness and novel managerial strategies etc. to assist policymakers and other relevant authorities in making their decisions. Similarly, rather than facing threats alone, fighting against as a region would be ideal, which also helps to restrict intra movement of e-waste among the South-Asian countries.
Collapse
Affiliation(s)
| | - Nidyanandan Pratheesh
- Department of Multidisciplinary Studies, Faculty of Technology, Eastern University, Sri Lanka, Vantharumoolai, Chenkalady,
Sri Lanka
| | - Pratheesh Pretheeba
- Department of Management, Faculty of Commerce and Management, Eastern University, Sri Lanka, Vantharumoolai, Chenkalady,
Sri Lanka
| |
Collapse
|
16
|
Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, Areeshi MY, Naidu R, Gupta VK. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155222. [PMID: 35421499 DOI: 10.1016/j.scitotenv.2022.155222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/21/2023]
Abstract
Petroleum hydrocarbons and heavy metals are the two major soil contaminants that are released into the environment in the forms of industrial effluents. These contaminants exert serious impacts on human health and the sustainability of the environment. In this context, remediation of these pollutants via a biological approach can be effective, low-cost, and eco-friendly approach. The implementation of microorganisms and metagenomics are regarded as the advanced solution for remediating such pollutants. Further, microbiomes can overcome this issue via adopting specific structural, functional and metabolic pathways involved in the microbial community to degrade these pollutants. Genomic sequencing and library can effectively channelize the degradation of these pollutants via microbiomes. Nevertheless, more advanced technology and reliable strategies are required to develop. The present review provides insights into the role of microbiomes to effectively remediate/degrade petroleum hydrocarbons and heavy metals in contaminated soil. The possible degradation mechanisms of these pollutants have also been discussed in detail along with their existing limitations. Finally, prospects of the bioremediation strategies using microbiomes are discussed.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
17
|
Kalkan S. Heavy metal resistance of marine bacteria on the sediments of the Black Sea. MARINE POLLUTION BULLETIN 2022; 179:113652. [PMID: 35500375 DOI: 10.1016/j.marpolbul.2022.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Black Sea is unfortunately globally established as a highly polluted sea, with contaminants from various sources polluting its marine sediments. This study aimed at analyzing heavy metal resistance levels by heterotrophic bacteria colonizing marine sediments across Black Sea shores within Turkey. Twenty-nine bacterial samples from marine sediments were investigated through exposure to sixteen heavy metal salts using the microdilution method. The minimum inhibitory concentration values for bacterial colonies within such marine sediment samples ranged from <0.97 mM/L to >1000 mM/L. Trough and peak minimum inhibitory concentration values were determined at <0.17 mg/mL and > 331 mg/mL. Peak tolerated and peak toxic heavy metals were identified as iron and cadmium, respectively. Resistance ratios were also obtained in this study. Bacillus wiedmannii was identified as the most resistant bacterial population when exposed to heavy metal salts. This study shows occurrence of heavy metal resistant bacteria within Black Sea sediments.
Collapse
Affiliation(s)
- Samet Kalkan
- Recep Tayyip Erdogan University, Faculty of Fisheries, Ataturk Street Fener District, 53100 Merkez, Rize, Turkey.
| |
Collapse
|
18
|
Fungi Can Be More Effective than Bacteria for the Bioremediation of Marine Sediments Highly Contaminated with Heavy Metals. Microorganisms 2022; 10:microorganisms10050993. [PMID: 35630436 PMCID: PMC9145406 DOI: 10.3390/microorganisms10050993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
The contamination of coastal marine sediments with heavy metals (HMs) is a widespread phenomenon that requires effective remediation actions. Bioremediation based on the use of bacteria is an economically and environmentally sustainable effective strategy for reducing HM contamination and/or toxicity in marine sediments. However, information on the efficiency of marine-derived fungi for HM decontamination of marine sediments is still largely lacking, despite evidence of the performance of terrestrial fungal strains on other contaminated matrixes (e.g., soils, freshwater sediments, industrial wastes). Here, we carried out for the first time an array of parallel laboratory experiments by using different combinations of chemical and microbial amendments (including acidophilic autotrophic and heterotrophic bacteria, as well as filamentous marine fungi) for the bioremediation of highly HM-contaminated sediments of the Portman Bay (NW Mediterranean Sea), an area largely affected by long-term historical discharges of mine tailings. Our results indicate that the bioleaching performance of metals from the sediment is based on the addition of fungi (Aspergillus niger and Trichoderma sp.), either alone or in combination with autotrophic bacteria, was higher when compared to other treatments. In particular, fungal addition allowed obtaining bioleaching yields for As eight times higher than those by chemical treatments and double compared with the addition of bacteria alone. Moreover, in our study, the fungal addition was the only treatment allowing effective bioleaching of otherwise not mobile fractions of Zn and Cd, thus overtaking bacterial treatments. We found that the lower the sediment pH reached by the experimental conditions, as in the case of fungal addition, the higher the solubilization yield of metals, suggesting that the specific metabolic features of A. niger and Trichoderma sp. enable lowering sediment pH and enhance HM bioleaching. Overall, our findings indicate that fungi can be more effective than acidophilic autotrophic and heterotrophic bacteria in HM bioleaching, and as such, their use can represent a promising and efficient strategy for the bioremediation of marine sediments highly contaminated with heavy metals.
Collapse
|
19
|
Ssenku JE, Walusansa A, Oryem-Origa H, Ssemanda P, Ntambi S, Omujal F, Mustafa AS. Bacterial community and chemical profiles of oil-polluted sites in selected cities of Uganda: potential for developing a bacterial-based product for remediation of oil-polluted sites. BMC Microbiol 2022; 22:120. [PMID: 35505298 PMCID: PMC9063239 DOI: 10.1186/s12866-022-02541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Oil spills are ranked among the greatest global challenges to humanity. In Uganda, owing to the forthcoming full-scale production of multi-billion barrels of oil, the country’s oil pollution burden is anticipated to escalate, necessitating remediation. Due to the unsuitability of several oil clean-up technologies, the search for cost-effective and environmentally friendly remediation technologies is paramount. We thus carried out this study to examine the occurrence of metabolically active indigenous bacterial species and chemical characteristics of soils with a long history of oil pollution in Uganda that can be used in the development of a bacterial-based product for remediation of oil-polluted sites. Results Total hydrocarbon analysis of the soil samples revealed that the three most abundant hydrocarbons were pyrene, anthracene and phenanthrene that were significantly higher in oil-polluted sites than in the control sites. Using the BIOLOG EcoPlate™, the study revealed that bacterial species richness, bacterial diversity and bacterial activity (ANOVA, p < 0.05) significantly varied among the sites. Only bacterial activity showed significant variation across the three cities (ANOVA, p < 0.05). Additionally, the study revealed significant moderate positive correlation between the bacterial community profiles with Zn and organic contents while correlations between the bacterial community profiles and the hydrocarbons were largely moderate and positively correlated. Conclusions This study revealed largely similar bacterial community profiles between the oil-polluted and control sites suggestive of the occurrence of metabolically active bacterial populations in both sites. The oil-polluted sites had higher petroleum hydrocarbon, heavy metal, nitrogen and phosphorus contents. Even though we observed similar bacterial community profiles between the oil polluted and control sites, the actual bacterial community composition may be different, owing to a higher exposure to petroleum hydrocarbons. However, the existence of oil degrading bacteria in unpolluted soils should not be overlooked. Thus, there is a need to ascertain the actual indigenous bacterial populations with potential to degrade hydrocarbons from both oil-polluted and unpolluted sites in Uganda to inform the design and development of a bacterial-based oil remediation product that could be used to manage the imminent pollution from oil exploration and increased utilization of petroleum products in Uganda. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02541-x.
Collapse
Affiliation(s)
- Jamilu E Ssenku
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Abdul Walusansa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.,Department of Microbiology, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda.,Department of Medical Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Hannington Oryem-Origa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Paul Ssemanda
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.,Department of Biology and Chemistry, Universität Bremen, Bremen, Germany
| | - Saidi Ntambi
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Francis Omujal
- Department of Chemistry, Natural Chemotherapeutics Research Institute (NCRI), Kampala, Uganda
| | - Abubakar Sadik Mustafa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.
| |
Collapse
|
20
|
Rajivgandhi G, Gnanamangai BM, Ramachandran G, Chackaravarthy G, Chelliah CK, Maruthupandy M, Alharbi NS, Kadaikunnan S, Li WJ. Effective removal of heavy metals in industrial wastewater with novel bioactive catalyst enabling hybrid approach. ENVIRONMENTAL RESEARCH 2022; 204:112337. [PMID: 34742711 DOI: 10.1016/j.envres.2021.112337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Recent years, heavy metal reduction of contaminated atmosphere using microbes is heightened worldwide. In this context, the current study was focused on heavy metal resistant actinomycete strains were screened from effluent mixed contaminated soil samples. Based on the phenotypic and molecular identification, the high metal resistant actinomycete strain was named as Nocardiopsis dassonvillei (MH900216). The highest bioflocculent and exopolysaccharide productions of Nocardiopsis dassonvillei (MH900216) was confirmed by various invitro experiments result. The heavy metal degrading substances was characterized and effectively confirmed by Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscope (SEM). Further, the heavy metal sorption ability of actinomycete substances bioflocculent was exhibited 85.20%, 89.40%, 75.60%, and 51.40% against Cd, Cr, Pb and Hg respectively. Altogether, the bioflocculent produced actinomycete Nocardiopsis dassonvillei (MH900216) as an excellent biological source for heavy metal reduction in waste water, and it is an alternative method for effective removal of heavy metals towards sustainable environmental management.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | | | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | | | - Chenthis Kanisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Tamil Nadu, 629180, India
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
| |
Collapse
|
21
|
Vincent J, Colin B, Lanneluc I, Sabot R, Sopéna V, Turcry P, Mahieux PY, Refait P, Jeannin M, Sablé S. New Biocalcifying Marine Bacterial Strains Isolated from Calcareous Deposits and Immediate Surroundings. Microorganisms 2021; 10:76. [PMID: 35056526 PMCID: PMC8778039 DOI: 10.3390/microorganisms10010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Marine bacterial biomineralisation by CaCO3 precipitation provides natural limestone structures, like beachrocks and stromatolites. Calcareous deposits can also be abiotically formed in seawater at the surface of steel grids under cathodic polarisation. In this work, we showed that this mineral-rich alkaline environment harbours bacteria belonging to different genera able to induce CaCO3 precipitation. We previously isolated 14 biocalcifying marine bacteria from electrochemically formed calcareous deposits and their immediate environment. By microscopy and µ-Raman spectroscopy, these bacterial strains were shown to produce calcite-type CaCO3. Identification by 16S rDNA sequencing provided between 98.5 and 100% identity with genera Pseudoalteromonas, Pseudidiomarina, Epibacterium, Virgibacillus, Planococcus, and Bhargavaea. All 14 strains produced carbonic anhydrase, and six were urease positive. Both proteins are major enzymes involved in the biocalcification process. However, this does not preclude that one or more other metabolisms could also be involved in the process. In the presence of urea, Virgibacillus halodenitrificans CD6 exhibited the most efficient precipitation of CaCO3. However, the urease pathway has the disadvantage of producing ammonia, a toxic molecule. We showed herein that different marine bacteria could induce CaCO3 precipitation without urea. These bacteria could then be used for eco-friendly applications, e.g., the formation of bio-cements to strengthen dikes and delay coastal erosion.
Collapse
Affiliation(s)
- Julia Vincent
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Béatrice Colin
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| | - Isabelle Lanneluc
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| | - René Sabot
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Valérie Sopéna
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| | - Philippe Turcry
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Pierre-Yves Mahieux
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Philippe Refait
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Marc Jeannin
- Laboratoire des Sciences de l’Ingénieur pour l’Environnement, La Rochelle Université, UMR 7356 CNRS, 17000 La Rochelle, France; (R.S.); (P.T.); (P.-Y.M.); (P.R.)
| | - Sophie Sablé
- Laboratoire Littoral Environnement et Sociétés, La Rochelle Université, UMR 7266 CNRS, 17000 La Rochelle, France; (J.V.); (B.C.); (I.L.); (V.S.)
| |
Collapse
|
22
|
Dell'Anno F, van Zyl LJ, Trindade M, Brunet C, Dell'Anno A, Ianora A, Sansone C. Metagenome-assembled genome (MAG) of Oceancaulis alexandrii NP7 isolated from Mediterranean Sea polluted marine sediments and its bioremediation potential. G3-GENES GENOMES GENETICS 2021; 11:6310015. [PMID: 34544124 PMCID: PMC8496225 DOI: 10.1093/g3journal/jkab210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022]
Abstract
Oceanicaulis alexandrii strain NP7 is a marine bacterium which belongs to the Hyphomonadaceae family and was isolated from sediments highly contaminated with metals and polycyclic aromatic hydrocarbons released for decades by industrial activities in the Gulf of Naples (Mediterranean Sea). Here, we report the partial genome sequence and annotation of O. alexandrii strain NP7 that contains a chromosome of 2,954,327 bp and encodes for 2914 predicted coding sequences (CDSs) and 44 RNA-encoding genes. Although the presence of some CDSs for genes involved in hydrocarbon degradation processes (e.g., alkB) have already been described in the literature associated with the Oceanicaulis, this is the first time that more than 100 genes involved in metal detoxification processes and hydrocarbon degradation are reported belonging to this genus. The presence of a heterogeneous set of genes involved in stress response, hydrocarbon degradation, heavy metal resistance, and detoxification suggests a possible role for O. alexandrii NP7 in the bioremediation of these highly contaminated marine sediments.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Stazione Zoologica Anton Dohrn, Istituto Nationale di Biologia, Ecologia e Biotecnologie marine, 80121 Naples, Italy
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, 7535 Bellville, Cape Town, South Africa
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, 7535 Bellville, Cape Town, South Africa
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nationale di Biologia, Ecologia e Biotecnologie marine, 80121 Naples, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Science, Università Politecnica delle Marche, 6031 Ancona, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Istituto Nationale di Biologia, Ecologia e Biotecnologie marine, 80121 Naples, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nationale di Biologia, Ecologia e Biotecnologie marine, 80121 Naples, Italy
| |
Collapse
|
23
|
Zan S, Lv J, Li Z, Cai Y, Wang Z, Wang J. Genomic insights into Pseudoalteromonas sp. JSTW coping with petroleum-heavy metals combined pollution. J Basic Microbiol 2021; 61:947-957. [PMID: 34387369 DOI: 10.1002/jobm.202100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 08/08/2021] [Indexed: 11/05/2022]
Abstract
Worldwide marine compound contamination by petroleum products and heavy metals is a burgeoning environmental concern. Pseudoalteromonas, prevalently distributed in marine environment, has been proven to degrade petroleum and plays an essential role in the fate of oil pollution under the combined pollution. Nevertheless, the research on the reference genes is still incomplete. Therefore, this study aims to thoroughly investigate the reference genes represented by Pseudoalteromonas sp. JSTW via whole-genome sequencing. Next-generation sequencing technology unfolded a genome of 4,026,258 bp, database including Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to annotate the genes and metabolic pathways conferring to petroleum hydrocarbon degradation. The results show that common alkane and aromatic hydrocarbon degradation genes (alkB, ligB, yqhD, and ladA), chemotaxis gene (MCP, cheA, cheB, pcaY, and pcaR), heavy-metal resistance, and biofilm genes (σ54, merC, pcoA, copB, etc.) were observed in whole-genome sequence (WGS) of JSTW, which indicated that strain JSTW could potentially cope with combined pollution. The degradation efficiency of naphthalene in 60 h by JSTW was 99% without Cu2+ and 67% with 400 mg L-1 Cu2+ . Comparative genome analysis revealed that genomes of Pseudoalteromonas lipolytica strain LEMB 39 and Pseudoalteromonas donghaensis strain HJ51 shared similarity with strain JSTW, suggesting they are also the potential degradater of petroleum hydrocarbons under combined pollution. Therefore, this study provides a WGS annotation and reveals the mechanism of response to combined pollution of Pseudoalteromonas sp. JSTW.
Collapse
Affiliation(s)
- Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jingping Lv
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Zongcheng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
24
|
Dell’ Anno F, Rastelli E, Sansone C, Brunet C, Ianora A, Dell’ Anno A. Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms 2021; 9:1695. [PMID: 34442774 PMCID: PMC8400010 DOI: 10.3390/microorganisms9081695] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Petroleum hydrocarbons (PHCs) are one of the most widespread and heterogeneous organic contaminants affecting marine ecosystems. The contamination of marine sediments or coastal areas by PHCs represents a major threat for the ecosystem and human health, calling for urgent, effective, and sustainable remediation solutions. Aside from some physical and chemical treatments that have been established over the years for marine sediment reclamation, bioremediation approaches based on the use of microorganisms are gaining increasing attention for their eco-compatibility, and lower costs. In this work, we review current knowledge concerning the bioremediation of PHCs in marine systems, presenting a synthesis of the most effective microbial taxa (i.e., bacteria, fungi, and microalgae) identified so far for hydrocarbon removal. We also discuss the challenges offered by innovative molecular approaches for the design of effective reclamation strategies based on these three microbial components of marine sediments contaminated by hydrocarbons.
Collapse
Affiliation(s)
- Filippo Dell’ Anno
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Antonio Dell’ Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
25
|
Cecchi G, Cutroneo L, Di Piazza S, Besio G, Capello M, Zotti M. Port Sediments: Problem or Resource? A Review Concerning the Treatment and Decontamination of Port Sediments by Fungi and Bacteria. Microorganisms 2021; 9:microorganisms9061279. [PMID: 34208305 PMCID: PMC8231108 DOI: 10.3390/microorganisms9061279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Contamination of marine sediments by organic and/or inorganic compounds represents one of the most critical problems in marine environments. This issue affects not only biodiversity but also ecosystems, with negative impacts on sea water quality. The scientific community and the European Commission have recently discussed marine environment and ecosystem protection and restoration by sustainable green technologies among the main objectives of their scientific programmes. One of the primary goals of sustainable restoration and remediation of contaminated marine sediments is research regarding new biotechnologies employable in the decontamination of marine sediments, to consider sediments as a resource in many fields such as industry. In this context, microorganisms—in particular, fungi and bacteria—play a central and crucial role as the best tools of sustainable and green remediation processes. This review, carried out in the framework of the Interreg IT-FR Maritime GEREMIA Project, collects and shows the bioremediation and mycoremediation studies carried out on marine sediments contaminated with ecotoxic metals and organic pollutants. This work evidences the potentialities and limiting factors of these biotechnologies and outlines the possible future scenarios of the bioremediation of marine sediments, and also highlights the opportunities of an integrated approach that involves fungi and bacteria together.
Collapse
Affiliation(s)
- Grazia Cecchi
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| | - Laura Cutroneo
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| | - Simone Di Piazza
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| | - Giovanni Besio
- DICCA, University of Genoa, 1 Via Montallegro, I-16145 Genoa, Italy;
| | - Marco Capello
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
- Correspondence:
| | - Mirca Zotti
- DISTAV, University of Genoa, 26 Corso Europa, I-16132 Genoa, Italy; (G.C.); (L.C.); (S.D.P.); (M.Z.)
| |
Collapse
|