1
|
Ivanova M, Laage Kragh M, Szarvas J, Tosun ES, Holmud NF, Gmeiner A, Amar C, Guldimann C, Huynh TN, Karpíšková R, Rota C, Gomez D, Aboagye E, Etter A, Centorame P, Torresi M, De Angelis ME, Pomilio F, Okholm AH, Xiao Y, Kleta S, Lüth S, Pietzka A, Kovacevic J, Pagotto F, Rychli K, Zdovc I, Papić B, Heir E, Langsrud S, Møretrø T, Brown P, Kathariou S, Stephan R, Tasara T, Dalgaard P, Njage PMK, Fagerlund A, Aarestrup F, Truelstrup Hansen L, Leekitcharoenphon P. Large-scale phenotypic and genomic analysis of Listeria monocytogenes reveals diversity in the sensitivity to quaternary ammonium compounds but not to peracetic acid. Appl Environ Microbiol 2025; 91:e0182924. [PMID: 40035557 PMCID: PMC12016499 DOI: 10.1128/aem.01829-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Listeria monocytogenes presents a significant concern for the food industry due to its ability to persist in the food processing environment. One of the factors contributing to its persistence is decreased sensitivity to disinfectants. Our objective was to assess the diversity of L. monocytogenes sensitivity to food industry disinfectants by testing the response of 1,671 L. monocytogenes isolates to quaternary ammonium compounds (QACs) and 414 isolates to peracetic acid (PAA) using broth microdilution and growth curve analysis assays, respectively, and to categorize the isolates into sensitive and tolerant. A high phenotype-genotype concordance (95%) regarding tolerance to QACs was obtained by screening the genomes for the presence of QAC tolerance-associated genes bcrABC, emrE, emrC, and qacH. Based on this high concordance, we assessed the QAC genes' dissemination among publicly available L. monocytogenes genomes (n = 39,196). Overall, QAC genes were found in 23% and 28% of the L. monocytogenes collection in this study and in the global data set, respectively. bcrABC and qacH were the most prevalent genes, with bcrABC being the most detected QAC gene in the USA, while qacH dominated in Europe. No significant differences (P > 0.05) in the PAA tolerance were detected among isolates belonging to different lineages, serogroups, clonal complexes, or isolation sources, highlighting limited variation in the L. monocytogenes sensitivity to this disinfectant. The present work represents the largest testing of L. monocytogenes sensitivity to important food industry disinfectants at the phenotypic and genomic level, revealing diversity in the tolerance to QACs while all isolates showed similar sensitivity to PAA. IMPORTANCE Contamination of Listeria monocytogenes within food processing environments is of great concern to the food industry due to challenges in eradicating the isolates once they become established and persistent in the environment. Genetic markers associated with increased tolerance to certain disinfectants have been identified, which alongside other biotic and abiotic factors can favor the persistence of L. monocytogenes in the food production environment. By employing a comprehensive large-scale phenotypic testing and genomic analysis, this study significantly enhances the understanding of the L. monocytogenes tolerance to quaternary ammonium compounds (QACs) and the genetic determinants associated with the increased tolerance. We provide a global overview of the QAC genes prevalence among public L. monocytogenes sequences and their distribution among clonal complexes, isolation sources, and geographical locations. Additionally, our comprehensive screening of the peracetic acid (PAA) sensitivity shows that this disinfectant can be used in the food industry as the lack of variation in sensitivity indicates reliable effect and no apparent possibility for the emergence of tolerance.
Collapse
Affiliation(s)
- Mirena Ivanova
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Martin Laage Kragh
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Judit Szarvas
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Elif Seyda Tosun
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Natacha Friis Holmud
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Alexander Gmeiner
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Corinne Amar
- Public Health England, National Infection Service, London, United Kingdom
| | - Claudia Guldimann
- Chair for Food Safety and Analytics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - TuAnh N. Huynh
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renáta Karpíšková
- Department of Public Health, Masaryk University, Medical Faculty, Brno, Czech Republic
| | | | | | | | | | - Patrizia Centorame
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Maria Elisabetta De Angelis
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G Caporale “Giuseppe Caporale”, Teramo, Italy
| | | | - Yinghua Xiao
- Arla Innovation Center, Arla Foods amba, Aarhus N, Denmark
| | - Sylvia Kleta
- German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Listeria monocytogenes (NRL-Lm), Berlin, Germany
| | - Stefanie Lüth
- German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Listeria monocytogenes (NRL-Lm), Berlin, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, National Reference Laboratory for Listeria monocytogenes, Graz, Austria
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA
| | - Franco Pagotto
- Listeriosis Reference Service, Food Directorate, Bureau of Microbial Hazards, Ottawa, Ontario, Canada
| | - Kathrin Rychli
- Unit for Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Even Heir
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Trond Møretrø
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Phillip Brown
- North Carolina State University, Raleigh, North Carolina, USA
| | | | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paw Dalgaard
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Frank Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Lisbeth Truelstrup Hansen
- Research Group for Food Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
2
|
Daza Prieto B, Pietzka A, Martinovic A, Ruppitsch W, Zuber Bogdanovic I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014-2022. Front Microbiol 2024; 15:1418333. [PMID: 39149205 PMCID: PMC11324475 DOI: 10.3389/fmicb.2024.1418333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Listeria monocytogenes is an ubiquitous foodborne pathogen that represents a serious threat to public health and the food industry. Methods In this study Whole Genome Sequencing (WGS) was used to characterize 160 L. monocytogenes isolates obtained from 22,593 different food sources in Montenegro during the years 2014-2022. Results Isolates belonged to 21 different clonal complexes (CCs), 22 sequence types (STs) and 73 core genome multilocus sequence types (cgMLST) revealing a high diversity. The most prevalent STs were ST8 (n = 29), ST9 (n = 31), ST121 (n = 19) and ST155 (n = 20). All isolates carried virulence genes (VGs), 111 isolates carried mobile genetic elements (MGEs) (ranging from 1 to 7 MGEs) and 101 isolates carried plasmids (ranging from 1 to 3 plasmids). All isolates carried the intrinsic resistance genes fosX and lin. None of the isolates carried acquired antimicrobial resistance genes (ARGs). Discussion/conclusion Continuous monitoring and surveillance of L. monocytogenes is needed for improving and ameliorating the public health.
Collapse
Affiliation(s)
- Beatriz Daza Prieto
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Aleksandra Martinovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Ivana Zuber Bogdanovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| |
Collapse
|
3
|
Pracser N, Voglauer EM, Thalguter S, Pietzka A, Selberherr E, Wagner M, Rychli K. Exploring the occurrence of Listeria in biofilms and deciphering the bacterial community in a frozen vegetable producing environment. Front Microbiol 2024; 15:1404002. [PMID: 39050638 PMCID: PMC11266072 DOI: 10.3389/fmicb.2024.1404002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The establishment of Listeria (L.) monocytogenes within food processing environments constitutes a significant public health concern. This versatile bacterium demonstrates an exceptional capacity to endure challenging environmental conditions in the food processing environment, where contamination of food products regularly occurs. The diverse repertoire of stress resistance genes, the potential to colonize biofilms, and the support of a co-existing microbiota have been proposed as root causes for the survival of L. monocytogenes in food processing environments. In this study, 71 sites were sampled after cleaning and disinfection in a European frozen vegetable processing facility, where L. monocytogenes in-house clones persisted for years. L. monocytogenes and L. innocua were detected by a culture-dependent method at 14 sampling sites, primarily on conveyor belts and associated parts. The presence of biofilms, as determined by the quantification of bacterial load and the analysis of extracellular matrix components (carbohydrates, proteins, extracellular DNA) was confirmed at nine sites (12.7%). In two cases, L. innocua was detected in a biofilm. Furthermore, we explored the resident microbial community in the processing environment and on biofilm-positive sites, as well as the co-occurrence of bacterial taxa with Listeria by 16S rRNA gene sequencing. Pseudomonas, Acinetobacter, and Exiguobacterium dominated the microbial community of the processing environment. Using differential abundance analysis, amplicon sequence variants (ASVs) assigned to Enterobacterales (Enterobacter, Serratia, unclassified Enterobacteriaceae) and Carnobacterium were found to be significantly higher abundant in Listeria-positive samples. Several Pseudomonas ASVs were less abundant in Listeria-positive compared to Listeria-negative samples. Acinetobacter, Pseudomonas, Janthinobacterium, Brevundimonas, and Exiguobacterium were key players in the microbial community in biofilms, and Exiguobacterium and Janthinobacterium were more relatively abundant in biofilms. Further, the microbial composition varied between the different areas and the surface materials.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Eva M. Voglauer
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Sarah Thalguter
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Evelyne Selberherr
- Clinical Department for Farm Animals and Food System Science, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Clinical Department for Farm Animals and Food System Science, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kathrin Rychli
- Clinical Department for Farm Animals and Food System Science, Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Di Renzo L, De Angelis ME, Torresi M, Mariani G, Pizzurro F, Mincarelli LF, Esposito E, Oliviero M, Iaccarino D, Di Nocera F, Paduano G, Lucifora G, Cammà C, Ferri N, Pomilio F. Genomic Characterization of Listeria monocytogenes and Other Listeria Species Isolated from Sea Turtles. Microorganisms 2024; 12:817. [PMID: 38674761 PMCID: PMC11052188 DOI: 10.3390/microorganisms12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous pathogen found both in the environment and food. It can cause listeriosis in a wide range of animals as well as in humans. Investigations on presence, spread and virulence are still limited to terrestrial and human environments. Embracing the One Health Approach, investigating the presence and spread of L. monocytogenes in marine ecosystems and among wildlife, would provide us with useful information for human health. This study investigated the presence of L. monocytogenes and Listeria spp. in two species of sea turtles common in the Mediterranean Sea (Caretta caretta and Chelonia mydas). A total of one hundred and sixty-four carcasses of sea turtles (C. caretta n = 161 and C. mydas n = 3) stranded along the Abruzzo, Molise, Campania, and Calabria coasts, were collected. Brain and fecal samples were taken, enriched, and cultured for the detection of Listeria spp. From the specimens collected, strains of L. monocytogenes (brain n = 1, brain and feces n = 1, multiorgan n = 1 and feces n = 1), L. innocua (feces n = 1 and brain n = 1), and L. ivanovii (brain n = 1) were isolated. Typical colonies were isolated for Whole Genome Sequencing (WGS). Virulence genes, disinfectants/metal resistance, and antimicrobial resistance were also investigated. L. monocytogenes, L. innocua, and L. ivanovii were detected in C. caretta, whilst only L. monocytogenes and L. innocua in C. mydas. Notable among the results is the lack of significant differences in gene distribution between human and sea turtle strains. Furthermore, potentially pathogenic strains of L. monocytogenes were found in sea turtles.
Collapse
Affiliation(s)
- Ludovica Di Renzo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Centro Studi Cetacei, 65125 Pescara, Italy
| | - Maria Elisabetta De Angelis
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Giulia Mariani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Federica Pizzurro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Luana Fiorella Mincarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Emanuele Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Maria Oliviero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Doriana Iaccarino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | | | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (E.E.); (D.I.); (F.D.N.); (G.L.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale”, Via Campo Boario, 64100 Teramo, Italy; (L.D.R.); (M.T.); (G.M.); (F.P.); (L.F.M.); (C.C.); (N.F.); (F.P.)
| |
Collapse
|
5
|
Bolten S, Lott TT, Ralyea RD, Gianforte A, Trmcic A, Orsi RH, Martin NH, Wiedmann M. Intensive Environmental Sampling and Whole Genome Sequence-based Characterization of Listeria in Small- and Medium-sized Dairy Facilities Reveal Opportunities for Simplified and Size-appropriate Environmental Monitoring Strategies. J Food Prot 2024; 87:100254. [PMID: 38417482 DOI: 10.1016/j.jfp.2024.100254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Small- and medium-sized dairy processing facilities (SMDFs) may face unique challenges with respect to controlling Listeria in their processing environments, e.g., due to limited resources. The aim of this study was to implement and evaluate environmental monitoring programs (EMPs) for Listeria control in eight SMDFs in a ∼1-year longitudinal study; this included a comparison of pre-operation (i.e., after cleaning and sanitation and prior to production) and mid-operation (i.e., at least 4 h into production) sampling strategies. Among 2,072 environmental sponge samples collected across all facilities, 272 (13%) were positive for Listeria. Listeria prevalence among pre- and mid-operation samples (15% and 17%, respectively), was not significantly different. Whole genome sequencing (WGS) performed on select isolates to characterize Listeria persistence patterns revealed repeated isolation of closely related Listeria isolates (i.e., ≤20 high-quality single nucleotide polymorphism [hqSNP] differences) in 5/8 facilities over >6 months, suggesting Listeria persistence and/or reintroduction was relatively common among the SMDFs evaluated here. WGS furthermore showed that for 41 sites where samples collected pre- and mid-operation were positive for Listeria, Listeria isolates obtained were highly related (i.e., ≤10 hqSNP differences), suggesting that pre-operation sampling alone may be sufficient and more effective for detecting sites of Listeria persistence. Importantly, our data also showed that only 1/8 of facilities showed a significant decrease in Listeria prevalence over 1 year, indicating continued challenges with Listeria control in at least some SMDFs. We conclude that options for simplified Listeria EMPs (e.g., with a focus on pre-operation sampling, which allows for more rapid identification of likely persistence sites) may be valuable for improved Listeria control in SMDFs.
Collapse
Affiliation(s)
- Samantha Bolten
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA; Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Timothy T Lott
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Robert D Ralyea
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Anika Gianforte
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Aljosa Trmcic
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Nicole H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Tirloni E, Centorotola G, Pomilio F, Torresi M, Bernardi C, Stella S. Listeria monocytogenes in ready-to-eat (RTE) delicatessen foods: Prevalence, genomic characterization of isolates and growth potential. Int J Food Microbiol 2024; 410:110515. [PMID: 38064894 DOI: 10.1016/j.ijfoodmicro.2023.110515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
This study investigated Listeria monocytogenes prevalence and count in 132 ready-to-eat (RTE) delicatessen samples belonging to different categories (starters with/without mayonnaise pasta/rice-based courses, meat/fish-based main courses) produced by an Italian industry. Whole Genome Sequencing characterized the isolates to map the pathogen circulation. Moreover, the growth potential of L. monocytogenes in the most contaminated product was investigated by a challenge test. L. monocytogenes was detected in 23 samples, giving an estimated prevalence of 17.4 %. Starters with mayonnaise showed a very high prevalence (56.7 %), showing the role of the sauce in the diffusion of the pathogen within the plant. A total of 49 isolates were obtained; they belonged to two different serogroups, IIb and IIa, and were related to two clonal complexes (CCs) and sequence types (STs) (CC288-ST330 and CC121-ST717), suggesting the possible persistence and circulation of the pathogen within the plant. The results of the challenge test showed a limited ability to grow in the selected product thanks to the presence of lactic microflora.
Collapse
Affiliation(s)
- E Tirloni
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900 Lodi, Italy.
| | - G Centorotola
- IZSAM, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, Teramo 64100, Italy
| | - F Pomilio
- IZSAM, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, Teramo 64100, Italy
| | - M Torresi
- IZSAM, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, via Campo Boario, Teramo 64100, Italy
| | - C Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900 Lodi, Italy
| | - S Stella
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
7
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
8
|
Centorotola G, Ziba MW, Cornacchia A, Chiaverini A, Torresi M, Guidi F, Cammà C, Bowa B, Mtonga S, Magambwa P, D’Alterio N, Scacchia M, Pomilio F, Muuka G. Listeria monocytogenes in ready to eat meat products from Zambia: phenotypical and genomic characterization of isolates. Front Microbiol 2023; 14:1228726. [PMID: 37711697 PMCID: PMC10498467 DOI: 10.3389/fmicb.2023.1228726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
The contamination of ready to eat foods (RTE) products due to Listeria monocytogenes could compromise the products safety becoming a great risk for the consumers. The high presence of L. monocytogenes in RTE products has been described worldwide, but few data are available about these products from African countries. The aims of this study were to report the presence of L. monocytogenes in Zambian RTE products, providing genomic characterization and data on similarity with African circulating strains using whole genome sequencing (WGS). A total of 304 RTE products, produced by different Zambian manufacturers, were purchased at retail, from major supermarkets located in Lusaka, Zambia, comprising 130 dairy and 174 meat products. L. monocytogenes was detected only in 18 (10.3%) RTE meat products of the 174 samples tested. The MLST analysis grouped the 18 L. monocytogenes isolates in 7 clonal complexes (CCs): CC1 (n = 5), CC2 (n = 4), CC9 (n = 4), CC5 (n = 2), CC121 (n = 1), CC155 (n = 1), and CC3 (n = 1). According to the cgMLST results, several clusters were detected, in particular belonging to hyper-virulent clones CC1 and CC2. Regarding the virulence factors, a complete L. monocytogenes Pathogenicity Island 3 (LIPI-3) was present both in the CC1 and CC3, in addition to LIPI-1. Several resistance genes and mobile genetic elements were detected, including Stress Islands, the bcrABC cassette and Tn6188_qac transposon, plasmids and intact prophages. Despite being a first preliminary work with a limited number of samples and isolates, this study helped to increase existing knowledge on contaminated RTE products in Zambia, confirming the presence of hyper-virulent L. monocytogenes CCs, which could play an important role in human diseases, posing a public health concern for consumers.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Maureen Wakwamba Ziba
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Benson Bowa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Samson Mtonga
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Phelly Magambwa
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Geoffrey Muuka
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| |
Collapse
|
9
|
Magagna G, Gori M, Russini V, De Angelis V, Spinelli E, Filipello V, Tranquillo VM, De Marchis ML, Bossù T, Fappani C, Tanzi E, Finazzi G. Evaluation of the Virulence Potential of Listeria monocytogenes through the Characterization of the Truncated Forms of Internalin A. Int J Mol Sci 2023; 24:10141. [PMID: 37373288 DOI: 10.3390/ijms241210141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) products are the most common source associated with listeriosis. L. monocytogenes virulence factors include internalin A (InlA), a surface protein known to facilitate bacterial uptake by human intestinal epithelial cells that express the E-cadherin receptor. Previous studies have demonstrated that the presence of premature stop codon (PMSC) mutations naturally occurring in inlA lead to the production of a truncated protein correlated with attenuate virulence. In this study, 849 L. monocytogenes isolates, collected from food, food-processing plants, and clinical cases in Italy, were typed and analyzed for the presence of PMSCs in the inlA gene using Sanger sequencing or whole-genome sequencing (WGS). PMSC mutations were found in 27% of the isolates, predominantly in those belonging to hypovirulent clones (ST9 and ST121). The presence of inlA PMSC mutations in food and environmental isolates was higher than that in clinical isolates. The results reveal the distribution of the virulence potential of L. monocytogenes circulating in Italy and could help to improve risk assessment approaches.
Collapse
Affiliation(s)
- Giulia Magagna
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Gori
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Valeria Russini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Veronica De Angelis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Elisa Spinelli
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Virginia Filipello
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Vito Massimo Tranquillo
- Programmazione dei Servizi e Controllo di Gestione, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Laura De Marchis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Teresa Bossù
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Clara Fappani
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elisabetta Tanzi
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Guido Finazzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
10
|
Guidi F, Centorotola G, Chiaverini A, Iannetti L, Schirone M, Visciano P, Cornacchia A, Scattolini S, Pomilio F, D’Alterio N, Torresi M. The Slaughterhouse as Hotspot of CC1 and CC6 Listeria monocytogenes Strains with Hypervirulent Profiles in an Integrated Poultry Chain of Italy. Microorganisms 2023; 11:1543. [PMID: 37375045 PMCID: PMC10305255 DOI: 10.3390/microorganisms11061543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In Europe, very few studies are available regarding the diversity of Listeria monocytogenes (L. monocytogenes) clonal complexes (CCs) and sequence types (ST) in poultry and on the related typing of isolates using whole genome sequencing (WGS). In this study, we used a WGS approach to type 122 L. monocytogenes strains isolated from chicken neck skin samples collected in two different slaughterhouses of an integrated Italian poultry company. The studied strains were classified into five CCs: CC1-ST1 (21.3%), CC6-ST6 (22.9%), CC9-ST9 (44.2%), CC121-ST121 (10.6%) and CC193-ST193 (0.8%). CC1 and CC6 strains presented a virulence gene profile composed of 60 virulence genes and including the Listeria Pathogenicity Island 3, aut_IVb, gltA and gltB. According to cgMLST and SNPs analysis, long-term persistent clusters belonging to CC1 and CC6 were found in one of the two slaughterhouses. The reasons mediating the persistence of these CCs (up to 20 months) remain to be elucidated, and may involve the presence and the expression of stress response and environmental adaptation genes including heavy metals resistance genes (cadAC, arsBC, CsoR-copA-copZ), multidrug efflux pumps (mrpABCEF, EmrB, mepA, bmrA, bmr3, norm), cold-shock tolerance (cspD) and biofilm-formation determinants (lmo0673, lmo2504, luxS, recO). These findings indicated a serious risk of poultry finished products contamination with hypervirulent L. monocytogenes clones and raised concern for the consumer health. In addition to the AMR genes norB, mprF, lin and fosX, ubiquitous in L. monocytogenes strains, we also identified parC for quinolones, msrA for macrolides and tetA for tetracyclines. Although the phenotypical expression of these AMR genes was not tested, none of them is known to confer resistance to the primary antibiotics used to treat listeriosis The obtained results increase the data on the L. monocytogenes clones circulating in Italy and in particular in the poultry chain.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (M.S.); (P.V.)
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100 Teramo, Italy; (M.S.); (P.V.)
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Nicola D’Alterio
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale Dell’abruzzo e del Molise “G. Caporale”, Via Campo Boario, 64100 Teramo, Italy; (F.G.); (A.C.); (L.I.); (A.C.); (S.S.); (N.D.); (M.T.)
| |
Collapse
|
11
|
Characterization and Antibiotic Resistance of Listeria monocytogenes Strains Isolated from Greek Myzithra Soft Whey Cheese and Related Food Processing Surfaces over Two-and-a-Half Years of Safety Monitoring in a Cheese Processing Facility. Foods 2023; 12:foods12061200. [PMID: 36981126 PMCID: PMC10048787 DOI: 10.3390/foods12061200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Listeriosis is a serious infectious disease with one of the highest case fatality rates (ca. 20%) among the diseases manifested from bacterial foodborne pathogens in humans, while dairy products are often implicated as sources of human infection with Listeria monocytogenes. In this study, we characterized phenotypically and genetically by whole-genome sequencing (WGS) 54 L. monocytogenes strains isolated from Myzithra, a traditional Greek soft whey cheese (48 isolates), and swabs collected from surfaces of a cheese processing plant (six isolates) in the Epirus region of Greece. All but one strain of L. monocytogenes belonged to the polymerase chain reaction (PCR) serogroups IIa (16.7%) and IIb (81.5%), corresponding to serotypes 1/2a, 3a and 1/2b, 3b, 7, respectively. The latter was identified as a PCR-serogroup IVb strain (1.8%) of serotypes 4b, 4d, 4e. Bioinformatics analysis revealed the presence of five sequence types (STs) and clonal complexes (CCs); ST1, ST3, ST121, ST 155, ST398 and CC1, CC3, CC121, CC155, CC398 were thus detected in 1.9, 83.3, 11.0, 1.9, and 1.9% of the L. monocytogenes isolates, respectively. Antibiograms of the pathogen against a panel of seven selected antibiotics (erythromycin, tetracycline, benzylpenicillin, trimethoprim-sulfamethoxazole, ampicillin, ciprofloxacin, and meropenem) showed that 50 strains (92.6%), the six surface isolates also included, were intermediately resistant to ciprofloxacin and susceptible to the rest of the six antimicrobial agents tested, whereas strong resistance against the use of a single from three implicated antibiotics was recorded to four strains (7.4%) of the pathogen isolated from Myzithra cheese samples. Thence, the minimum inhibitory concentrations (MICs) were determined for erythromycin (MIC = 0.19 μg/mL), ciprofloxacin (MIC ≥ 0.19 μg/mL), and meropenem (MIC = 0.64 μg/mL), and finally, just one strain was deemed resistant to the latter antibiotic. The phylogenetic positions of the L. monocytogenes strains and their genetic variability were determined through WGS, whilst also stress response and virulence gene analysis for the isolates was conducted. Findings of this work should be useful as they could be utilized for epidemiological investigations of L. monocytogenes in the food processing environment, revealing possible contamination scenarios, and acquired antimicrobial resistance along the food production chain.
Collapse
|
12
|
Molecular typing and genome sequencing allow the identification of persistent Listeria monocytogenes strains and the tracking of the contamination source in food environments. Int J Food Microbiol 2023; 386:110025. [PMID: 36436413 DOI: 10.1016/j.ijfoodmicro.2022.110025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The presence of Listeria monocytogenes (Lm) in the food processing environment (facilities and products) is a challenging problem in food safety management. Lm is one of the main causes of mortality in foodborne infections, and the trend is continuously increasing. In this study, a collection of 323 Lm strain isolates recovered from food matrices and food industry environments (surfaces and equipment) over four years from 80 food processing facilities was screened using a restriction site-associated tag sequencing (2b-RAD) typing approach developed for Lm. Thirty-six different restriction site-associated DNA (RAD) types (RTs) were identified, most of which correspond to lineage II. RT1, the most represented genotype in our collection and already reported as one of the most prevalent genotypes in the food environment, was significantly associated with meat processing facilities. The sequencing of the genomes of strains belonging to the same RT and isolated in the same facility in different years revealed several clusters of persistence. The definition of the persistent strains (PSs) allowed the identification of the potential source of contamination in the incoming raw meat that is introduced in the facility to be processed. The slaughterhouses, which, according to the European Union (EU) regulation, are not inspected for the presence of Lm could be hotspots for the persistence of Lm PSs.
Collapse
|
13
|
Lakicevic B, Jankovic V, Pietzka A, Ruppitsch W. Wholegenome sequencing as the gold standard approach for control of Listeria monocytogenes in the food chain. J Food Prot 2023; 86:100003. [PMID: 36916580 DOI: 10.1016/j.jfp.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
Listeria monocytogenes has been implicated in numerous outbreaks and related deaths of listeriosis. In food production, L. monocytogenes occurs in raw food material and above all, through postprocessing contamination. The use of next-generation sequencing technologies such as whole-genome sequencing (WGS) facilitates foodborne outbreak investigations, pathogen source tracking and tracing geographic distributions of different clonal complexes, routine microbiological/epidemiological surveillance of listeriosis, and quantitative microbial risk assessment. WGS can also be used to predict various genetic traits related to virulence, stress, or antimicrobial resistance, which can be of great benefit for improving food safety management as well as public health.
Collapse
Affiliation(s)
- Brankica Lakicevic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia.
| | - Vesna Jankovic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene Division for Public Health, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
14
|
Deciphering the virulence potential of Listeria monocytogenes in the Norwegian meat and salmon processing industry by combining whole genome sequencing and in vitro data. Int J Food Microbiol 2022; 383:109962. [DOI: 10.1016/j.ijfoodmicro.2022.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
15
|
Alonso VPP, Furtado MM, Iwase CHT, Brondi-Mendes JZ, Nascimento MDS. Microbial resistance to sanitizers in the food industry: review. Crit Rev Food Sci Nutr 2022; 64:654-669. [PMID: 35950465 DOI: 10.1080/10408398.2022.2107996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hygiene programs which comprise the cleaning and sanitization steps are part of the Good Hygiene Practices (GHP) and are considered essential to ensure food safety and quality. Inadequate hygiene practices may contribute to the occurrence of foodborne diseases, development of microbial resistance to sanitizers, and economic losses. In general, the sanitizer resistance is classified as intrinsic or acquired. The former is an inherent characteristic, naturally present in some microorganisms, whereas the latter is linked to genetic modifications that can occur at random or after continuous exposure to a nonnormal condition. The resistance mechanisms can involve changes in membrane permeability or in the efflux pump, and enzymatic activity. The efflux pump mechanism is the most elucidated in relation to the resistance caused by the use of different types of sanitizers. In addition, microbial resistance to sanitizers can also be favored in the presence of biofilms due to the protection given by the glycocalyx matrix and genetic changes. Therefore, this review aimed to show the main microbial resistance mechanisms to sanitizers, including genetic modifications, biofilm formation, and permeability barrier.
Collapse
Affiliation(s)
| | - Marianna Miranda Furtado
- Department of Food Science and Nutrition, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Listeria monocytogenes post-outbreak management - When could a food production be considered under control again? Int J Food Microbiol 2022; 379:109844. [DOI: 10.1016/j.ijfoodmicro.2022.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
|
17
|
Guidi F, Lorenzetti C, Centorotola G, Torresi M, Cammà C, Chiaverini A, Pomilio F, Blasi G. Atypical Serogroup IVb-v1 of Listeria monocytogenes Assigned to New ST2801, Widely Spread and Persistent in the Environment of a Pork-Meat Producing Plant of Central Italy. Front Microbiol 2022; 13:930895. [PMID: 35832815 PMCID: PMC9271897 DOI: 10.3389/fmicb.2022.930895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we characterized 84 Listeria monocytogenes (Lm) strains having an atypical IVb-v1 profile and isolated in a meat producing plant of Central Italy. They were assigned to the new MLST type ST2801 (CC218). The new ST was widespread in the food-producing environment where it was able to persist for over a year even after cleaning and sanitation. Cluster analysis identified three main clusters genetically close to each other (0-22 allelic differences and 0-28 SNPs) from two different cgMLST types, suggesting a common source. The coexistence of closely related clusters over time could be the result of a different evolution path starting from a common ancestor first introduced in the plant and/or the consequence of the repetitive reintroduction of closely related clones probably by raw materials. All the strains presented several determinants for heavy metals resistance, stress response, biofilm production, and multidrug efflux pumps with no significant differences among the clusters. A total of 53 strains carried pLI100 and the j1776 plasmids, while in one strain, the pLM33 was found in addition to pLI100. Only the strains carrying plasmids presented cadA and cadC for cadmium resistance and the mco gene encoding a multicopper oxidase and gerN for an additional Na+/H+-K+ antiporter. All the strains presented a virulence profile including a full-length inlA gene and the additional LIPI-3. The isolation of a new ST with a large pattern of stress-adaptation genes and able to persist is an important contribution to deepening the current knowledge on the uncommon IVb-v1 and in general on the genomic diversity of Lm.
Collapse
Affiliation(s)
- Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| | - Cinzia Lorenzetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| | - Gabriella Centorotola
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Marina Torresi
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cesare Cammà
- Centro di Referenza Nazionale per Sequenze Genomiche di Microrganismi Patogeni, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alexandra Chiaverini
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati,” Perugia, Italy
| |
Collapse
|
18
|
Gundolf T, Kalb R, Rossmanith P, Mester P. Bacterial Resistance Toward Antimicrobial Ionic Liquids Mediated by Multidrug Efflux Pumps. Front Microbiol 2022; 13:883931. [PMID: 35663893 PMCID: PMC9161554 DOI: 10.3389/fmicb.2022.883931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The effective elimination of foodborne pathogens through cleaning and disinfection measures is of great importance to the food processing industry. As food producers rely heavily on disinfectants to control pathogenic bacteria in their facilities, the increasing spread of tolerant, often even multidrug resistant, strains is of particular concern. In addition to efforts to prevent or at least reduce development and spread of strains resistant to disinfectants and sanitizers, there is an urgent need for new and effective antimicrobials. One new class of promising antimicrobials is ionic liquids (ILs), which have been reported to be effective against resistant strains as they interact with bacterial cells in multiple ways, but investigations of their effectivity against MDR bacteria or specific defense mechanisms are still limited. This study investigates the role of multidrug efflux pumps of the Resistance Nodulation-Division family (RND) on the resistance of bacterial pathogens Escherichia coli and Salmonella enterica serovar Typhimurium toward 10 antimicrobial active ILs. Results reveal that, while known structure–activity relationships (SARs), such as the side-chain effect, were found for all strains, antimicrobial ILs with one elongated alkyl side chain were significantly affected by the RND efflux pump, highlighting the importance of efflux pumps for future IL toxicity studies. In case of antimicrobial ILs with multiple side chains and different cationic head groups, two ILs were identified that were highly active against all investigated strains with little to no effect of the efflux pump. The results obtained in this study for RND efflux pumps can serve as a starting point for identifying and designing antimicrobial ILs as effective biocides against MDR bacteria.
Collapse
Affiliation(s)
- Tobias Gundolf
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Roland Kalb
- Proionic Production of Ionic Substances GmbH, Grambach, Austria
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter Rossmanith
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Patrick Mester
- Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Patrick Mester,
| |
Collapse
|
19
|
Prevalence and Clonal Diversity of over 1,200 Listeria monocytogenes Isolates Collected from Public Access Waters near Produce Production Areas on the Central California Coast during 2011 to 2016. Appl Environ Microbiol 2022; 88:e0035722. [PMID: 35377164 DOI: 10.1128/aem.00357-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A 5-year survey of public access surface waters in an agricultural region of the Central California Coast was done to assess the prevalence of the foodborne pathogen Listeria monocytogenes. In nature, L. monocytogenes lives as a saprophyte in soil and water, which are reservoirs for contamination of preharvest produce. Moore swabs were deployed biweekly in lakes, ponds, streams, and rivers during 2011 to 2016. L. monocytogenes was recovered in 1,224 of 2,922 samples, resulting in 41.9% prevalence. Multiple subtypes were isolated from 97 samples, resulting in 1,323 L. monocytogenes isolates. Prevalence was higher in winter and spring and after rain events in some waterways. Over 84% of the isolates were serotype 4b. Whole-genome sequencing was done on 1,248 isolates, and in silico multilocus sequence typing revealed 74 different sequence types (STs) and 39 clonal complexes (CCs). The clones most isolated, CC639, CC183, and CC1, made up 27%, 19%, and 13%, respectively, of the sequenced isolates. Other types were CC663, CC6, CC842, CC4, CC2, CC5, and CC217. All sequenced isolates contained intact copies of core L. monocytogenes virulence genes, and pathogenicity islands LIPI-3 and LIPI-4 were identified in 73% and 63%, respectively, of the sequenced isolates. The virulence factor internalin A was predicted to be intact in all but four isolates, while genes important for sanitizer and heavy metal resistance were found in <5% of the isolates. These waters are not used for crop irrigation directly, but they are available to wildlife and can flood fields during heavy rains. IMPORTANCE Listeria monocytogenes serotype 4b and 1/2a strains are implicated in most listeriosis, and hypervirulent listeriosis stems from strains containing pathogenicity islands LIPI-3 and LIPI-4. The waters and sediments in the Central California Coast agricultural region contain widespread and diverse L. monocytogenes populations, and all the isolates contain intact virulence genes. Emerging clones CC183 and CC639 were the most abundant clones, and major clones CC1, CC4, and CC6 were well represented. CC183 was responsible for three produce-related outbreaks in the last 7 years. Most of the isolates in the survey differ from those of lesser virulence that are often isolated from foods and food processing plants because they contain genes encoding an intact virulence factor, internalin A, and most did not contain genes for sanitizer and heavy metal resistance. This isolate collection is important for understanding L. monocytogenes populations in agricultural and natural regions.
Collapse
|
20
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
21
|
Whole-Genome Sequencing Characterization of Virulence Profiles of Listeria monocytogenes Food and Human Isolates and In Vitro Adhesion/Invasion Assessment. Microorganisms 2021; 10:microorganisms10010062. [PMID: 35056510 PMCID: PMC8779253 DOI: 10.3390/microorganisms10010062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex (CC). Moreover, the ability of the same strains to adhere to and invade human colon carcinoma cell line Caco-2, evaluating the possible correspondence with their genetic virulence profile, was also assessed. The clinical strains typed belonged to clonal complex (CC)1, CC31, and CC101 and showed a very low invasiveness. The Lm strains isolated from food were assigned to CC1, CC7, CC9, and CC121. All CC1 carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1. Premature stop codons in the inlA gene were found only in Lm of food origin belonging to CC9 and CC121. The presence of LIPI2_inlII was observed in all the CCs except CC1. The CC7 strain, belonging to an epidemic cluster, also carried the internalin genes inlG and inlL and showed the highest level of invasion. In contrast, the human CC31 strain lacked the lapB and vip genes and presented the lowest level of invasiveness. In Lm, the genetic determinants of hypo- or hypervirulence are not necessarily predictive of a cell adhesion and/or invasion ability in vitro. Moreover, since listeriosis results from the interplay between host and virulence features of the pathogen, even hypovirulent clones are able to cause infection in immunocompromised people.
Collapse
|
22
|
Chiaverini A, Guidi F, Torresi M, Acciari VA, Centorotola G, Cornacchia A, Centorame P, Marfoglia C, Blasi G, Di Domenico M, Migliorati G, Roussel S, Pomilio F, Sevellec Y. Phylogenetic Analysis and Genome-Wide Association Study Applied to an Italian Listeria monocytogenes Outbreak. Front Microbiol 2021; 12:750065. [PMID: 34803971 PMCID: PMC8600327 DOI: 10.3389/fmicb.2021.750065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
From May 2015 to March 2016, a severe outbreak due to Listeria monocytogenes ST7 strain occurred in Central Italy and caused 24 confirmed clinical cases. The epidemic strain was deeply investigated using whole-genome sequencing (WGS) analysis. In the interested area, the foodborne outbreak investigation identified a meat food-producing plant contaminated by the outbreak strain, carried by pork-ready-to-eat products. In the same region, in March 2018, the epidemic strain reemerged causing one listeriosis case in a 10-month-old child. The aim of this study was to investigate the phylogeny of the epidemic and reemergent strains over time and to compare them with a closer ST7 clone, detected during the outbreak and with different pulsed-field gel electrophoresis (PFGE) profiles, in order to identify genomic features linked to the persistence and the reemergence of the outbreak. An approach combining phylogenetic analysis and genome-wide association study (GWAS) revealed that the epidemic and reemergent clones were genetically closer to the ST7 clone with different PFGE profiles and strictly associated with the pork production chain. The repeated detection of both clones was probably correlated with (i) the presence of truly persistent clones and the repeated introduction of new ones and (ii) the contribution of prophage genes in promoting the persistence of the epidemic clones. Despite that no significant genomic differences were detected between the outbreak and the reemergent strain, the two related clones detected during the outbreak can be differentiated by transcriptional factor and phage genes associated with the phage LP-114.
Collapse
Affiliation(s)
- Alexandra Chiaverini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Vicdalia Aniela Acciari
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Gabriella Centorotola
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alessandra Cornacchia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Patrizia Centorame
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cristina Marfoglia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marco Di Domenico
- National Reference Centre for Whole Genome Sequencing of Microbial Pathogens Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giacomo Migliorati
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Sophie Roussel
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Yann Sevellec
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| |
Collapse
|
23
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
24
|
Monitoring by a Sensitive Liquid-Based Sampling Strategy Reveals a Considerable Reduction of Listeria monocytogenes in Smeared Cheese Production over 10 Years of Testing in Austria. Foods 2021; 10:foods10091977. [PMID: 34574086 PMCID: PMC8471813 DOI: 10.3390/foods10091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Most Austrian dairies and cheese manufacturers participated in a Listeria monitoring program, which was established after the first reports of dairy product-associated listeriosis outbreaks more than thirty years ago. Within the Listeria monitoring program, up to 800 mL of product-associated liquids such as cheese smear or brine are processed in a semi-quantitative approach to increase epidemiological sensitivity. A sampling strategy within cheese production, which detects environmental contamination before it results in problematic food contamination, has benefits for food safety management. The liquid-based sampling strategy was implemented by both industrial cheese makers and small-scale dairies located in the mountainous region of Western Austria. This report considers more than 12,000 Listeria spp. examinations of liquid-based samples in the 2009 to 2018 timeframe. Overall, the occurrence of L. monocytogenes in smear liquid samples was 1.29% and 1.55% (n = 5043 and n = 7194 tested samples) for small and industrial cheese enterprises, respectively. The liquid-based sampling strategy for Listeria monitoring at the plant level appears to be superior to solid surface monitoring. Cheese smear liquids seem to have good utility as an index of the contamination of cheese up to that point in production. A modelling or validation process should be performed for the new semi-quantitative approach to estimate the true impact of the method in terms of reducing Listeria contamination at the cheese plant level.
Collapse
|
25
|
Centorotola G, Guidi F, D’Aurizio G, Salini R, Di Domenico M, Ottaviani D, Petruzzelli A, Fisichella S, Duranti A, Tonucci F, Acciari VA, Torresi M, Pomilio F, Blasi G. Intensive Environmental Surveillance Plan for Listeria monocytogenes in Food Producing Plants and Retail Stores of Central Italy: Prevalence and Genetic Diversity. Foods 2021; 10:foods10081944. [PMID: 34441721 PMCID: PMC8392342 DOI: 10.3390/foods10081944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes (Lm) can persist in food processing environments (FPEs), surviving environmental stresses and disinfectants. We described an intensive environmental monitoring plan performed in Central Italy and involving food producing plants (FPPs) and retail grocery stores (RSs). The aim of the study was to provide a snapshot of the Lm circulation in different FPEs during a severe listeriosis outbreak, using whole genome sequencing (WGS) to investigate the genetic diversity of the Lm isolated, evaluating their virulence and stress resistance profiles. A total of 1217 samples were collected in 86 FPEs with 12.0% of positive surfaces at FPPs level and 7.5% at RSs level; 133 Lm isolates were typed by multilocus sequencing typing (MLST) and core genome MLST (cgMLST). Clonal complex (CC) 121 (25.6%), CC9 (22.6%), CC1 (11.3%), CC3 (10.5%), CC191 (4.5%), CC7 (4.5%) and CC31 (3.8%) were the most frequent MLST clones. Among the 26 cgMLST clusters obtained, 5 of them persisted after sanitization and were re-isolated during the follow-up sampling. All the CC121 harboured the Tn6188_qac gene for tolerance to benzalkonium chloride and the stress survival islet SSI-2. The CC3, CC7, CC9, CC31 and CC191 carried the SSI-1. All the CC9 and CC121 strains presented a premature stop codon in the inlA gene. In addition to the Lm Pathogenicity Island 1 (LIPI-1), CC1, CC3 and CC191 harboured the LIPI-3. The application of intensive environmental sampling plans for the detection and WGS analysis of Lm isolates could improve surveillance and early detection of outbreaks.
Collapse
Affiliation(s)
- Gabriella Centorotola
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
- Correspondence: or ; Tel.: +39-075-3431
| | - Guglielmo D’Aurizio
- ARS P.F. Prevenzione Veterinaria e Sicurezza Alimentare, Regione Marche, via Don Gioia, 8, 60122 Ancona, Italy;
| | - Romolo Salini
- Centro Operativo Veterinario Per l’Epidemiologia, Programmazione, Informazione e Analisi del Rischio (COVEPI), National Reference Center for Veterinary Epidemiology, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy;
| | - Marco Di Domenico
- Centro di Referenza Nazionale Per Sequenze Genomiche di Microrganismi Patogeni, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy;
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Stefano Fisichella
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Anna Duranti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| | - Vicdalia Aniela Acciari
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Marina Torresi
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Francesco Pomilio
- Laboratorio Nazionale di Riferimento Per Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, via Campo Boario, 64100 Teramo, Italy; (G.C.); (V.A.A.); (M.T.); (F.P.)
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini, 1, 06126 Perugia, Italy; (D.O.); (A.P.); (S.F.); (A.D.); (F.T.); (G.B.)
| |
Collapse
|
26
|
Bespalova TY, Mikhaleva TV, Meshcheryakova NY, Kustikova OV, Matovic K, Dmitrić M, Zaitsev SS, Khizhnyakova MA, Feodorova VA. Novel Sequence Types of Listeria monocytogenes of Different Origin Obtained in the Republic of Serbia. Microorganisms 2021; 9:1289. [PMID: 34204786 PMCID: PMC8231576 DOI: 10.3390/microorganisms9061289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes, the causative agent of listeriosis, is amongst the major food-borne pathogens in the world that affect mammal species, including humans. This microorganism has been associated with both sporadic episodes and large outbreaks of human listeriosis worldwide, with high mortality rates. In this study, the main sequence types (STs) and clonal complexes (CCs) were investigated in all of the 13 L. monocytogenes strains originating from different sources in the Republic of Serbia in 2004-2019 and that were available in the BIGSdb-Lm database. We found at least 13 STs belonging to the phylogenetic lineages I and II. These strains were represented by ST1/ST3/ST9 of CC1/CC3/CC9, which were common in the majority of the European countries and worldwide, as well as by eight novel STs (ST1232/ST1233/ST1234/ST1235/ST1238/ST1236/ST1237/ST1242) of CC19/CC155/CC5/CC21/CC3/CC315/CC37, and the rare ST32 (clonal complex ST32) and ST734 (CC1), reported in the Republic of Serbia, the EU, for the first time. Our study confirmed the association of CC1 with cases of neuroinfection and abortions among small ruminants, and of CC3 and CC9 with food products of animal origin. The strains isolated in 2019 carried alleles of the internalin genes (inlA/inlB/inlC/inlE) characteristic of the most virulent strains from the hypervirulent CC1. These findings demonstrated the genetic relatedness between L. monocytogenes strains isolated in the Republic of Serbia and worldwide. Our study adds further information about the diversity of the L. monocytogenes genotypes of small ruminants and food products, as the strain distribution in these sources in Serbia had not previously been evaluated.
Collapse
Affiliation(s)
- Tatiana Yu. Bespalova
- Federal Research Center for Virology and Microbiology, Branch in Samara, 443013 Samara, Russia; (T.Y.B.); (T.V.M.); (N.Y.M.); (O.V.K.)
| | - Tatiana V. Mikhaleva
- Federal Research Center for Virology and Microbiology, Branch in Samara, 443013 Samara, Russia; (T.Y.B.); (T.V.M.); (N.Y.M.); (O.V.K.)
| | - Nadezhda Yu Meshcheryakova
- Federal Research Center for Virology and Microbiology, Branch in Samara, 443013 Samara, Russia; (T.Y.B.); (T.V.M.); (N.Y.M.); (O.V.K.)
| | - Olga V. Kustikova
- Federal Research Center for Virology and Microbiology, Branch in Samara, 443013 Samara, Russia; (T.Y.B.); (T.V.M.); (N.Y.M.); (O.V.K.)
| | - Kazimir Matovic
- Department for Laboratory Diagnostic, Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (K.M.); (M.D.)
- Department of Food Safety, Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia
| | - Marko Dmitrić
- Department for Laboratory Diagnostic, Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia; (K.M.); (M.D.)
- Department of Food Safety, Veterinary Specialized Institute Kraljevo, 36000 Kraljevo, Serbia
| | - Sergey S. Zaitsev
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia; (S.S.Z.); (M.A.K.)
| | - Maria A. Khizhnyakova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia; (S.S.Z.); (M.A.K.)
| | - Valentina A. Feodorova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia; (S.S.Z.); (M.A.K.)
| |
Collapse
|
27
|
Demaître N, Rasschaert G, De Zutter L, Geeraerd A, De Reu K. Genetic Listeria monocytogenes Types in the Pork Processing Plant Environment: From Occasional Introduction to Plausible Persistence in Harborage Sites. Pathogens 2021; 10:pathogens10060717. [PMID: 34200429 PMCID: PMC8228754 DOI: 10.3390/pathogens10060717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.
Collapse
Affiliation(s)
- Niels Demaître
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
| | - Geertrui Rasschaert
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Annemie Geeraerd
- Division MeBioS, Sustainability in the Agri-Food Chain Group, BIOSYST Department, KU Leuven, Willem de Croylaan 42, Box 2428, 3001 Leuven, Belgium;
| | - Koen De Reu
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (N.D.); (G.R.)
- Correspondence: ; Tel.: +32-9272-3043
| |
Collapse
|
28
|
Amagliani G, Blasi G, Scuota S, Duranti A, Fisichella S, Gattuso A, Gianfranceschi MV, Schiavano GF, Brandi G, Pomilio F, Gabucci C, Di Lullo S, Savelli D, Tonucci F, Petruzzelli A. Detection and Virulence Characterization of Listeria monocytogenes Strains in Ready-to-Eat Products. Foodborne Pathog Dis 2021; 18:675-682. [PMID: 34042505 DOI: 10.1089/fpd.2020.2923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The public health risk posed by Listeria monocytogenes in ready-to-eat (RTE) foods depends on the effectiveness of its control at every stage of the production process and the strain involved. Analytical methods currently in use are limited to the identification/quantification of L. monocytogenes at the species level, without distinguishing virulent from hypovirulent strains. In these products, according to EU Regulation 2073/2005, L. monocytogenes is a mandatory criterion irrespective of strain virulence level. Indeed, this species encompasses a diversity of strains with various pathogenic potential, reflecting genetic heterogeneity of the species itself. Thus, the detection of specific L. monocytogenes virulence genes can be considered an important target in laboratory food analysis to assign different risk levels to foods contaminated by strains carrying different genes. In 2015-2016, a severe invasive listeriosis outbreak occurred in central Italy, leading to the intensification of routine surveillance and strain characterization for virulence genetic markers. A new multiplex real-time polymerase chain reaction targeting main virulence genes has been developed and validated against the enzyme-linked fluorescent assay (ELFA) culture-based method. Results of the improved surveillance program are now reported in this study.
Collapse
Affiliation(s)
- Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Stefania Scuota
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Anna Duranti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Stefano Fisichella
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Antonietta Gattuso
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità (ISS), Roma, Italy
| | | | | | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Stefania Di Lullo
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - David Savelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Franco Tonucci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia, Italy
| |
Collapse
|