1
|
Piccinno R, Galla G, Roselli G, Rodeghiero M, Mazzoni V, Stringer L, Hauffe HC, Anfora G, Rota-Stabelli O. Overwintering Does Not Affect Microbiota Diversity in Halyomorpha halys: Implications for Its Ecology and Management. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70116. [PMID: 40492279 DOI: 10.1111/1758-2229.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/07/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025]
Abstract
Host-associated microbial communities play an important role in regulating many aspects of insect biology, but changes in this microbiota during diapause and overwintering are still largely unknown. Halyomorpha halys is an invasive agricultural pest characterised by a unique overwintering strategy where individuals aggregate and enter a state of dormancy, making it an excellent model to study the relationship between microbiota and diapause. We investigated the bacterial diversity of wild H. halys specimens before and after dormancy using 16S rRNA gene amplicon-sequencing. We found that microbiota varies between geographically neighbouring sampling locations, but there were no significant differences in microbial diversity or composition between populations sampled before and after diapause, despite stressful overwintering conditions. Such stability may relate to the highly specific taxa that dominate the stinkbug-associated microbial community. In addition, we did not detect any strong association of stink bugs with phytopathogens, but we found that two populations harboured Nosema maddoxi, a microsporidian pathogen of stink bugs. Our results are relevant to the assessment of accidental spillovers of microorganisms in newly invaded areas and to the implementation of the sterile insect technique based on mass trapping, irradiation, shipping and release after diapause of wild individuals.
Collapse
Affiliation(s)
- Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giulio Galla
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Gerardo Roselli
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
| | - Mirco Rodeghiero
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Valerio Mazzoni
- Plant Protection Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Lloyd Stringer
- The New Zealand Institute for Plant and Food Research, Lincoln, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | - Heidi Christine Hauffe
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Gianfranco Anfora
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
- Plant Protection Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| |
Collapse
|
2
|
Rogowska-van der Molen MA, Manzano-Marín A, Postma JL, Coolen S, van Alen T, Jansen RS, Welte CU. From eggs to guts: Symbiotic association of Sodalis nezarae sp. nov. with the Southern green shield bug Nezara viridula. FEMS Microbiol Ecol 2025; 101:fiaf017. [PMID: 39938947 PMCID: PMC11879575 DOI: 10.1093/femsec/fiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/14/2025] Open
Abstract
Phytophagous insects engage in symbiotic relationships with bacteria that contribute to digestion, nutrient supplementation, and development of the host. The analysis of shield bug microbiomes has been mainly focused on the gut intestinal tract predominantly colonized by Pantoea symbionts and other microbial community members in the gut or other organs have hardly been investigated. In this study, we reveal that the Southern green shield bug Nezara viridula harbours a Sodalis symbiont in several organs, with a notable prevalence in salivary glands, and anterior regions of the midgut. Removing external egg microbiota via sterilization profoundly impacted insect viability but did not disrupt the vertical transmission of Sodalis and Pantoea symbionts. Based on the dominance of Sodalis in testes, we deduce that N. viridula males could be involved in symbiont vertical transmission. Genomic analyses comparing Sodalis species revealed that Sodalis sp. Nvir shares characteristics with both free-living and obligate insect-associated Sodalis spp. Sodalis sp. Nvir also displays genome instability typical of endosymbiont lineages, which suggests ongoing speciation to an obligate endosymbiont. Together, our study reveals that shield bugs harbour unrecognized symbionts that might be paternally transmitted.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jelle L Postma
- Department of General Instrumentation, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 Nijmegen, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
- Translational Plant Biology, Department of Biology, Utrecht University, PO Box 800.56, 3508 Utrecht, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, PO Box 9010, 6500 Nijmegen, The Netherlands
| |
Collapse
|
3
|
Fluch M, Corretto E, Feldhaar H, Schuler H. Seasonal Changes in the Gut Microbiota of Halyomorpha halys. MICROBIAL ECOLOGY 2024; 87:164. [PMID: 39731630 DOI: 10.1007/s00248-024-02481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024]
Abstract
The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world. Native to North-Eastern Asia, this Pentatomid bug has recently invaded North America and Europe, causing significant damage to agricultural production. Although an increasing number of studies investigated the biology of this pest species, little is known about the composition of its gut microbiota. Like many other Pentatomid species, H. halys harbors a primary symbiont called "Candidatus Pantoea carbekii," which produces vitamins and essential amino acids for the host. However, information about the presence of other bacteria is currently lacking. Therefore, we investigated the gut microbiota of H. halys individuals, which were collected in the field across the year using a high-throughput 16S rRNA gene metabarcoding approach. Our results revealed 3309 different ASVs associated with H. halys, with Pantoea being the most abundant symbiont, present in almost all individuals. Additionally, many individuals harbor Commensalibacter, a genus of acetic acid bacterial symbionts. Besides these two predominant taxa, we show a high diversity of microorganisms associated with H. halys with seasonal fluctuations, highlighting a dynamic microbiota that might influence the biology of this species.
Collapse
Affiliation(s)
- Maja Fluch
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Erika Corretto
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Heike Feldhaar
- Animal Population Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
4
|
Chabanol E, Gendrin M. Insects and microbes: best friends from the nursery. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101270. [PMID: 39293738 DOI: 10.1016/j.cois.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Insects host microbes and interact with them throughout their life cycle. This microbiota is an important, if not essential, partner participating in many aspects of insect physiology. Recent omics studies have contributed to considerable advances in the current understanding of the molecular implications of microbiota during insect development. In this review, we present an overview of the current knowledge about the mechanisms underlying interactions between developing insects and their microbial companions. The microbiota is implicated in nutrition, both via compensating for metabolic pathways lacking in the host and via regulating host metabolism. Furthermore, the microbiota plays a protective role, enhancing the insect's tolerance to, or resistance against, various environmental stresses.
Collapse
Affiliation(s)
- Estelle Chabanol
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana.
| |
Collapse
|
5
|
Hou XR, Fu SY, Wang Y, Zhou JY, Qi TY, Li YF, Bu WJ, Xue HJ. Large-Scale Sampling Reveals the Strain-Level Diversity of Burkholderia Symbionts in Riptortus pedestris and R. linearis (Hemiptera: Alydidae). Microorganisms 2024; 12:1885. [PMID: 39338558 PMCID: PMC11434518 DOI: 10.3390/microorganisms12091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Burkholderia (sensu lato) is a diverse group of β-Proteobacteria that exists worldwide in various environments. The SBE clade of this group was thought to be mutualistic with stinkbugs. Riptortus-Burkholderia was suggested as an ideal model system for studying insect-microbe symbiosis. To explore the strain-level diversity of Burkholderia at the individual and population levels of Riptortus stinkbugs (Hemiptera: Alydidae), and to uncover the factors affecting the Burkholderia community, large-scale sampling of two Riptortus species and deep sequencing data (16S amplicon) were used in the present study. Our results showed that: (1) the proportions of facultative symbiotic bacteria Burkholderia were very high, with an average proportion of 87.1% in the samples; (2) only six out of 1373 Burkholderia amplicon sequence variants (ASVs) did not belong to the SBE clade, accounting for only 0.03% of Burkholderia; (3) a relatively small number of Burkholderia ASVs had a large number of sequences, with 22, 54, and 107 ASVs accounting for more than 1.0%, 0.1%, and 0.01% of the total Burkholderia sequences, respectively; (4) multiple Burkholderia ASVs were present in most Riptortus individuals, but there was one dominant or two codominant ASVs, and codominance was more likely to occur when the genetic distance between the two codominant ASVs was small; and (5) the beta diversity of Burkholderia was significantly different between the two host species (PerMANOVA: both Jaccard and Bray-Curtis, p < 0.001) and among localities (PerMANOVA: both Jaccard and Bray-Curtis, p < 0.001). Two-way PerMANOVA also indicated that both the host (Bray-Curtis, p = 0.020; Jaccard, p = 0.001) and geographical location (Bray-Curtis, p = 0.041; Jaccard, p = 0.045) influence Burkholderia communities; furthermore, Mantel tests showed that the Burkholderia communities were significantly correlated with the geographical distance of sample locations (R = 0.056, p = 0.001). Together, our findings demonstrate the fine-scale diversity of Burkholderia symbionts and suggest a region- and host-dependent pattern of Burkholderia in Riptortus stinkbugs.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Si-Ying Fu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia-Yue Zhou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tian-Yi Qi
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Fei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen-Jun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huai-Jun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Ren Y, Fu S, Dong W, Chen J, Xue H, Bu W. The ncRNA-mediated regulatory networks of defensins and lysozymes in Riptortus pedestris: involvement in response to gut bacterial disturbances. Front Microbiol 2024; 15:1386345. [PMID: 38827147 PMCID: PMC11140134 DOI: 10.3389/fmicb.2024.1386345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024] Open
Abstract
Insects depend on humoral immunity against intruders through the secretion of antimicrobial peptides (AMPs) and immune effectors via NF-κB transcription factors, and their fitness is improved by gut bacterial microbiota. Although there are growing numbers of reports on noncoding RNAs (ncRNAs) involving in immune responses against pathogens, comprehensive studies of ncRNA-AMP regulatory networks in Riptortus pedestris, which is one of the widely distributed pests in East Asia, are still not well understood under feeding environmental changes. The objective of this study employed the whole-transcriptome sequencing (WTS) to systematically identify the lncRNAs (long noncoding RNA) and circRNAs (circular RNA) and to obtain their differential expression from the R. pedestris gut under different feeding conditions. Functional annotation indicated that they were mainly enriched in various biological processes with the GO and KEGG databases, especially in immune signaling pathways. Five defensin (four novel members) and eleven lysozyme (nine novel members) family genes were identified and characterized from WTS data, and meanwhile, phylogenetic analysis confirmed their classification. Subsequently, the miRNA-mRNA interaction network of above two AMPs and lncRNA-involved ceRNA (competing endogenous RNA) regulatory network of one lysozyme were predicted and built based on bioinformatic prediction and calculation, and the expression patterns of differentially expressed (DE) defensins, and DE lysozymes and related DE ncRNAs were estimated and selected among all the comparison groups. Finally, to integrate the analyses of WTS and previous 16S rRNA amplicon sequencing, we conducted the Pearson correlation analysis to reveal the significantly positive or negative correlation between above DE AMPs and ncRNAs, as well as most changes in the gut bacterial microbiota at the genus level of R. pedestris. Taken together, the present observations provide great insights into the ncRNA regulatory networks of AMPs in response to rearing environmental changes in insects and uncover new potential strategies for pest control in the future.
Collapse
Affiliation(s)
- Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Siying Fu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Dong
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Yang ZW, Luo JY, Men Y, Liu ZH, Zheng ZK, Wang YH, Xie Q. Different roles of host and habitat in determining the microbial communities of plant-feeding true bugs. MICROBIOME 2023; 11:244. [PMID: 37932839 PMCID: PMC10629178 DOI: 10.1186/s40168-023-01702-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The true bugs (Heteroptera) occupy nearly all of the known ecological niches of insects. Among them, as a group containing more than 30,000 species, the phytophagous true bugs are making increasing impacts on agricultural and forestry ecosystems. Previous studies proved that symbiotic bacteria play important roles in these insects in fitting various habitats. However, it is still obscure about the evolutionary and ecological patterns of the microorganisms of phytophagous true bugs as a whole with comprehensive taxon sampling. RESULTS Here, in order to explore the symbiotic patterns between plant-feeding true bugs and their symbiotic microorganisms, 209 species belonging to 32 families of 9 superfamilies had been sampled, which covered all the major phytophagous families of true bugs. The symbiotic microbial communities were surveyed by full-length 16S rRNA gene and ITS amplicons respectively for bacteria and fungi using the PacBio platform. We revealed that hosts mainly affect the dominant bacteria of symbiotic microbial communities, while habitats generally influence the subordinate ones. Thereafter, we carried out the ancestral state reconstruction of the dominant bacteria and found that dramatic replacements of dominant bacteria occurred in the early Cretaceous and formed newly stable symbiotic relationships accompanying the radiation of insect families. In contrast, the symbiotic fungi were revealed to be horizontally transmitted, which makes fungal communities distinctive in different habitats but not significantly related to hosts. CONCLUSIONS Host and habitat determine microbial communities of plant-feeding true bugs in different roles. The symbiotic bacterial communities are both shaped by host and habitat but in different ways. Nevertheless, the symbiotic fungal communities are mainly influenced by habitat but not host. These findings shed light on a general framework for future microbiome research of phytophagous insects. Video Abstract.
Collapse
Affiliation(s)
- Zi-Wen Yang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- School of Life Sciences, Zhaoqing University, Zhaoqing, 526061, China
| | - Zhi-Hui Liu
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Kai Zheng
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
8
|
Men Y, Yang ZW, Luo JY, Chen PP, Moreira FFF, Liu ZH, Yin JD, Xie BJ, Wang YH, Xie Q. Symbiotic Microorganisms and Their Different Association Types in Aquatic and Semiaquatic Bugs. Microbiol Spectr 2022; 10:e0279422. [PMID: 36409137 PMCID: PMC9769989 DOI: 10.1128/spectrum.02794-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
True bugs (Hemiptera, suborder Heteroptera) constitute the largest suborder of nonholometabolous insects and occupy a wide range of habitats various from terrestrial to semiaquatic to aquatic niches. The transition and occupation of these diverse habitats impose various challenges to true bugs, including access to oxygen for the aquatic species and plant defense for the terrestrial phytophagans. Although numerous studies have demonstrated that microorganisms can provide multiple benefits to terrestrial host insects, a systematic study with comprehensive higher taxa sampling that represents aquatic and semiaquatic habitats is still lacking. To explore the role of symbiotic microorganisms in true bug adaptations, 204 samples belonging to all seven infraorders of Heteroptera were investigated, representing approximately 85% of its superfamilies and almost all known habitats. The symbiotic microbial communities of these insects were analyzed based on the full-length amplicons of the bacterial 16S rRNA gene and fungal ITS region. Bacterial communities varied among hosts inhabiting terrestrial, semiaquatic, and aquatic habitats, while fungal communities were more related to the geographical distribution of the hosts. Interestingly, co-occurrence networks showed that species inhabiting similar habitats shared symbiotic microorganism association types. Moreover, functional prediction analyses showed that the symbiotic bacterial community of aquatic species displayed richer amino acid and lipid metabolism pathways, while plant-feeding true bugs benefited more from the symbiont-provided xenobiotics biodegradation pathway. These results deepened the recognition that symbiotic microorganisms were likely to help heteropterans occupy diverse ecological habitats and provided a reference framework for further studies on how microorganisms affect host insects living in various habitats. IMPORTANCE Symbiotic bacteria and fungi generally colonize insects and provide various benefits for hosts. Although numerous studies have investigated symbionts in terrestrial plant-feeding insects, explorations of symbiotic bacterial and fungal communities in aquatic and semiaquatic insects are rare. In this study, the symbiotic microorganisms of 204 aquatic, semiaquatic, and terrestrial true bugs were explored. This comprehensive taxon sampling covers ~85% of the superfamilies of true bugs and most insect habitats. Analyses of the diversity of symbionts demonstrated that the symbiotic microbial diversities of true bugs were mainly affected by host habitats. Co-occurrence networks showed that true bugs inhabiting similar habitats shared symbiotic microbial association types. These correlations between symbionts and hosts together with the functions of bacterial communities indicated that symbiotic microbial communities may help true bugs adapt to (semi)aquatic habitats.
Collapse
Affiliation(s)
- Yu Men
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zi-wen Yang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiu-yang Luo
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping-ping Chen
- Netherlands Centre of Biodiversity Naturalis, Leiden, Netherlands
| | | | - Zhi-hui Liu
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-dong Yin
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bao-jun Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-hui Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiang Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Jaffar S, Ahmad S, Lu Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front Microbiol 2022; 13:979383. [PMID: 36187965 PMCID: PMC9516005 DOI: 10.3389/fmicb.2022.979383] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022] Open
Abstract
Synthetic pesticides are extensively and injudiciously applied to control agriculture and household pests worldwide. Due to their high use, their toxic residues have enormously increased in the agroecosystem in the past several years. They have caused many severe threats to non-target organisms, including humans. Therefore, the complete removal of toxic compounds is gaining wide attention to protect the ecosystem and the diversity of living organisms. Several methods, such as physical, chemical and biological, are applied to degrade compounds, but as compared to other methods, biological methods are considered more efficient, fast, eco-friendly and less expensive. In particular, employing microbial species and their purified enzymes makes the degradation of toxic pollutants more accessible and converts them into non-toxic products by several metabolic pathways. The digestive tract of insects is usually known as a superior organ that provides a nutrient-rich environment to hundreds of microbial species that perform a pivotal role in various physiological and ecological functions. There is a direct relationship between pesticides and insect pests: pesticides reduce the growth of insect species and alter the phyla located in the gut microbiome. In comparison, the insect gut microbiota tries to degrade toxic compounds by changing their toxicity, increasing the production and regulation of a diverse range of enzymes. These enzymes breakdown into their derivatives, and microbial species utilize them as a sole source of carbon, sulfur and energy. The resistance of pesticides (carbamates, pyrethroids, organophosphates, organochlorines, and neonicotinoids) in insect species is developed by metabolic mechanisms, regulation of enzymes and the expression of various microbial detoxifying genes in insect guts. This review summarizes the toxic effects of agrochemicals on humans, animals, birds and beneficial arthropods. It explores the preferential role of insect gut microbial species in the degradation process and the resistance mechanism of several pesticides in insect species. Additionally, various metabolic pathways have been systematically discussed to better understand the degradation of xenobiotics by insect gut microbial species.
Collapse
Affiliation(s)
- Saleem Jaffar
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Fronk DC, Sachs JL. Symbiotic organs: the nexus of host-microbe evolution. Trends Ecol Evol 2022; 37:599-610. [PMID: 35393155 DOI: 10.1016/j.tree.2022.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
Diverse plants and animals have evolved specialized structures to filter and house beneficial microbes. These symbiotic organs form crucial points of exchange between host and symbiont, are often shaped by both partners, and exhibit features that facilitate a suite of microbial services. While symbiotic organs exhibit varied function, morphology, and developmental plasticity, they share core features linked to the evolutionary maintenance of beneficial symbiosis. Moreover, these organs can have a significant role in altering the demographic forces that shape microbial genomes, driving population bottlenecks and horizontal gene transfer (HGT). To advance our understanding of these 'joint phenotypes' across varied systems, future research must consider the emergent forces that can shape symbiotic organs, including fitness feedbacks and conflicts between interacting genomes.
Collapse
Affiliation(s)
- David C Fronk
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Joel L Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
11
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Liu ZH, Yang ZW, Zhang J, Luo JY, Men Y, Wang YH, Xie Q. Stage correlation of symbiotic bacterial community and function in the development of litchi bugs (Hemiptera: Tessaratomidae). Antonie van Leeuwenhoek 2021; 115:125-139. [PMID: 34843017 DOI: 10.1007/s10482-021-01685-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Bacterial symbionts of insects have been shown to play important roles in host fitness. However, little is known about the bacterial community of Tessaratoma papillosa which is one of the most destructive pests of the well-known fruits Litchi chinensis Sonn and Dimocarpus longan Lour in Oriental Region, especially in South-east Asia and adjacent areas. In this study, we surveyed the bacterial community diversity and dynamics of T. papillosa in all developmental stages with both culture-dependent and culture-independent methods by the third-generation sequencing technology. Five bacterial phyla were identified in seven developmental stages of T. papillosa. Proteobacteria was the dominant phylum and Pantoea was the dominant genus of T. papillosa. The results of alpha and beta diversity analyses showed that egg stage had the most complex bacterial community. Some of different developmental stages showed similarities, which were clustered into three phases: (1) egg stage, (2) early nymph stages (instars 1-3), and (3) late nymph stages (instars 4-5) and adult stage. Functional prediction indicated that the bacterial community played different roles in these three phases. Furthermore, 109 different bacterial strains were isolated and identified from various developmental stages. This study revealed the relationship between the symbiotic bacteria and the development of T. papillosa, and may thus contribute to the biological control techniques of T. papillosa in the future.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
13
|
Gut Microbiota Cannot Compensate the Impact of (quasi) Aposymbiosis in Blattella germanica. BIOLOGY 2021; 10:biology10101013. [PMID: 34681115 PMCID: PMC8533614 DOI: 10.3390/biology10101013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The German cockroach Blattella germanica is a good model to study complex symbiotic relationships because the following two symbiotic systems coexist in a single individual: the endosymbiont Blattabacterium (living inside specialized cells called bacteriocytes) and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach’s fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population with rifampicin to decrease the amount of endosymbiont in the following generation. As the treatment also affects rifampicin-sensitive gut bacteria, we allowed it to recover for at least 20 days before sampling. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota were able to recover, although it could not compensate for the endosymbiont role, and the host’s fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches. Abstract Blattella germanica presents a very complex symbiotic system, involving the following two kinds of symbionts: the endosymbiont Blattabacterium and the gut microbiota. Although the role of the endosymbiont has been fully elucidated, the function of the gut microbiota remains unclear. The study of the gut microbiota will benefit from the availability of insects deprived of Blattabacterium. Our goal is to determine the effect of the removal (or, at least, the reduction) of the endosymbiont population on the cockroach’s fitness, in a normal gut microbiota community. For this purpose, we treated our cockroach population, over several generations, with rifampicin, an antibiotic that only affects the endosymbiont during its extracellular phase, and decreases its amount in the following generation. As rifampicin also affects gut bacteria that are sensitive to this antibiotic, the treatment was performed during the first 12 days of the adult stage, which is the period when the endosymbiont infects the oocytes and lacks bacteriocyte protection. We found that after this antibiotic treatment, the endosymbiont population remained extremely reduced and only the microbiota was able to recover, although it could not compensate for the endosymbiont role, and the host’s fitness was drastically affected. This accomplished reduction, however, is not homogenous and requires further study to develop stable quasi-aposymbiotic cockroaches.
Collapse
|