1
|
Zulkeflee NN, Mustapha Kamil Y, Mashohor S, Abu Bakar MH. Functionalized cascaded tapered optical fiber sensor for simultaneous detection of dengue II E and SARS-CoV-2 S proteins. Biosens Bioelectron 2025; 277:117200. [PMID: 39904660 DOI: 10.1016/j.bios.2025.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
This work demonstrates a label-free dual-sensing biosensor utilizing cascaded single-mode tapered fiber (SMTF) for the concurrent detection of Dengue II envelope (E) and SARS-CoV-2 spike (S) proteins. Two fiber tapers of different dimensions were employed in-line, with each taper functionalized with specific complementary antibodies to the targeted antigens. The cascaded interferometric effect yielded composite spectral output that exhibited discrete response toward localized refractive index changes due to binding of antigens and antibodies. Consistent red shifts were observed with increasing concentration of the targeted analyte, which led to sensitivity values of 6.91 nm/nM for SMTF1 and 9.96 nm/nM for SMTF2, with a detection limit of 0.1 pM. This dual-sensing platform demonstrates high sensitivity and specificity, rapid response times, and the potential for integration into portable diagnostic devices, presenting it as a promising tool for point-of-care diagnostics and simultaneous detection of multiple disease biomarkers.
Collapse
Affiliation(s)
- Nurul Nadiah Zulkeflee
- Wireless and Photonics Network Research Centre (WiPNET), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Yasmin Mustapha Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Syamsiah Mashohor
- Wireless and Photonics Network Research Centre (WiPNET), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Muhammad Hafiz Abu Bakar
- Wireless and Photonics Network Research Centre (WiPNET), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia; Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Salazar J, González J, Riofrío R, Siavichay F, Carrera M, Mogrovejo A, Barrera-Galicia G, Valdez-Tenezaca A. MALDI-TOF Mass Spectrometry Characterization of Culturable Microbiota Associated with the Skin of Amphibians from the Southern Andes Mountains of Ecuador. MICROBIAL ECOLOGY 2025; 88:47. [PMID: 40402178 PMCID: PMC12098423 DOI: 10.1007/s00248-025-02555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Ecuador is recognized for having a high diversity of anuran species, which are distributed mainly south of the Andes mountains. However, due to their geographic location and accessibility, there are few studies related to the culturable microbiota of these amphibians in this region. The objective of this study was to explore the bacterial and fungal biodiversity present on the skin of wild anuran species in the southern Andes of Ecuador and to observe whether geographical barriers in the region could increase the variability of the culturable microbiota through MALDI-TOF mass spectrometry. This analysis revealed the presence of 29 bacterial taxa and 9 fungal taxa, consisting mainly of: Pseudomonas chlororaphis (28%), Acinetobacter iwoffii (14%), Pseudomonas fluorescens (14%), and Hortaea werneckii (26.4%), Fusarium solani (20.5%), Syncephalastrum spp. (20.5%), respectively. Diversity varied across the five sampling locations, with geographic location proving to be a significant driver of diversity. Some of the most abundant bacterial and fungal genera have important associations with skin diseases in wildlife and humans. This work represents a glimpse into the complex biodiversity of bacteria and fungi that inhabit the skin substrate, and further studies will be needed to better understand bacterial and fungal biodiversity with potential implications for establishing conservation strategies, along with the development of necessary animal protection measures.
Collapse
Affiliation(s)
- J Salazar
- Laboratorio de Ecología Microbiana y Principios Activos, Centro de Investigación Innovación y Transferencia de Tecnología CIITT, Universidad Católica de Cuenca, Vía a Biblín, Ricaurte, Cuenca, 010108, Ecuador.
- Grupo de Investigación Geociencia Ambiente y Recursos Naturales (GARN), Cuenca, 010108, Ecuador.
| | - J González
- Laboratorio de Ecología Microbiana y Principios Activos, Centro de Investigación Innovación y Transferencia de Tecnología CIITT, Universidad Católica de Cuenca, Vía a Biblín, Ricaurte, Cuenca, 010108, Ecuador
- Laboratorio de Entomología Agrícola Fitosanitario, Universidad Católica de Cuenca, Cuenca, 010101, Ecuador
| | - R Riofrío
- Laboratorio de Ecología Microbiana y Principios Activos, Centro de Investigación Innovación y Transferencia de Tecnología CIITT, Universidad Católica de Cuenca, Vía a Biblín, Ricaurte, Cuenca, 010108, Ecuador
| | - F Siavichay
- Centro de Conservación de Anfibios, Bioparque AMARU, Cuenca, 010109, Ecuador
| | - M Carrera
- Laboratorio de Ecología Microbiana y Principios Activos, Centro de Investigación Innovación y Transferencia de Tecnología CIITT, Universidad Católica de Cuenca, Vía a Biblín, Ricaurte, Cuenca, 010108, Ecuador
| | - A Mogrovejo
- Laboratorio de Ecología Microbiana y Principios Activos, Centro de Investigación Innovación y Transferencia de Tecnología CIITT, Universidad Católica de Cuenca, Vía a Biblín, Ricaurte, Cuenca, 010108, Ecuador
| | - G Barrera-Galicia
- Laboratorio de Microbiología Ambiental, Unidad Académica de Ciencias Químicas, Universidad de Zacatecas, Campus Siglo XXI, Carretera Zacatecas-Guadalajara Km 6, La Escondida, Zacatecas, 98160, México
| | - A Valdez-Tenezaca
- Laboratorio de Ecología Microbiana y Principios Activos, Centro de Investigación Innovación y Transferencia de Tecnología CIITT, Universidad Católica de Cuenca, Vía a Biblín, Ricaurte, Cuenca, 010108, Ecuador.
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Av. Lircay S/N, 360000, Talca, Chile.
| |
Collapse
|
3
|
Puthenkaleekkal Thankappan R, Reghu D, Kumbhar D, Kotnis A, Choudhary R, Singh J, Patro ARK, Singh S, Nandi D, Umapathy S. Instant Diagnosis Using Raman Spectroscopy and Generative Adversarial Networks: A Blood-Based Study on Seasonal Flu, COVID-19, and Dengue. JOURNAL OF BIOPHOTONICS 2025:e70017. [PMID: 40170370 DOI: 10.1002/jbio.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Rapid detection of infectious diseases like COVID-19, flu, and dengue is crucial for healthcare professionals preparing for contagious outbreaks. Given the constant mutations in viruses and the recurring emergence of threats like Nipah and Zika, there is an urgent demand for a technology capable of distinguishing between infections that share similar symptoms. In this paper, we utilize laser-based Raman scattered signals from a drop of dried blood plasma, combined with generative artificial intelligence, to provide a rapid and precise diagnosis. Our optimized model exhibits exceptional performance, yielding high predictive scores of 96%, 98%, and 100% for flu, COVID-19, and dengue, respectively. The proposed Raman spectroscopic analysis, with a rapid turnaround time, can ensure a near-accurate diagnosis and proper quarantining of highly infectious cases. Furthermore, the potential extension of our method to include other viral diseases offers an alternative to the challenge of developing different diagnostic kits for each disease.
Collapse
Affiliation(s)
| | - Dhanya Reghu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipak Kumbhar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rashmi Choudhary
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - A Raj Kumar Patro
- Department of Microbiology, Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, Odisha, India
| | - Sarman Singh
- All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
- Indian Institute of Science Education and Research, Bhopal, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Sukumaran SY, Herrscher C, Rasol NE, Othman MA, Liew SY, Ismail NH, Séron K, Litaudon M, Awang K, El Kalamouni C, Apel C, Zahari A. Targeted Isolation of Antiviral Labdane Diterpenes from the Bark of Neo-uvaria foetida (Annonaceae) using LC-MS/MS-Based Molecular Networking. JOURNAL OF NATURAL PRODUCTS 2024; 87:1941-1951. [PMID: 39028935 DOI: 10.1021/acs.jnatprod.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In the search of new inhibitors for human coronavirus (HCoV), we screened extracts of endemic Annonaceae plants on an assay using a cellular model of Huh-7 cells infected with the human alphacoronavirus HCoV-229E. The EtOAc bark extract of the rare Southeast Asian plant Neo-uvaria foetida exhibited inhibition of HCoV-229E and SARS-CoV-2 viruses with IC50 values of 3.8 and 7.8 μg/mL, respectively. Using LC-MS/MS and molecular networking analysis guided isolation, we discovered two new labdane-type diterpenoids, 8-epi-acuminolide (1) and foetidalabdane A (4), and three known labdane diterpenoids, acuminolide (2), 17-O-acetylacuminolide (3), and spiroacuminolide (5). A new norlabdane diterpene, 16-foetinorlabdoic acid (6), was also isolated and identified. Excluding compounds 5 and 6, all other metabolites were active against the virus HCoV-229E. Terpenoids 1 and 4 presented antiviral activity against SARS-CoV-2 with IC50 values of 63.3 and 93.5 μM, respectively, indicating lower potency. Additionally, virological assays demonstrated that compounds 1, 2, and 3 exert antiviral effects against Zika virus by specifically interfering with the late stage of its infectious cycle with IC50 values of 76.0, 31.9, and 14.9 μM, respectively.
Collapse
Affiliation(s)
- S Yaallini Sukumaran
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Charline Herrscher
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, Sainte Clotilde 94791, France
| | - Nurulfazlina Edayah Rasol
- Atta-ur-Rahman Institute for Natural Product Discovery, Level 9 FF3, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
| | - Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Yee Liew
- Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Level 9 FF3, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
| | - Karin Séron
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), Lille F-59000, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, Sainte Clotilde 94791, France
| | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Azeana Zahari
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Ahmed S, Salem A, Hamadan N, Khalfallah M, Alfaki M. Identification of the Hub Genes Involved in Chikungunya Viral Infection. Cureus 2024; 16:e57603. [PMID: 38707036 PMCID: PMC11069395 DOI: 10.7759/cureus.57603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
Background Chikungunya virus (CHIKV) infection poses a significant global health threat, necessitating a deeper understanding of its molecular mechanisms for effective management and treatment. This study aimed to understand the molecular and genetic mechanisms of CHIKV infection by analyzing microarray expression data. Methodology National Center for Biotechnology Information (NCBI) GEO2R with an adjusted p-value cut-off of <0.05 and |log2FC ≥ 1.5| was used to identify the differentially expressed genes involved in CHIKV infection using microarray data from the Gene Expression Omnibus (GEO) database, followed by enrichment analysis, protein-protein interaction (PPI) network construction, and, finally, hub gene identification. Results Analysis of the microarray dataset revealed 25 highly significant differentially expressed genes (DEGs), including 21 upregulated and four downregulated genes. PPI network analysis elucidated interactions among these DEGs, with hub genes such as ACTB and CTNNB1 exhibiting central roles. Enrichment analysis identified crucial pathways, including leukocyte transendothelial migration, regulation of actin cytoskeleton, and thyroid hormone signaling, implicating their involvement in CHIKV infection. Furthermore, the study highlights potential therapeutic targets such as ACTB and CTNNB1, which showed significant upregulation in infected cells. Conclusions These findings underscore the complex interplay between viral infection and host cellular processes, shedding light on novel avenues for diagnostic marker discovery and advancing antiviral strategies. In this study, we shed light on the molecular and genetic mechanisms of CHIKV infection and the potential role of ACTB and CTNNB1 genes.
Collapse
Affiliation(s)
- Sanaa Ahmed
- Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, SDN
| | - Ahmed Salem
- Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, CZE
| | - Nema Hamadan
- Histopathology and Cytology, University of Ibn Sina, Khartoum, SDN
| | - Maha Khalfallah
- Zoology, Faculty of Science, University of Khartoum, Khartoum, SDN
| | | |
Collapse
|
6
|
Distinguishing SARS-CoV-2 Infection and Non-SARS-CoV-2 Viral Infections in Adult Patients through Clinical Score Tools. Trop Med Infect Dis 2023; 8:tropicalmed8010061. [PMID: 36668968 PMCID: PMC9860567 DOI: 10.3390/tropicalmed8010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
This study aimed to determine distinguishing predictors and develop a clinical score to differentiate COVID-19 and common viral infections (influenza, respiratory syncytial virus (RSV), dengue, chikungunya (CKV), and zika (ZKV)). This retrospective study enrolled 549 adults (100 COVID-19, 100 dengue, 100 influenza, 100 RSV, 100 CKV, and 49 ZKV) during the period 2017−2020. CKV and ZKV infections had specific clinical features (i.e., arthralgia and rash); therefore, these diseases were excluded. Multiple binary logistic regression models were fitted to identify significant predictors, and two scores were developed differentiating influenza/RSV from COVID-19 (Flu-RSV/COVID) and dengue from COVID-19 (Dengue/COVID). The five independent predictors of influenza/RSV were age > 50 years, the presence of underlying disease, rhinorrhea, productive sputum, and lymphocyte count < 1000 cell/mm3. Likewise, the five independent predictors of dengue were headache, myalgia, no cough, platelet count < 150,000/mm3, and lymphocyte count < 1000 cell/mm3. The Flu-RSV/COVID score (cut-off value of 4) demonstrated 88% sensitivity and specificity for predicting influenza/RSV (AUROC = 0.94). The Dengue/COVID score (cut-off value of 4) achieved 91% sensitivity and 94% specificity for differentiating dengue and COVID-19 (AUROC = 0.98). The Flu-RSV/COVID and Dengue/COVID scores had a high discriminative ability for differentiating influenza/RSV or dengue infection and COVID-19. The further validation of these scores is needed to ensure their utility in clinical practice.
Collapse
|
7
|
Oladipo HJ. Dengue virus and SARS-CoV-2 Co-infection dynamics: An emerging threat among African countries. Ann Med Surg (Lond) 2022; 82:104398. [PMID: 36035770 PMCID: PMC9394095 DOI: 10.1016/j.amsu.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/08/2023] Open
Abstract
The rising circulation of the vector borne disease such as dengue fever amidst the COVID-19 pandemic in African countries is on the rise, which pose a significant public health threat. In this article, we discussed the co-infection of dengue virus (DENV) (the causative agent of dengue fever) and SARS-CoV-2 (the causative agents of COVID-19) as well as the associated risk factors involved. Our review highlights that the continuous increase in the incidence and disease mortality from the co-infection of dengue Virus and SARS-CoV-2 is as result of inadequate surveillance and limited testing centers. Second, the overlapping clinical features and indistinguishable symptoms from both infections is a major challenge. Third, lack of scientific prudence among stakeholders has played a significant impact on how to contain these diseases. Therefore, there is a need to reassess research priorities in understanding the risk factors involved from the coinfection. Also, the development of accurate point-of-care diagnostics for COVID-19 and dengue fever coupled with community-based health intervention programs is highly essential for control. In Africa, the incidence and disease mortality rate from the co-infection of dengue fever and COVID- 19 is on the rise due to inadequate surveillance and limited testing centers. Overlapping clinical features and lack of scientific prudence among stakeholders have played a significant impact on how to contain these infectious diseases. Research priorities need to be reassessed with focus on understanding risk factors involved. Development of accurate point-of-care diagnostics and community-based health intervention programs for both infection is highly essential for control.
Collapse
Affiliation(s)
- Habeebullah Jayeola Oladipo
- Corresponding author. Faculty of Pharmaceutical Sciences, University of Ilorin, P.M.B. 1515, Ilorin, 240003, Nigeria.
| |
Collapse
|
8
|
Faustino R, Carvalho FR, Medeiros T, Familiar-Macedo D, Vianna RADO, Leite PEC, Pereira IR, Cardoso CAA, De Azeredo EL, Silva AA. Pro-Inflammatory Profile of Children Exposed to Maternal Chikungunya Virus Infection during the Intrauterine Period: A One-Year Follow-Up Study. Viruses 2022; 14:v14091881. [PMID: 36146688 PMCID: PMC9501274 DOI: 10.3390/v14091881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Chikungunya virus (CHIKV) vertical transmission occurs due to maternal viremia in the prepartum. Clinical presentation in neonates can be varied; however, the consequences of intrauterine exposure on the immune response are unclear. Thus, we aimed to analyze inflammatory alterations in children exposed to maternal CHIKV infection. This is a cross-sectional study that included children exposed to maternal CHIKV infection (confirmed by RT-qPCR and/or IgM). Circulant immune mediators were analyzed by a multiplex assay. RESULTS: We included 33 children, with a mean age of 3 ± 2.9 months-old, and 19 (57.6%) were male. Only one child presented neurological alterations. CHIKV-exposed infants showed elevated levels of MIP-1α, MIP-1β, and CCL-2 (p < 0.05). Pro-inflammatory cytokines such as TNFα, IL-6, and IL-7 (p < 0.0001) were also increased. In addition, lower levels of PDGF-BB and GM-CSF were observed in the same group (p < 0.0001). Principal component (PC) analysis highlighted a distinction in the inflammatory profile between groups, where PC explained 56.6% of the alterations. Our findings suggest that maternal exposure to CHIKV can affect the circulating levels of pro-inflammatory cytokines during the infants’ first year of life. The long-term clinical consequences of these findings should be investigated.
Collapse
Affiliation(s)
- Renan Faustino
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
| | - Fabiana Rabe Carvalho
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
| | - Thalia Medeiros
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
- Department of Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| | - Débora Familiar-Macedo
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Renata Artimos de Oliveira Vianna
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
| | | | - Isabela Resende Pereira
- Department of Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| | - Claudete Aparecida Araújo Cardoso
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
- Department of Maternal and Child, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
| | - Elzinandes Leal De Azeredo
- Viral Immunology Laboratory, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Correspondence: (E.L.D.A.); (A.A.S.); Tel.: +55-(21)-3674-7285 (A.A.S.)
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Hospital Universitario Antonio Pedro, Faculty of Medicine, Universidade Federal Fluminense, Niteroi 24033-900, Brazil
- Department of Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói 24033-900, Brazil
- Correspondence: (E.L.D.A.); (A.A.S.); Tel.: +55-(21)-3674-7285 (A.A.S.)
| |
Collapse
|
9
|
Sebastião CS, Gaston C, Paixão JP, Sacomboio ENM, Neto Z, de Vasconcelos JN, Morais J. Coinfection between SARS-CoV-2 and vector-borne diseases in Luanda, Angola. J Med Virol 2022; 94:366-371. [PMID: 34546584 PMCID: PMC8662186 DOI: 10.1002/jmv.27354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
Co-epidemics happening simultaneously can generate a burden on healthcare systems. The co-occurrence of SARS-CoV-2 with vector-borne diseases (VBD), such as malaria and dengue in resource-limited settings represents an additional challenge to the healthcare systems. Herein, we assessed the coinfection rate between SARS-CoV-2 and VBD to highlight the need to carry out an accurate diagnosis and promote timely measures for these infections in Luanda, the capital city of Angola. This was a cross-sectional study conducted with 105 subjects tested for the SARS-CoV-2 and VBD with a rapid detection test in April 2021. The participants tested positive for SARS-CoV-2 (3.80%), malaria (13.3%), and dengue (27.6%). Low odds related to testing positivity to SARS-CoV-2 or VBD were observed in participants above or equal to 40 years (odds ratio [OR]: 0.60, p = 0.536), while higher odds were observed in male (OR: 1.44, p = 0.392) and urbanized areas (OR: 3.78, p = 0.223). The overall co-infection rate between SARS-CoV-2 and VBD was 11.4%. Our findings showed a coinfection between SARS-CoV-2 with malaria and dengue, which could indicate the need to integrate the screening for VBD in the SARS-CoV-2 testing algorithm and the adjustment of treatment protocols. Further studies are warranted to better elucidate the relationship between COVID-19 and VBD in Angola.
Collapse
Affiliation(s)
- Cruz S. Sebastião
- Instituto Nacional de Investigação em Saúde (INIS)LuandaAngola
- Centro de Investigação em Saúde de Angola (CISA)CaxitoAngola
- Instituto Superior de Ciências da Saúde (ISCISA)Universidade Agostinho Neto (UAN)LuandaAngola
| | | | | | - Euclides N. M. Sacomboio
- Instituto Nacional de Investigação em Saúde (INIS)LuandaAngola
- Instituto Superior de Ciências da Saúde (ISCISA)Universidade Agostinho Neto (UAN)LuandaAngola
| | - Zoraima Neto
- Instituto Nacional de Investigação em Saúde (INIS)LuandaAngola
| | - Jocelyne Neto de Vasconcelos
- Instituto Nacional de Investigação em Saúde (INIS)LuandaAngola
- Centro de Investigação em Saúde de Angola (CISA)CaxitoAngola
| | - Joana Morais
- Instituto Nacional de Investigação em Saúde (INIS)LuandaAngola
- Faculdade de MedicinaUniversidade Agostinho NetoLuandaAngola
| |
Collapse
|
10
|
Guest PC, Zahedipour F, Majeed M, Jamialahmadi T, Sahebkar A. Multiplex Technologies in COVID-19 Research, Diagnostics, and Prognostics: Battling the Pandemic. Methods Mol Biol 2022; 2511:3-20. [PMID: 35838948 DOI: 10.1007/978-1-0716-2395-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to continuous technical developments and new insights into the high complexity of infectious diseases such as COVID-19, there is an increasing need for multiplex biomarkers to aid clinical management and support the development of new drugs and vaccines. COVID-19 disease requires rapid diagnosis and stratification to enable the most appropriate treatment course for the best possible outcomes for patients. In addition, these tests should be rapid, specific, and sensitive. They should rule out other potential causes of illness with simultaneous testing for other diseases. Elevated levels of specific biomarkers can be used to establish severity risks of chronic diseases so that patients can be provided the proper medication at the right time. This review describes the state-of-the-art technologies in proteomics, transcriptomics, and metabolomics, for multiplex biomarker approaches in COVID-19 research.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
| |
Collapse
|
11
|
Manzoor KN, Javed F, Ejaz M, Ali M, Mujaddadi N, Khan AA, Khattak AA, Zaib A, Ahmad I, Saeed WK, Manzoor S. The global emergence of Chikungunya infection: An integrated view. Rev Med Virol 2021; 32:e2287. [PMID: 34428335 DOI: 10.1002/rmv.2287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022]
Abstract
Chikungunya virus (CHIKV) is one of the emerging viruses around the globe. It belongs to the family Togaviridae and genus Alphavirus and is an arthropod borne virus that transmits by the bite of an infected mosquito, mainly through Aedes aegypti and Aedes albopcitus. It is a spherical, enveloped virus with positive single stranded RNA genome. It was first discovered during 1952-53 in Tanganyika, after which outbreaks were documented in many regions of the world. CHIKV has two transmission cycles; an enzootic sylvatic cycle and an urban cycle. CHIKV genome contains 11,900 nucleotides and two open reading frames and shows great sequence variability. Molecular mechanisms of virus host-cell interactions and the pathogenesis of disease are not fully understood. The disease involves three phases; acute, post-acute and chronic with symptoms including high-grade fever, arthralgia, macupapular rashes and headache. There is no licensed vaccine or specific treatment for CHIKV infection. This lack of specific interventions combined with difficulties in making a precise diagnosis together make the disease difficult to manage. In this review we aim to present the current knowledge of global epidemiology, transmission, structure, various aspects of diagnosis as well as highlight potential antiviral drugs and vaccines against CHIKV.
Collapse
Affiliation(s)
| | - Farakh Javed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Muhammad Ejaz
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Mubashar Ali
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Neelam Mujaddadi
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Abid Ali Khan
- Institute of Precision Medicine, Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Ibrar Ahmad
- Center for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Waqar Khalid Saeed
- Department of Biomedical Sciences, Pak-Autria Fachhochschule: Institute of Applied Sciences & Technology, Haripur, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman school of applied biosciences, National University of science and Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Chen XF, Hou X, Xiao M, Zhang L, Cheng JW, Zhou ML, Huang JJ, Zhang JJ, Xu YC, Hsueh PR. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms 2021; 9:microorganisms9071536. [PMID: 34361971 PMCID: PMC8304613 DOI: 10.3390/microorganisms9071536] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used in the field of clinical microbiology since 2010. Compared with the traditional technique of biochemical identification, MALDI-TOF MS has many advantages, including convenience, speed, accuracy, and low cost. The accuracy and speed of identification using MALDI-TOF MS have been increasing with the development of sample preparation, database enrichment, and algorithm optimization. MALDI-TOF MS has shown promising results in identifying cultured colonies and rapidly detecting samples. MALDI-TOF MS has critical research applications for the rapid detection of highly virulent and drug-resistant pathogens. Here we present a scientific review that evaluates the performance of MALDI-TOF MS in identifying clinical pathogenic microorganisms. MALDI-TOF MS is a promising tool in identifying clinical microorganisms, although some aspects still require improvement.
Collapse
Affiliation(s)
- Xin-Fei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Xin Hou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Jing-Wei Cheng
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China;
| | - Meng-Lan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Jing-Jing Huang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Jing-Jia Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Ying-Chun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; (X.-F.C.); (X.H.); (M.X.); (L.Z.); (M.-L.Z.); (J.-J.H.); (J.-J.Z.)
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
- Correspondence: (Y.-C.X.); (P.-R.H.)
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 40447, Taiwan;
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (Y.-C.X.); (P.-R.H.)
| |
Collapse
|