1
|
Baker AW, La Hoz RM, Anesi JA, Kwon JH, Wasylyshyn AI, Ford ES, Harrington SM, Miller MB, Weber DJ, Sickbert-Bennett EE, Talbot TR, Nguyen MH, Kramer KH, Nickel KB, Ziegler MJ, Arocha D, Henderson C, Lokhnygina Y, Maged A, Haridy S, Alexander BD, Stout JE, Anderson DJ. Epidemiology of Healthcare Facility-Associated Nontuberculous Mycobacteria From 2012 Through 2020 in a 10-Hospital Network in the United States. Clin Infect Dis 2025:ciaf169. [PMID: 40357718 DOI: 10.1093/cid/ciaf169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Data on the epidemiology of healthcare facility-associated (HCFA) nontuberculous mycobacteria (NTM) are sparse. We performed a multicenter longitudinal cohort study of HCFA NTM epidemiology. METHODS We retrospectively analyzed positive cultures for NTM performed from 2012 through 2020 within a network of 10 US academic hospitals and associated clinics. A unique NTM episode was defined as a patient's first positive culture for a particular NTM species and specimen source category (pulmonary vs extrapulmonary). Episodes linked to specimens obtained on day 3 or later of hospitalization were classified as hospital-onset (HO). Seven hospitals contributed at least 12 months of data prior to January 2014. Within this closed cohort, incidence rate ratios (IRRs) and trends in incidence from 2014 through 2020 were estimated, assuming the number of episodes followed the Poisson distribution. RESULTS A total of 12 855 unique NTM episodes occurred from 2012 through 2020 during 19 248 137 patient-days of surveillance. Of these episodes, 3045 (24%) were HO. HO incidence rates were highly variable among hospitals, with a median hospital rate of 1.06 episodes per 10 000 patient-days (range, 0.35-5.48). Within the 7-hospital closed cohort from 2014 through 2020, the incidence rate of HO episodes decreased from 2.29 to 1.42 episodes per 10 000 patient-days (IRR, 0.62; 95% confidence interval, .53-.73; P < .0001). CONCLUSIONS Incidence rates of HO NTM episodes decreased from 2014 through 2020, but rates varied substantially among hospitals. These results provide comprehensive data on HO NTM isolation, including benchmark rates that can be used to improve hospital-based NTM surveillance.
Collapse
Affiliation(s)
- Arthur W Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Ricardo M La Hoz
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Judith A Anesi
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennie H Kwon
- Division of Infectious Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Anastasia I Wasylyshyn
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily S Ford
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Susan M Harrington
- Pathology and Laboratory Medicine Department, Cleveland Clinic, Cleveland, Ohio, USA
| | - Melissa B Miller
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David J Weber
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Emily E Sickbert-Bennett
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Thomas R Talbot
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Hong Nguyen
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kailey Hughes Kramer
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katelin B Nickel
- Division of Infectious Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Matthew J Ziegler
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Doramarie Arocha
- Department of Health System Infection Prevention and Control, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles Henderson
- Department of Health System Infection Prevention and Control, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuliya Lokhnygina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ahmed Maged
- Department of Mechanical Engineering, Benha University, Benha, Egypt
- Department of Mechanical Engineering, University of North Texas, Denton, Texas, USA
| | - Salah Haridy
- Department of Mechanical Engineering, Benha University, Benha, Egypt
- Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Barbara D Alexander
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jason E Stout
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Deverick J Anderson
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| |
Collapse
|
2
|
Wanjiru ML, Matofari JW, Bebe BO, Njeru MJ, Nduko JM. Comparative Analysis of Virulence Genes in Non-Tuberculosis Mycobacteria (NTM) Isolated from Kenyan Camel Milk Suggests Potential Pathogenicity. Curr Microbiol 2025; 82:268. [PMID: 40304757 DOI: 10.1007/s00284-025-04244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Mycobacteria are a concern in camel milk due to their potential pathogenicity. This study explored the genetic characteristics of thirteen Mycobacteria isolates from camel milk collected in Isiolo County, Kenya, focusing on the identification and comparison of virulence genes. Using whole-genome sequencing (WGS) and the PATRIC annotation platform, we analyzed subsystems and specialty genes to uncover functional capability and potential pathogenic mechanisms. There were significant variations observed in the number of genes assigned to key subsystems such as metabolism, protein processing, stress response, and energy, suggesting diverse metabolic and survival strategies among the strains. Notably, strains such as Mycobacterium vaccae (JACC_055) and Mycobacterium pulveris (EL_188) exhibited a higher number of genes in the metabolism and stress response subsystems, respectively, indicating enhanced metabolic potential and adaptation to harsh environments. Virulence genes were identified across the isolates with Mycobacterium heidelburgense (EL_135), Mycobacterium colombiense (EL_158), and Mycolicibacterium pulveris (EL_188) showing the highest counts (22, 22, and 16, respectively), suggesting their increased pathogenic potential. The key virulence genes including ideR, relA, mbtH, esxR, phoP, and icl, were frequently present, highlighting their essential role in Mycobacterium virulence. Unique genes in certain isolates such as fbpC and esxN in EL_135 and EL_158 isolates indicate specific adaptations for nutrient acquisition and host interaction. A comparative analysis with Mycobacterium tuberculosis and M. avium revealed shared virulence genes (fbpA, fbpB, icl, ideR, relA, esxH, phoP) and unique ecc genes, highlighting similarities in pathogenic mechanisms and potential for host immune manipulation. Phylogenetic analysis demonstrated the genetic closeness of M. colombiense and M. heidelbergense to M. tuberculosis and M. avium, implying similar virulence capabilities. These findings enhance our understanding of the genetic diversity and pathogenic potential of Mycobacterium species in camel milk, emphasizing the importance of strain-specific analysis for disease management, therapeutic development, and public health awareness.
Collapse
Affiliation(s)
- Mwangi Linnet Wanjiru
- Department of Dairy and Food Science and Technology, Egerton University, Njoro, P.O. Box 536-20115, Egerton, Kenya.
| | - Joseph Wafula Matofari
- Department of Dairy and Food Science and Technology, Egerton University, Njoro, P.O. Box 536-20115, Egerton, Kenya
| | - Bockline Omedo Bebe
- Department of Animal Science, Egerton University, Njoro, P.O. Box 536-20115, Egerton, Kenya
| | - Mwaniki John Njeru
- Centre of Microbiology Research, Kenya Medical Research Institute, P.O. Box 54840 00200, Nairobi, Kenya
| | - John Masani Nduko
- Department of Dairy and Food Science and Technology, Egerton University, Njoro, P.O. Box 536-20115, Egerton, Kenya
| |
Collapse
|
3
|
Liu Y, Wang J, Pu Y, Tang S. Rapid diagnosis of disseminated Mycobacterium avium complex infection mimicking metastatic malignancy using metagenomic next-generation sequencing. THE NATIONAL MEDICAL JOURNAL OF INDIA 2025; 38:16-17. [PMID: 40390350 DOI: 10.25259/nmji_872_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Disseminated non-tuberculous mycobacteria (NTM) disease, which is mainly found in immunocompromised individuals, is a rare and severe infection whose diagnosis poses a challenge to clinicians. We present a patient with disseminated NTM infection mistaken for metastatic malignancy in an otherwise healthy patient and the tortuous diagnostic process. Metagenomic next-generation sequencing (mNGS) played a critical role in the diagnosis. Further screening for anti-interferon-γ antibodies revealed that the patient had a potential immunodeficiency.
Collapse
Affiliation(s)
- Yan Liu
- Department of Infectious Diseases Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Department of Infectious Diseases Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, China
| | - Jie Wang
- Department of Infectious Diseases Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, China
| | - Yonglan Pu
- Department of Infectious Diseases Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, China
| | - Shenjie Tang
- Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| |
Collapse
|
4
|
Kim KJ, Chang Y, Yun SG, Nam MH, Cho Y. Evaluation of a Commercial Multiplex Real-Time PCR with Melting Curve Analysis for the Detection of Mycobacterium tuberculosis Complex and Five Nontuberculous Mycobacterial Species. Microorganisms 2024; 13:26. [PMID: 39858795 PMCID: PMC11767457 DOI: 10.3390/microorganisms13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Accurate and timely diagnosis of mycobacterial infections, including Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM), is crucial for effective disease management. METHODS This study evaluated the performance of the NeoPlex TB/NTM-5 Detection Kit (NeoPlex assay, Seongnam, Republic of Korea), a multiplex real-time PCR assay that incorporates melting curve analysis, compared with the line-probe assay (LPA). The NeoPlex assay could simultaneously detect and differentiate MTBC from five other NTM species: Mycobacterium intracellulare, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium abscessus, and Mycobacterium massiliense. A total of 91 acid-fast bacillus culture-positive samples, comprising 36 MTBC and 55 NTM isolates, were collected from the Korea University Anam Hospital. RESULTS The NeoPlex assay successfully detected nucleic acids in 87 of the 91 isolates (95.6%). Notably, it identified additional mycobacterial nucleic acids not detected by the LPA in eight isolates. These findings were confirmed via DNA sequencing. The assay had 100% sensitivity and specificity for M. intracellulare, M. abscessus, M. massilense, NTM, and MTBC, whereas it had 100% specificity and sensitivity of 90.9% and 75.0% for M. avium and M. kansasii, respectively. CONCLUSIONS These results highlight the potential of the NeoPlex assay to enhance rapid and accurate diagnosis of mycobacterial infections, particularly in settings in which prompt treatment initiation is essential.
Collapse
Affiliation(s)
- Keun Ju Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (S.G.Y.); (M.-H.N.); (Y.C.)
| | - Yunhee Chang
- Department of Biomedical Laboratory Science, Kyungnam College of Information & Technology, Busan 47011, Republic of Korea;
| | - Seung Gyu Yun
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (S.G.Y.); (M.-H.N.); (Y.C.)
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (S.G.Y.); (M.-H.N.); (Y.C.)
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea; (S.G.Y.); (M.-H.N.); (Y.C.)
| |
Collapse
|
5
|
Spagnolo AM, De Giglio O, Caggiano G, D’Agostini F, Martini M, Orsini D, La Maestra S. The Spread of Mycobacterium chimaera from Heater-Cooler Units and Infection Risk in Heart Surgery: Lessons from the Global Outbreak? Pathogens 2024; 13:781. [PMID: 39338972 PMCID: PMC11434768 DOI: 10.3390/pathogens13090781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mycobacterium chimaera (MC), a member of the Mycobacterium avium complex, can cause infections in patients after open-heart surgery due to contaminated heater-cooler units (HCUs). The transmission route of HCU-related MC infection is non-inhalational, and infection can occur in patients without previously known immune deficiency. Patients may develop endocarditis of the prosthetic valve, infection of the vascular graft, and/or manifestations of disseminated mycobacterial infection (splenomegaly, arthritis, hepatitis, nephritis, myocarditis, etc.). MC infections have serious outcomes (30-50% recurrence rate, 20-67% mortality rate). In 2015, an international outbreak of M. chimaera infections among patients undergoing cardiothoracic surgeries was associated with exposure to contaminated LivaNova 3T HCUs (formerly Stöckert 3T heater-cooler system, London, United Kingdom). In response to the global outbreak, many international agencies have issued directives and recommendations in order to reduce the risk of MC infection in cardiac surgery. Whole-genome sequencing (WGS) technology can be used to describe the global spread and dynamics of MC infections, to characterize local outbreaks, and also to identify sources of infection in hospital settings. In order to minimize the risk of contamination of HCUs and reduce the risk of patient infection, it is imperative that healthcare facilities establish a program of regular cleaning and disinfection maintenance procedures as well as monitoring of the water used and the air in the operating room, in accordance with the manufacturer's procedure.
Collapse
Affiliation(s)
- Anna Maria Spagnolo
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Giuseppina Caggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Francesco D’Agostini
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - Mariano Martini
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - Davide Orsini
- University Museum System of Siena (SIMUS), History of Medicine, University of Siena, 53100 Siena, Italy
| | - Sebastiano La Maestra
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| |
Collapse
|
6
|
Mon ML, Romano N, Farace PD, Tortone CA, Oriani DS, Picariello G, Zumárraga MJ, Gioffré AK, Talia PM. Exploring the cellulolytic activity of environmental mycobacteria. Tuberculosis (Edinb) 2024; 147:102516. [PMID: 38735123 DOI: 10.1016/j.tube.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Although studies on non-tuberculous mycobacteria have increased in recent years because they cause a considerable proportion of infections, their cellulolytic system is still poorly studied. This study presents a characterization of the cellulolytic activities of environmental mycobacterial isolates derived from soil and water samples from the central region of Argentina, aimed to evaluate the conservation of the mechanism for the degradation of cellulose in this group of bacteria. The molecular and genomic identification revealed identity with Mycolicibacterium septicum. The endoglucanase and total cellulase activities were assessed both qualitatively and quantitatively and the optimal enzymatic conditions were characterized. A specific protein of around 56 kDa with cellulolytic activity was detected in a zymogram. Protein sequences possibly arising from a cellulase were identified by mass spectrometry-based shotgun proteomics. Results showed that M. septicum encodes for cellulose- and hemicellulose-related degrading enzymes, including at least an active β-1,4 endoglucanase enzyme that could be useful to improve its survival in the environment. Given the important health issues related to mycobacteria, the results of the present study may contribute to the knowledge of their cellulolytic system, which could be important for their ability to survive in many different types of environments.
Collapse
Affiliation(s)
- María Laura Mon
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Nelson Romano
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Pablo Daniel Farace
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Claudia A Tortone
- Cátedra de Bacteriología y Micología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina.
| | - Delia S Oriani
- Cátedra de Bacteriología y Micología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina.
| | - Gianluca Picariello
- Istituto di Scienze Dell'Alimentazione, Consiglio Nazionale Delle Ricerche, Via Roma 64, 83100, Avellino, Italy.
| | - Martín José Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Andrea Karina Gioffré
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Yadav RN, Chowdary YY, Bhalla M, Verma AK. Identification of Nontuberculous Mycobacterium Species by Polymerase Chain Reaction - Restriction Enzyme Analysis (PCR-REA) of rpoB gene in Clinical Isolates. Int J Mycobacteriol 2024; 13:307-313. [PMID: 39277894 DOI: 10.4103/ijmy.ijmy_134_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) infections are an emerging global health concern with increasing incidence. Conventional identification methods for NTM species in clinical settings are prone to errors. This study evaluates a newer method, polymerase chain reaction-restriction enzyme analysis (PCR-REA) of the rpoB gene, for NTM species identification. The study identified NTM species in clinical samples using conventional biochemical techniques and compared the results with PCR-REA of the rpoB gene. This cross-sectional study was conducted at a tertiary health-care center in North India over 18 months, analyzing both pulmonary and extrapulmonary samples. METHODS Two hundred and forty-seven NTM isolates were identified using phenotypic and biochemical methods. The same isolates were subjected to rpoB gene amplification by PCR followed by REA using Msp I and Hae III enzymes. RESULTS Conventional methods identified 12 different NTM species (153 slow-growing and 94 rapid-growing), whereas PCR-REA identified 16 species (140 slow-growing, 107 rapid-growing). The Mycobacterium avium intracellulare complex was the most common species isolated. PCR-REA demonstrated higher resolution in species identification, particularly in differentiating within species complexes. CONCLUSIONS PCR-REA of the rpoB gene proves to be a simple, rapid, and more discriminative tool for NTM species identification compared to conventional methods. This technique could significantly improve the diagnosis and management of emerging NTM infections in clinical settings.
Collapse
Affiliation(s)
- Raj Narayan Yadav
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Yellanki Yashwanth Chowdary
- Department of Medicine, Shri B. M. Patil Medical College Hospital and Research Center, BLDE (DU), Vijaypura, Karnataka, India
| | - Manpreet Bhalla
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Ajoy Kumar Verma
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| |
Collapse
|
8
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Wang L, Wang P, Yang JH, Wu XC, Yu FY, Gu J, Sha W. Rapid detection of clarithromycin resistance in clinical samples of nontuberculous mycobacteria by nucleotide MALDI-TOF MS. J Microbiol Methods 2024; 219:106894. [PMID: 38325717 DOI: 10.1016/j.mimet.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/09/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The multidrug resistance of nontuberculous mycobacteria (NTM) poses a significant therapeutic challenge. Rapid and reliable drug susceptibility testing is urgently needed for evidence-based treatment decision, especially for macrolides. This study evaluated the utility of nucleotide matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (NMTMS) in detecting clarithromycin resistance. Sixty-four clinical isolates were identified to species by NMTMS, and mutations associated with clarithromycin resistance were detected. Twenty-three M. abscessus (MAB) isolates and 30 M. intracellulare isolates (including M. intracellulare alone and M. intracellulare in combination with other SGM species) were included for analysis. The predictive sensitivity of NMTMS in detecting clarithromycin resistance was 82.35% (95% CI, 56.57% to 96.20%), with an AUC of 0.89 (95% CI, 0.77 to 0.96) in all MAB and M. intracellulare (n = 53), and up to 93.33% (95% CI, 68.05% to 99.83%) in MAB alone (n = 23). The assay provides a rapid, high-throughput, and highly sensitive tool for detecting clarithromycin resistance in NTM, especially in MAB. Optimization of the panel is necessary to enhance diagnostic accuracy.
Collapse
Affiliation(s)
- Li Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Hui Yang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Cui Wu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang-You Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Gu
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Luukinen B, Antikainen J, Aittoniemi J, Miikkulainen-Lahti T, Hyyryläinen HL, Pätäri-Sampo A. Evaluation of the FluoroType Mycobacteria assay for identification of mycobacteria. J Clin Microbiol 2024; 62:e0105423. [PMID: 38350859 PMCID: PMC10935635 DOI: 10.1128/jcm.01054-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Accurate species identification is a prerequisite for successful management of tuberculosis and non-tuberculous mycobacterial (NTM) diseases. The novel FluoroType Mycobacteria assay combines three established GenoType DNA strip assays (CM, AS, and NTM-DR), allowing detection of Mycobacterium tuberculosis and 32 NTM species/subspecies in a single assay with automatic detection and result analysis. We evaluated the clinical performance of the FluoroType assay and its feasibility in replacing the GenoType Mycobacterium CM assay as the initial method for mycobacterial identification. A total of 191 clinical mycobacterial cultures were analyzed in this study: 180 identified for one mycobacterial species, 6 for multiple, and 5 for no mycobacterial species. Positive percent agreement (PPA) for the FluoroType assay was 87.8% (n = 158), with full agreement for 23/29 species. Weakest PPA was observed for Mycobacterium gordonae (50%, n = 9/18), Mycobacterium interjectum (40%, n = 2/5), and Mycobacterium intracellulare (42%, n = 5/12). Clinical and mixed cultures containing multiple mycobacterial species gave equally single species and genus level identifications (n = 30). No cross-reactivity with non-mycobacterial species was observed (n = 22). In a separate in silico analysis of 2016-2022 HUS area (Finland) register data (n = 2,573), the FluoroType assay was estimated to produce 18.8% (n = 471) inadequate identifications (genus/false species) if used as the primary identification method compared to 14.2% (n = 366) with the GenoType CM assay. The FluoroType assay was significantly more convenient in terms of assay workflow and result interpretation compared to the entirely manual and subjective GenoType CM assay. However, the feasibility of the assay should be critically assessed with respect to the local NTM species distribution. IMPORTANCE This study is the first clinical evaluation report of the novel FluoroType Mycobacteria assay. The assay has the potential to replace the established GenoType NTM product family in identification of culture-enriched mycobacteria. However, our research results suggest that the assay performs suboptimally and may not be feasible for use in all clinical settings.
Collapse
Affiliation(s)
- Bruno Luukinen
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Microbiology, Fimlab Laboratories, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenni Antikainen
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Janne Aittoniemi
- Department of Clinical Microbiology, Fimlab Laboratories, Tampere, Finland
| | - Terhi Miikkulainen-Lahti
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Anu Pätäri-Sampo
- Department of Clinical Microbiology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Opperman CJ, Singh S, Goosen W, Cox H, Warren R, Esmail A. Incorporating direct molecular diagnostics in management algorithms for nontuberculous mycobacteria: Is it high time? IJID REGIONS 2024; 10:140-145. [PMID: 38304760 PMCID: PMC10831244 DOI: 10.1016/j.ijregi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
Nontuberculous mycobacteria (NTM) are a group of acid-fast mycobacteria other than Mycobacterium tuberculosis complex (MTBC) that cause pulmonary disease that is similar to the disease caused by MTBC. International guidelines for the diagnosis of pulmonary NTM disease are rigid and have remained unchanged for nearly 2 decades. In this opinion piece, we provide a new perspective on the traditional criteria by suggesting a diagnostic algorithm that incorporates direct molecular identification of NTM performed on raw sputum specimens (using Sanger or targeted deep sequencing approaches, among others) paired with traditional culture methods. Our approach ensures a more rapid diagnosis of pulmonary NTM disease, thus, facilitating timeous clinical diagnosis, and prompt treatment initiation, where indicated, and leverages recent advances in novel molecular techniques into routine NTM identification practice.
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB Laboratory, Cape Town, South Africa
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sarishna Singh
- National Health Laboratory Service, Green Point TB Laboratory, Cape Town, South Africa
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Wynand Goosen
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Helen Cox
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa
| | - Rob Warren
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Aliasgar Esmail
- UCT Lung Institute, Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town, & Groote Schuur Hospital
| |
Collapse
|
12
|
Khare R, Brown-Elliott BA. Culture, Identification, and Antimicrobial Susceptibility Testing of Pulmonary Nontuberculous Mycobacteria. Clin Chest Med 2023; 44:743-755. [PMID: 37890913 DOI: 10.1016/j.ccm.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacteria (NTM) typically cause opportunistic pulmonary infections and reliable laboratory results can assist with diagnosis of disease. Microscopy can detect acid-fast bacilli from specimens though it has poor sensitivity. Solid and liquid culture are used to grow NTM, which are identified by molecular or protein-based assays. Because culture has a long turnaround time, some assays are designed to identify NTM directly from sputum specimens. When indicated, phenotypic susceptibility testing should be performed by broth microdilution as per the guidelines from the Clinical Laboratory Standards Institute. Genotypic susceptibility methods may be used to decrease the turnaround time for some antimicrobials.
Collapse
Affiliation(s)
- Reeti Khare
- Mycobacteriology Laboratory, 1400 Jackson Street, National Jewish Health, Denver, CO 80238, USA.
| | - Barbara A Brown-Elliott
- The University of TX Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, 11937 US Highway 271, Tyler, TX 75708, USA
| |
Collapse
|
13
|
Bhanushali J, Jadhav U, Ghewade B, Wagh P. Unveiling the Clinical Diversity in Nontuberculous Mycobacteria (NTM) Infections: A Comprehensive Review. Cureus 2023; 15:e48270. [PMID: 38054150 PMCID: PMC10695653 DOI: 10.7759/cureus.48270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
Once considered rare, nontuberculous mycobacterial (NTM) infections have garnered increasing attention in recent years. This comprehensive review provides insights into the epidemiology, clinical diversity, diagnostic methods, treatment strategies, prevention, and emerging research trends in NTM infections. Key findings reveal the global prevalence of NTM infections, their diverse clinical presentations affecting respiratory and extra-pulmonary systems, and the diagnostic challenges addressed by advances in microbiological, radiological, and immunological methods. Treatment complexities, especially drug resistance and patient adherence, are discussed, along with the vulnerability of special populations. The importance of early detection and management is underscored. Prospects in NTM research, including genomics, diagnostics, drug development, and multidisciplinary approaches, promise to enhance our understanding and treatment of these infections. This review encapsulates the multifaceted nature of NTM infections, offering a valuable resource for clinicians, researchers, and public health professionals.
Collapse
Affiliation(s)
- Jay Bhanushali
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ulhas Jadhav
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Babaji Ghewade
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pankaj Wagh
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
14
|
Cocorullo M, Chiarelli LR, Stelitano G. Improving Protection to Prevent Bacterial Infections: Preliminary Applications of Reverse Vaccinology against the Main Cystic Fibrosis Pathogens. Vaccines (Basel) 2023; 11:1221. [PMID: 37515037 PMCID: PMC10384294 DOI: 10.3390/vaccines11071221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to develop infections and biofilms in the thick mucus that covers their lungs, mainly caused by Burkholderia cepacia complex, Haemophilus influenzae, Mycobacterium abscessus complex, Pseudomonas aeruginosa and Staphylococcus aureus. These infections are complicated to treat and prevention remains the best strategy. Despite the availability of vaccines against some strains of those pathogens, it is necessary to improve the immunization of people with Cystic Fibrosis against all of them. An effective approach is to develop a broad-spectrum vaccine to utilize proteins that are well conserved across different species. In this context, reverse vaccinology, a method based on computational analysis of the genome of various microorganisms, appears as one of the most promising tools for the identification of putative targets for broad-spectrum vaccine development. This review provides an overview of the vaccines that are under development by reverse vaccinology against the aforementioned pathogens, as well as the progress made so far.
Collapse
Affiliation(s)
- Mario Cocorullo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
15
|
Alam MS, Guan P, Zhu Y, Zeng S, Fang X, Wang S, Yusuf B, Zhang J, Tian X, Fang C, Gao Y, Khatun MS, Liu Z, Hameed HMA, Tan Y, Hu J, Liu J, Zhang T. Comparative genome analysis reveals high-level drug resistance markers in a clinical isolate of Mycobacterium fortuitum subsp . fortuitum MF GZ001. Front Cell Infect Microbiol 2023; 12:1056007. [PMID: 36683685 PMCID: PMC9846761 DOI: 10.3389/fcimb.2022.1056007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Infections caused by non-tuberculosis mycobacteria are significantly worsening across the globe. M. fortuitum complex is a rapidly growing pathogenic species that is of clinical relevance to both humans and animals. This pathogen has the potential to create adverse effects on human healthcare. Methods The MF GZ001 clinical strain was collected from the sputum of a 45-year-old male patient with a pulmonary infection. The morphological studies, comparative genomic analysis, and drug resistance profiles along with variants detection were performed in this study. In addition, comparative analysis of virulence genes led us to understand the pathogenicity of this organism. Results Bacterial growth kinetics and morphology confirmed that MF GZ001 is a rapidly growing species with a rough morphotype. The MF GZ001 contains 6413573 bp genome size with 66.18 % high G+C content. MF GZ001 possesses a larger genome than other related mycobacteria and included 6156 protein-coding genes. Molecular phylogenetic tree, collinearity, and comparative genomic analysis suggested that MF GZ001 is a novel member of the M. fortuitum complex. We carried out the drug resistance profile analysis and found single nucleotide polymorphism (SNP) mutations in key drug resistance genes such as rpoB, katG, AAC(2')-Ib, gyrA, gyrB, embB, pncA, blaF, thyA, embC, embR, and iniA. In addition, the MF GZ001strain contains mutations in iniA, iniC, pncA, and ribD which conferred resistance to isoniazid, ethambutol, pyrazinamide, and para-aminosalicylic acid respectively, which are not frequently observed in rapidly growing mycobacteria. A wide variety of predicted putative potential virulence genes were found in MF GZ001, most of which are shared with well-recognized mycobacterial species with high pathogenic profiles such as M. tuberculosis and M. abscessus. Discussion Our identified novel features of a pathogenic member of the M. fortuitum complex will provide the foundation for further investigation of mycobacterial pathogenicity and effective treatment.
Collapse
Affiliation(s)
- Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Sanshan Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xiange Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Mst Sumaia Khatun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
16
|
Solanki P, Lipman M, McHugh TD, Satta G. Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Front Microbiol 2022; 13:1044515. [PMID: 36523832 PMCID: PMC9745125 DOI: 10.3389/fmicb.2022.1044515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Collapse
Affiliation(s)
- Priya Solanki
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Marc Lipman
- UCL-TB and UCL Respiratory, University College London, London, United Kingdom
- Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Timothy D. McHugh
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| | - Giovanni Satta
- UCL-TB and UCL Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Mitigation of nontuberculous mycobacteria in hospital water: challenges for infection prevention. Curr Opin Infect Dis 2022; 35:330-338. [PMID: 35849523 DOI: 10.1097/qco.0000000000000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent literature on nontuberculous mycobacteria in water of healthcare systems. Despite improvement in identification techniques and emergence of infection prevention and control programs, nontuberculous mycobacteria remain present in hospital water systems, causing outbreaks and pseudo-outbreaks in healthcare settings. RECENT FINDINGS Waterborne outbreaks and pseudo-outbreaks of nontuberculous mycobacteria continue to affect hospitals. Improvements in methods of identification and investigation, including MALDI-TOF and whole genome sequencing with evaluation of single nucleotide polymorphisms, have been used successfully in outbreak and pseudo-outbreak investigations. Recent studies have shown control of outbreaks in immunocompromised patients through the use of sterile water for consumption, as well as control of pseudo-outbreaks by using sterile water for procedures. Construction activities have been implicated in outbreaks and pseudo-outbreaks of nontuberculous mycobacteria. Water management programs are now required by the Joint Commission, which will likely improve water risk mitigation. SUMMARY Improvement in detection and identification of nontuberculous mycobacteria has led to increasing recognition of waterborne outbreaks and pseudo-outbreaks. Water management programs are of vital importance in infection prevention.
Collapse
|
18
|
Potential opportunities and challenges for infection prevention and control for cystic fibrosis in the modern era. Curr Opin Infect Dis 2022; 35:346-352. [PMID: 35849525 DOI: 10.1097/qco.0000000000000847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW We describe recent changes in care for people with cystic fibrosis (PwCF) that could impact infection prevention and control (IP&C) practices. RECENT FINDINGS Current IP&C guidelines primarily aim to prevent acquisition and transmission of pathogens in PwCF utilizing evidence-based recommendations for healthcare settings. Currently, highly effective modulator therapy (HEMT) is dramatically improving the clinical manifestations of cystic fibrosis and reducing pulmonary exacerbations and hospitalizations. Thus, it is feasible that long-term, sustained improvements in pulmonary manifestations of cystic fibrosis could favorably alter cystic fibrosis microbiology. The COVID-19 pandemic increased the use of virtual care, enabling PwCF to spend less time in healthcare settings and potentially reduce the risk of acquiring cystic fibrosis pathogens. The increasing use of whole genome sequencing (WGS) shows great promise in elucidating sources of cystic fibrosis pathogens, shared strains, and epidemic strains and ultimately could allow the cystic fibrosis community to monitor the safety of changed IP&C practices, if deemed appropriate. Finally, given the nonhealthcare environmental reservoirs for cystic fibrosis pathogens, practical guidance can inform PwCF and their families about potential risks and mitigation strategies. SUMMARY New developments in the treatment of PwCF, a shift toward virtual care delivery of care, and use of WGS could change future IP&C practices.
Collapse
|
19
|
Gleeson LE, Waterer G. Beyond antibiotics: recent developments in the diagnosis and management of nontuberculous mycobacterial infection. Breathe (Sheff) 2022; 18:210171. [PMID: 36337137 PMCID: PMC9584569 DOI: 10.1183/20734735.0171-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) pulmonary disease represents a significant clinical challenge with suboptimal therapy and increasing prevalence globally. Although clinical practice guidelines seek to standardise the approach to diagnosis and treatment of NTM disease, a lack of robust evidence limits their utility and significant variability exists in clinical practice. Here we walk through some novel approaches in diagnosis and therapy that are under development to tackle a disease where traditional strategies are failing. Prevalence of NTM disease is rising globally, yet current diagnostic and therapeutic strategies are lacking. This review describes some burgeoning diagnostic and therapeutic approaches, but it is clear that real progress will need more focused attention.https://bit.ly/3O0K2SP
Collapse
|
20
|
Lorente-Leal V, Liandris E, Bezos J, Pérez-Sancho M, Romero B, de Juan L. MALDI-TOF Mass Spectrometry as a Rapid Screening Alternative for Non-tuberculous Mycobacterial Species Identification in the Veterinary Laboratory. Front Vet Sci 2022; 9:827702. [PMID: 35155660 PMCID: PMC8831857 DOI: 10.3389/fvets.2022.827702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are difficult to identify by biochemical and genetic methods due to their microbiological properties and complex taxonomy. The development of more efficient and rapid methods for species identification in the veterinary microbiological laboratory is, therefore, of great importance. Although MALDI-TOF Mass Spectrometry (MS) has become a promising tool for the identification of NTM species in human clinical practise, information regarding its performance on veterinary isolates is scarce. This study assesses the capacity of MALDI-TOF MS to identify NTM isolates (n = 75) obtained from different animal species. MALDI-TOF MS identified 76.0% (n = 57) and 4% (n = 3) of the isolates with high and low confidence, respectively, in agreement with the identification achieved by Sanger sequencing of housekeeping genes (16S rRNA, hsp65, and rpoB). Thirteen isolates (17.3%) were identified by Sanger sequencing to the complex level, indicating that these may belong to uncharacterised species. MALDI-TOF MS approximated low confidence identifications toward closely related mycobacterial groups, such as the M. avium or M. terrae complexes. Two isolates were misidentified due to a high similarity between species or due to the lack of spectra in the database. Our results suggest that MALDI-TOF MS can be used as an effective alternative for rapid screening of mycobacterial isolates in the veterinary laboratory and potentially for the detection of new NTM species. In turn, Sanger sequencing could be implemented as an additional method to improve identifications in species for which MALDI-TOF MS identification is limited or for further characterisation of NTM species.
Collapse
Affiliation(s)
- Víctor Lorente-Leal
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Emmanouil Liandris
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Beatriz Romero
| | - Lucía de Juan
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|