1
|
Riego DA, Sbarato VM, Leani JJ, Sánchez HJ, Carlomagno I, Perez RD. Characterization of copper speciation on waste biomass of phytofiltration systems using energy dispersive Inelastic X-ray scattering. Anal Chim Acta 2024; 1329:343201. [PMID: 39396285 DOI: 10.1016/j.aca.2024.343201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Remediation of heavy metal-contaminated water using phytoremediation with accumulator aquatic plants is a promising low-cost emerging technology that adapts very well to the surrounding ecosystem. For the system to work efficiently, metal-saturated plants must be replaced, producing a potentially toxic amount of biomass that is usually stored dry to reduce its volume. The speciation of the high metal content in this biomass is crucial to define its final destination. This work explores the application of synchrotron-based EDIXS (Energy Dispersive Inelastic X-ray Scattering) to monitor the speciation of copper in regional aquatic plants from a laboratory-scale phytoremediation system. RESULTS The phytofiltration system utilized Lemna minor L. and Salvinia biloba Raddi species grown under controlled conditions of light and nutrient availability. Both species are known hyperaccumulators of copper and are prevalent in lakes and rivers across South America. The validation of EDIXS was previously carried out by comparing the results of copper standard samples with those obtained by XANES. The findings revealed that both plant species retained copper in chemical complexes exhibiting octahedral coordination with a Cu valence of 2. Notably, differences emerged between the leaves and roots of Lemna minor L., suggesting a more pronounced adsorption of copper in its leaves, a trend that intensified with exposure. In opposite, for Salvinia the differences between leaves and roots suggests the presence of specific protective mechanisms to cope the copper exposure. Surprisingly, no significant dependence on copper concentration of the aqueous media was observed for either species. SIGNIFICANCE AND NOVELTY These promising results endorse the viability of the proposed methodology in identifying the most effective fate of biomass generated in phytoremediation systems. EDIXS provides a valid tool for performing local copper speciation in aquatic plants with sufficient selectivity to identify subtle differences in various biological tissues. The simplicity of this methodology renders it a valuable tool for advancing our comprehension of metal speciation within waste biomass, thereby holding significant implications for the development of environmental remediation strategies.
Collapse
Affiliation(s)
- Daniela A Riego
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina
| | - Viviana M Sbarato
- Faculty of Agronomy. National University of Córdoba. Córdoba, Argentina
| | - Juan José Leani
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina; Faculty of Mathematics, Physics, Astronomy and Computation. National University of Córdoba. Córdoba, Argentina
| | - Héctor J Sánchez
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina; Faculty of Mathematics, Physics, Astronomy and Computation. National University of Córdoba. Córdoba, Argentina
| | | | - Roberto Daniel Perez
- IFEG (Physics Institute Enrique Gaviola), CONICET (National Research Council Scientific and Technical) Córdoba, Argentina; Faculty of Mathematics, Physics, Astronomy and Computation. National University of Córdoba. Córdoba, Argentina.
| |
Collapse
|
2
|
Chirilă Băbău AM, Micle V, Damian GE, Sur IM. Lead and copper removal from sterile dumps by phytoremediation with Robinia pseudoacacia. Sci Rep 2024; 14:9842. [PMID: 38684877 PMCID: PMC11059218 DOI: 10.1038/s41598-024-60412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
In Romania, huge quantities of gangue material from the mining activity practiced in the past were improperly stored and led to the pollution of the environment. Thus, this work is framed to manage the sterile dump of the "Radeș" mine (Alba, Romania) through a 12-week phytoremediation process. The efficient use of Robinia pseudoacacia was studied through the implementation, at the laboratory level, of a phytoremediation experiment based on various variants prepared by mixtures of gangue material, uncontaminated soil, and dehydrated sludge. The prepared variants, all planted with R. pseudoacacia, were watered with tap water, potassium monobasic phosphate, and enzyme solution. The bioconcentration and translocation factors for lead showed values ˂ 1, which indicates a potential presence of an exclusion system for Pb or a reduced Pb bioavailability since the R. pseudoacacia accumulates high concentrations of metals absorbed on and inside the roots. For copper, both factors had values > 1 indicating the suitability of R. pseudoacacia to readily translocate copper into the epigean organs. In the investigated experimental conditions, the highest efficiency in the removal of copper (93.0%) and lead (66.4%) by plants was obtained when gangue material was not mixed with other materials and wetted with enzymatic solution.
Collapse
Affiliation(s)
- Adriana Mihaela Chirilă Băbău
- Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400 641, Cluj-Napoca, Romania
| | - Valer Micle
- Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400 641, Cluj-Napoca, Romania.
| | - Gianina Elena Damian
- Department of Cadastre, Civil and Environmental Engineering, "1 Decembrie 1918" University of Alba Iulia, Alba Iulia, Romania.
| | - Ioana Monica Sur
- Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400 641, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
He S, Niu Y, Xing L, Liang Z, Song X, Ding M, Huang W. Research progress of the detection and analysis methods of heavy metals in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1310328. [PMID: 38362447 PMCID: PMC10867983 DOI: 10.3389/fpls.2024.1310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Heavy metal (HM)-induced stress can lead to the enrichment of HMs in plants thereby threatening people's lives and health via the food chain. For this reason, there is an urgent need for some reliable and practical techniques to detect and analyze the absorption, distribution, accumulation, chemical form, and transport of HMs in plants for reducing or regulating HM content. Not only does it help to explore the mechanism of plant HM response, but it also holds significant importance for cultivating plants with low levels of HMs. Even though this field has garnered significant attention recently, only minority researchers have systematically summarized the different methods of analysis. This paper outlines the detection and analysis techniques applied in recent years for determining HM concentration in plants, such as inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray absorption spectroscopy (XAS), X-ray fluorescence spectrometry (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), non-invasive micro-test technology (NMT) and omics and molecular biology approaches. They can detect the chemical forms, spatial distribution, uptake and transport of HMs in plants. For this paper, the principles behind these techniques are clarified, their advantages and disadvantages are highlighted, their applications are explored, and guidance for selecting the appropriate methods to study HMs in plants is provided for later research. It is also expected to promote the innovation and development of HM-detection technologies and offer ideas for future research concerning HM accumulation in plants.
Collapse
Affiliation(s)
- Shuang He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuting Niu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Xing
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meihai Ding
- Management Department, Xi’an Ande Pharmaceutical Co; Ltd., Xi’an, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
4
|
Kharazian P, Cappai G, Boi ME, Porceddu M, Piredda M, De Giudici G, Bacchetta G. Greenhouse investigation on the phytoremediation potential of pioneer tree Pinus halepensis Mill. in abandoned mine site. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:773-783. [PMID: 37814784 DOI: 10.1080/15226514.2023.2267128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Tailings and mine dumps are often pollutant sources that pose serious environmental threats to surrounding areas. The use of pioneer vascular plants to extract or stabilize metals is considered among the more effective mine tailing reclamation techniques. The study aimed at evaluating the phytoremediation potential of Pinus halepensis in abandoned mine-tailing (SW-Sardinia, Italy). Plant ability to tolerate high Zn, Pb, and Cd concentration and their accumulation in roots and aerial parts were assessed at greenhouse conditions. Experiments were performed on 45 seedlings planted in different substrates (mine-tailings, mine-tailings compost-amended, and reference) and on 15 seedlings grown spontaneously in the contaminated mine site investigated with their own substrates. The phytostabilization potential of plant was evaluated through biological accumulation and translocation indexes together with plant survival and biometric parameters. The outcomes showed the adaptability of P. halepensis to grow and survive in contaminated substrates. Compost addition did not improve plant survival and growth, however, it enhanced total carbon and nitrogen contents of soil, restricted metal bioavailability, and accumulation in plant aerial parts. These findings highlight that P. halepensis may be considered for phytostabilization given the great potential to limit Zn, Pb, and Cd toxicity in plant tissues by applying compost amendment in metal contaminated mine sites.
Collapse
Affiliation(s)
- Pegah Kharazian
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato-Blocco A, Monserrato, CA, Italy
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
- Centre for the Conservation of Biodiversity (CCB), Sardinian Germplasm Bank (BG-SAR), Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Cappai
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Maria Enrica Boi
- Centre for the Conservation of Biodiversity (CCB), Sardinian Germplasm Bank (BG-SAR), Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Porceddu
- Centre for the Conservation of Biodiversity (CCB), Sardinian Germplasm Bank (BG-SAR), Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Martina Piredda
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato-Blocco A, Monserrato, CA, Italy
| | - Gianluigi Bacchetta
- Centre for the Conservation of Biodiversity (CCB), Sardinian Germplasm Bank (BG-SAR), Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
5
|
Medas D, Meneghini C, Pusceddu C, Carlomagno I, Aquilanti G, Dore E, Murgia V, Podda F, Rimondi V, Vacca S, Wanty RB, De Giudici G. Plant-minerals-water interactions: An investigation on Juncus acutus exposed to different Zn sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161931. [PMID: 36736402 DOI: 10.1016/j.scitotenv.2023.161931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Juncus acutus has been proposed as a suitable species for the design of phytoremediation plans. This research aimed to investigate the role played by rhizosphere minerals and water composition on Zn transformations and dynamics in the rhizosphere-plant system of J. acutus exposed to different Zn sources. Rhizobox experiments were conducted using three different growing substrates (Zn from 137 to 20,400 mg/kg), and two irrigation lines (Zn 0.05 and 180 mg/l). The plant growth was affected by the substrate type, whereas the Zn content in the water did not significantly influence the plant height for a specific substrate. J. acutus accumulated Zn mainly in roots (up to 10,000 mg/kg dw); the metal supply by the water led to variable increases in the total Zn concentration in the vegetal organs, and different Zn distributions both controlled by the rhizosphere mineral composition. Different Zn complexation mechanisms were observed, mainly driven by cysteine and citrate compounds, whose amount increased linearly with Zn content in water, but differently for each of the investigated systems. Our study contributes to gain a more complete picture of the Zn pathway in the rhizosphere-plant system of J. acutus. We demonstrated that this vegetal species is not only capable of developing site-specific tolerance mechanisms, but it is also capable to differently modulate Zn transformation when Zn is additionally supplied by watering. These findings are necessary for predicting the fate of Zn during phytoremediation of sites characterized by specific mineralogical properties and subject to water chemical variations.
Collapse
Affiliation(s)
- Daniela Medas
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | - Carlo Meneghini
- Department of Sciences, University of Roma Tre, Rome, Italy.
| | - Claudia Pusceddu
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy
| | | | | | - Elisabetta Dore
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | | | - Francesca Podda
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | - Valentina Rimondi
- Department of Earth Sciences, University of Florence, Florence, Italy; CNR-Institute of Geosciences and Earth Resources, Florence, Italy.
| | - Salvatore Vacca
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| | - Richard B Wanty
- Colorado School of Mines, Department of Geology and Geological Engineering, Golden, CO 80401, USA.
| | - Giovanni De Giudici
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
6
|
Boi ME, Sanna Angotzi M, Porceddu M, Musu E, Mameli V, Bacchetta G, Cannas C. Germination and early seedling development of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso in the presence of arsenates and arsenites. Heliyon 2022; 8:e10693. [PMID: 36177222 PMCID: PMC9513622 DOI: 10.1016/j.heliyon.2022.e10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Arsenate, As(V), and arsenite, As(III), are the most available arsenicals present in the soil solutions, in particular in mine polluted substrates, and cause several symptoms of toxicity in plants (like inhibition of seed germination and reduction of seedling development). For these reasons, seeds germination studies are essential for the design of phytoremediation activities of mine sites. Seed germination and seedling development of Helichrysum microphyllum subsp. tyrrhenicum, were evaluated at 15 °C using various concentrations of As(V) and As(III) (0–500 mg/L and 0–200 mg/L, respectively). Seeds were harvested (I) into a mine dump contaminated in As, (II) nearby this site, and (III) faraway the As contaminated area and without mine activities. Seed germination, cotyledons emergence, and seedling mortality were evaluated for 90 days. As(V) and As(III) acted differently, showing a much higher toxicity when arsenite was added than arsenate. The taxon was able to germinate, develop cotyledons, and survive under all arsenate concentrations, whereas arsenite acted on these steps already at 2.5 mg/L. Moreover, a linear decrease in cotyledons emergence was assessed with the increase of both arsenicals’ concentrations, as well as a linear decrease of seedling survival under arsenite. The taxon showed great adaptability to As pollution, giving an important contribution in phytoremediation of mining sites.
Collapse
Affiliation(s)
- Maria Enrica Boi
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Department of Life and Environmental Sciences, Centre for Conservation of Biodiversity (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy.,Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| | - Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, FI, Italy
| | - Marco Porceddu
- Department of Life and Environmental Sciences, Centre for Conservation of Biodiversity (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy.,Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| | - Elodia Musu
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Ausi, Palazzo Bellavista, 09016 Monteponi Iglesias, CI, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, FI, Italy
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, Centre for Conservation of Biodiversity (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy.,Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, FI, Italy
| |
Collapse
|
7
|
Post-Extraction Novel Ecosystems Support Plant and Vegetation Diversity in Urban-Industrial Landscapes. SUSTAINABILITY 2022. [DOI: 10.3390/su14137611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term exploitation of mineral resources has significantly changed the natural environment in urban-industrial landscapes. The changes on the surface of the extraction sites as a consequence of excavation of mineral resources provide specific mineral oligotrophic habitats on which plant species and thus vegetation can establish spontaneously. Some of these sites fulfill the prerequisites of novel ecosystems. This study was conducted on the spontaneous vegetation of post-extraction sites. Lists of species spontaneously covering these sites were prepared based on published data and our own records. This research revealed that species composition and vegetation types vary in time. These post-extraction novel ecosystems are also important for the presence of rare, endangered, and protected species noted in patches of different vegetation types. The variety of habitat conditions provided by these sites facilitates the occurrence of a wide spectrum of plants (both in terms of their socio-ecological origin and their ecological spectrum). This research proves how important these post-extraction novel ecosystems are for supporting plant and vegetation diversity in urban-industrial landscapes. Enhancing the biodiversity significantly increases the ecosystem services delivered by these sites and also the functioning of entire ecosystems. These natural processes on human habitats are essential in urban-industrial ecosystem landscape mosaics.
Collapse
|
8
|
Konstantinova E, Burachevskaya M, Mandzhieva S, Bauer T, Minkina T, Chaplygin V, Zamulina I, Konstantinov A, Sushkova S. Geochemical transformation of soil cover and vegetation in a drained floodplain lake affected by long-term discharge of effluents from rayon industry plants, lower Don River Basin, Southern Russia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:349-368. [PMID: 32761413 DOI: 10.1007/s10653-020-00683-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Lake Atamanskoye is one of the most polluted aquatic environments in the South of Russia. This water body was affected by long-term pollution by effluent from industrial rayon plants located in the city of Kamensk-Shakhtinsky. Accumulation of pollutants resulted in the degradation of Lake Atamanskoye, which is currently drained. This research focused on the geochemical transformation of soils and vegetation within the territory of the former water body and its surroundings. Methods of study included the evaluation of potentially toxic elements (PTEs) in soils and plants by X-ray fluorescence, as well as the contents of their forms by sequential extraction and statistical processing of the data. The results revealed that Spolic Technosols and Fluvisols represent the most widespread soils within Lake Atamanskoye. The concentration of metals found in the soils of the lakebed is several orders of magnitude higher than the regional geochemical background and world soil baseline values due to long-term industrial pollution. The natural and technogenic soils were subdivided into two groups according to pH. Alkaline soils in the presence of carbonates were characterised by high levels of PTEs, while acidic soils with higher proportions of exchangeable fractions and higher potential for metal accumulation in adjacent plants had lower levels of PTEs.
Collapse
Affiliation(s)
| | - Marina Burachevskaya
- Southern Federal University, 194/1 Stachki Ave, Rostov-on-Don, Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, 194/1 Stachki Ave, Rostov-on-Don, Russian Federation
| | - Tatiana Bauer
- Southern Federal University, 194/1 Stachki Ave, Rostov-on-Don, Russian Federation
| | - Tatiana Minkina
- Southern Federal University, 194/1 Stachki Ave, Rostov-on-Don, Russian Federation
| | - Victor Chaplygin
- Southern Federal University, 194/1 Stachki Ave, Rostov-on-Don, Russian Federation
| | - Inna Zamulina
- Southern Federal University, 194/1 Stachki Ave, Rostov-on-Don, Russian Federation
| | | | - Svetlana Sushkova
- Southern Federal University, 194/1 Stachki Ave, Rostov-on-Don, Russian Federation
| |
Collapse
|
9
|
Boi ME, Cappai G, De Giudici G, Medas D, Piredda M, Porceddu M, Bacchetta G. Ex situ phytoremediation trial of Sardinian mine waste using a pioneer plant species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55736-55753. [PMID: 34143385 PMCID: PMC8494672 DOI: 10.1007/s11356-021-14710-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The mitigation of metals contamination is currently a crucial issue for the reclamation of mine sites. Indeed, mine wastes are often disposed in open dumps and consequently pollutants are subjected to dispersion in the surrounding areas. In this study, the potential use of Helichrysum microphyllum subsp. tyrrhenicum for phytostabilization was evaluated in ex situ conditions. Ninety specimens were randomly selected and were planted in three substrates (reference substrate, mine waste materials, and mine wastes with compost). Mineralogical compositions of substrates, rhizosphere, and roots were assessed through X-ray diffraction (XRD). Zn, Pb, and Cd concentrations of substrates, rhizosphere, soil pore waters, and plant tissues were determined. The phytostabilization potential was determined through the application of biological accumulation coefficient (BAC), biological concentration factor (BCF), and translocation factor (TF). Moreover, survival and biometric parameters were assessed on plant specimens. The polluted substrates and related rhizosphere materials were mainly composed of dolomite, quartz, pyrite, and phyllosilicate. Zn was the most abundant metal in substrates, rhizosphere, and soil pore waters. XRD analysis on roots showed the presence of amorphous cellulose and quartz and Zn was the most abundant metal in plant tissues. H. microphyllum subsp. tyrrhenicum restricts the accumulation of the metals into roots limiting their translocation in aereal parts, indicating its potential use as phytostabilizer (BCF, BAC, TF < 1). Survival and growth data showed a great adaptability to different substrates, with an evident positive effect of the implementation of compost which increased the plant survival and decreased the metals uptake into roots.
Collapse
Affiliation(s)
- Maria Enrica Boi
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.S. 554 bivio per Sestu (CA), 09042, Monserrato, Italy
| | - Giovanna Cappai
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi 1, 09123, Cagliari, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.S. 554 bivio per Sestu (CA), 09042, Monserrato, Italy
| | - Daniela Medas
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.S. 554 bivio per Sestu (CA), 09042, Monserrato, Italy
| | - Martina Piredda
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi 1, 09123, Cagliari, Italy
| | - Marco Porceddu
- Department of Life and Environmental Sciences, Centre for Biodiversity Conservation (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 11-13, 09123, Cagliari, Italy.
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123, Cagliari, Italy.
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, Centre for Biodiversity Conservation (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 11-13, 09123, Cagliari, Italy
- Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123, Cagliari, Italy
| |
Collapse
|
10
|
Adele NC, Ngwenya BT, Heal KV, Mosselmans JFW. Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116909. [PMID: 33744635 DOI: 10.1016/j.envpol.2021.116909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Inoculation of soil or seeds with plant growth promoting bacteria ameliorates metal toxicity to plants by changing metal speciation in plant tissues but the exact location of these changes remains unknown. Knowing where the changes occur is a critical first step to establish whether metal speciation changes are driven by microbial metabolism or by plant responses. Since bacteria concentrate in the rhizosphere, we hypothesised steep changes in metal speciation across the rhizosphere. We tested this by comparing speciation of zinc (Zn) in roots of Brassica juncea plants grown in soil contaminated with 600 mg kg-1 of Zn with that of bulk and rhizospheric soil using synchrotron X-ray absorption spectroscopy (XAS). Seeds were either uninoculated or inoculated with Rhizobium leguminosarum bv. trifolii and Zn was supplied in the form of sulfide (ZnS nanoparticles) and sulfate (ZnSO4). Consistent with previous studies, Zn toxicity, as assessed by plant growth parameters, was alleviated in B. juncea inoculated with Rhizobium leguminosarum. XAS results showed that in both ZnS and ZnSO4 treatments, the most significant changes in speciation occurred between the rhizosphere and the root, and involved an increase in the proportion of organic acids and thiol complexes. In ZnS treatments, Zn phytate and Zn citrate were the dominant organic acid complexes, whilst Zn histidine also appeared in roots exposed to ZnSO4. Inoculation with bacteria was associated with the appearance of Zn cysteine and Zn formate in roots, suggesting that these two forms are driven by bacterial metabolism. In contrast, Zn complexation with phytate, citrate and histidine is attributed to plant responses, perhaps in the form of exudates, some with long range influence into the bulk soil, leading to shallower speciation gradients.
Collapse
Affiliation(s)
| | - Bryne T Ngwenya
- School of GeoSciences, University of Edinburgh, Edinburgh, UK.
| | - Kate V Heal
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
11
|
Mota J, Merlo E, Martínez-Hernández F, Mendoza-Fernández AJ, Pérez-García FJ, Salmerón-Sánchez E. Plants on Rich-Magnesium Dolomite Barrens: A Global Phenomenon. BIOLOGY 2021; 10:38. [PMID: 33429992 PMCID: PMC7826976 DOI: 10.3390/biology10010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022]
Abstract
For botanists and ecologists, the close link between some plants and substrates, such as serpentine or gypsum, is well known. However, the relationship between dolomite and its flora has been much less studied, due to various causes. Its diffuse separation from limestone and the use of a vague approach and terminology that, until now, no one has tried to harmonize are among these reasons. After carrying out an extensive review, completed with data on the distribution of plants linked to dolomite, the territories in which this type of flora appears at a global level were mapped using a geographic information system software. In addition, data on soils were collected, as well as on their influence on the ionomic profile of the flora. These data were completed with the authors' own information from previous research, which also served to assess these communities' degree of conservation and the genetic diversity of some of their characteristic species. The results showed that the so-called "dolomite phenomenon" is widely represented and is clearly manifested in the appearance of a peculiar flora, very rich in endemisms, on dry soils, poor in nutrients, and with a high Mg level. Although dolomite habitats cause adaptations in plants which are even more recognizable than those of other rock types, they have not been widely studied from an ecological, evolutionary, and conservation point of view because, so far, neither their characteristics nor their universal demarcation have been precisely defined.
Collapse
Affiliation(s)
- Juan Mota
- Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain; (J.M.); (E.M.); (F.M.-H.); (A.J.M.-F.); (F.J.P.-G.)
| | - Encarna Merlo
- Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain; (J.M.); (E.M.); (F.M.-H.); (A.J.M.-F.); (F.J.P.-G.)
| | - Fabián Martínez-Hernández
- Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain; (J.M.); (E.M.); (F.M.-H.); (A.J.M.-F.); (F.J.P.-G.)
| | - Antonio J. Mendoza-Fernández
- Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain; (J.M.); (E.M.); (F.M.-H.); (A.J.M.-F.); (F.J.P.-G.)
- Departamento de Botánica, Unidad de Conservación Vegetal, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Javier Pérez-García
- Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain; (J.M.); (E.M.); (F.M.-H.); (A.J.M.-F.); (F.J.P.-G.)
| | - Esteban Salmerón-Sánchez
- Departamento de Biología y Geología, CEI·MAR and CECOUAL, Universidad de Almería, 04120 Almería, Spain; (J.M.); (E.M.); (F.M.-H.); (A.J.M.-F.); (F.J.P.-G.)
| |
Collapse
|