1
|
Yadav A, Gładysiak A, Song AY, Gan L, Simons CR, Alghoraibi NM, Alahmed AH, Younes M, Reimer JA, Huang H, Planas JG, Stylianou KC. Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture. JACS AU 2024; 4:4833-4843. [PMID: 39735925 PMCID: PMC11672129 DOI: 10.1021/jacsau.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
The capture of carbon dioxide (CO2) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called m CBMOF-1. After activation, m CBMOF-1 generates one-dimensional channels with square cross sections, featuring sets of four Cu(II) open metal sites spaced by 6.042 Å, allowing strong interactions with coordinating molecules. To investigate this capability, m CBMOF-1 was exposed to ammonia (NH3) gas, resulting in hysteretic NH3 isotherms indicative of strong interactions between Cu(II) and NH3. At 150 mbar and 298 K, the NH3-loaded (∼1 mmol/g) material exhibited a 106% increase in CO2 uptake compared to that of the pristine m CBMOF-1. Carbon-13 solid-state nuclear magnetic resonance spectra and density functional theory calculations confirmed that the sequential loading of NH3 followed by CO2 adsorption generated a copper-carbamic acid complex within the pores of m CBMOF-1. Our study highlights the effectiveness of sequential pore functionalization in MOFs as an attractive strategy for enhancing the interactions of MOFs with small molecules such as CO2.
Collapse
Affiliation(s)
- Ankit
K. Yadav
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Andrzej Gładysiak
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ah-Young Song
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley 94720, United States
| | - Lei Gan
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra 08193, Spain
- School of
Chemistry and Materials Science, Nanjing
Normal University, Nanjing 210023, P. R. China
| | - Casey R. Simons
- Center
for
Advanced Materials Characterization in Oregon, University of Oregon, 1443 E, 13th Ave, Eugene, Oregon 97403, United States
| | - Nawal M. Alghoraibi
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Ammar H. Alahmed
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Mourad Younes
- ARAMCO, R-GC 335, Floor 3, Research and
Development Center (Building 2297), Dhahran 31311, Saudi Arabia
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley 94720, United States
| | - Hongliang Huang
- State
Key
Laboratory of Separation Membranes and Membrane Processes, School
of Chemistry and Chemical Engineering, Tiangong
University, Tianjin 300387, China
| | - José G. Planas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra 08193, Spain
| | - Kyriakos C. Stylianou
- Materials
Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
2
|
Ayarza J, Wang J, Kim H, Huang PR, Cassaidy B, Yan G, Liu C, Jaeger HM, Rowan SJ, Esser-Kahn AP. Bioinspired mechanical mineralization of organogels. Nat Commun 2023; 14:8319. [PMID: 38097549 PMCID: PMC10721619 DOI: 10.1038/s41467-023-43733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Mineralization is a long-lasting method commonly used by biological materials to selectively strengthen in response to site specific mechanical stress. Achieving a similar form of toughening in synthetic polymer composites remains challenging. In previous work, we developed methods to promote chemical reactions via the piezoelectrochemical effect with mechanical responses of inorganic, ZnO nanoparticles. Herein, we report a distinct example of a mechanically-mediated reaction in which the spherical ZnO nanoparticles react themselves leading to the formation of microrods composed of a Zn/S mineral inside an organogel. The microrods can be used to selectively create mineral deposits within the material resulting in the strengthening of the overall resulting composite.
Collapse
Affiliation(s)
- Jorge Ayarza
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Jun Wang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Hojin Kim
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Pin-Ruei Huang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Britteny Cassaidy
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Heinrich M Jaeger
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL, 60637, USA
- Chemical and Engineering Sciences Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Aaron P Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
New Carbamates and Ureas: Comparative Ability to Gel Organic Solvents. Gels 2022; 8:gels8070440. [PMID: 35877525 PMCID: PMC9316452 DOI: 10.3390/gels8070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Two series of novel amphiphilic compounds were synthesized based on carbamates and ureas structures, using a modification of the synthesis methods reported by bibliography. The compounds were tested for organic solvent removal in a model wastewater. The lipophilic group of all compounds was a hexadecyl chain, while the hydrophilic substituent was changed with the same modifications in both series. The structures were confirmed by FT-IR, NMR, molecular dynamic simulation and HR-MS and their ability to gel organic solvents were compared. The SEM images showed the ureas had a greater ability to gel organic solvents than the carbamates and formed robust supramolecular networks, with surfaces of highly interwoven fibrillar spheres. The carbamates produced corrugated and smooth surfaces. The determination of the minimum gelation concentration demonstrated that a smaller quantity of the ureas (compared to the carbamates, measured as the weight percentage) was required to gel each solvent. This advantage of the ureas was attributed to their additional N-H bond, which is the only structural difference between the two types of compounds, and their structures were corroborated by molecular dynamic simulation. The formation of weak gels was demonstrated by rheological characterization, and they demonstrated to be good candidates for the removal organic solvents.
Collapse
|