1
|
Chen B, Bao S, Zhang Y, Zhou J, Ding W, Ren L, Yang S, Zhang Y. Efficient Ultrasound-Assisted Synthesis of Chemically Supported Anionic Functional Group Ionic Liquids and Its Enhanced Adsorption Performance Towards Vanadium (V). MATERIALS (BASEL, SWITZERLAND) 2025; 18:1330. [PMID: 40141613 PMCID: PMC11943831 DOI: 10.3390/ma18061330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
In this study, the chemically supported ionic liquids (CSILs) were synthesized by ultrasound irradiation (UI) to improve the preparation process and further strengthen the adsorption performance of CSILs towards vanadium (V). The impacts of UI and conventional mechanic stirring (CMS) on the synthesis and adsorption characteristics of polystyrene [1-butyl-3-methylimidazolium][nitrate] (PS[C4mim][NO3]) were comparatively investigated. The experimental results demonstrate that ultrasound can dramatically shorten the preparation time from 1920 min to 15 min, and HNO3 dosage is reduced by 15.79%. Under the same adsorption conditions, the CSILs synthesized by UI achieve the maximal adsorption capacity towards vanadium (V) as 248.95 mg/g at 150 min, while the CSILs processed by CMS reach 223.90 mg/g at 105 min. Particularly, the adsorption capacity of CSILs synthesized by UI can be maintained as 96.42% of the initial value after 10 cycles of adsorption-desorption, while that of CSILs processed by CMS maintain as 94.87%. The adsorption isotherm and kinetics fitting demonstrate that vanadium (V) adsorption by two CSILs is dominated by chemisorption as a single molecular layer. Additionally, the adsorption reaction of vanadium (V) by these two CSILs are both endothermic, and entropy increases. Fourier transform infrared, scanning electron microscopy, and energy spectrometry analyses prove that PS[C4mim][NO3] is successfully prepared by UI and CMS methods, and ultrasound waves will not destroy the intact spherical structure of the support resins. The current work provides a novel insight for the efficient synthesis of CSILs, which is also a potential technique for improving the adsorption performance of the adsorbents towards valuable metals.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; (L.R.); (S.Y.)
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, China
| | - Shenxu Bao
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; (L.R.); (S.Y.)
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, China
| | - Yimin Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiahao Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
| | - Wei Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
| | - Liuyi Ren
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; (L.R.); (S.Y.)
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, China
| | - Siyuan Yang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; (L.R.); (S.Y.)
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, China
| | - Ye Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Z.); (J.Z.); (W.D.); (Y.Z.)
| |
Collapse
|
2
|
Zhai Z, Barreto J, Hemmeter D, Maier F, Steinrück HP, Koller TM. Correlation of Macroscopic Surface Tension and Microscopic Surface Composition of Binary Ionic Liquid Mixtures with Common Cations and Anions of Different Size. J Phys Chem B 2025; 129:2789-2800. [PMID: 40013757 DOI: 10.1021/acs.jpcb.4c08785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
We investigated the surface tension and surface composition of binary ionic liquid (IL) mixtures of ILs sharing the same cation. As model system, binary mixtures of 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc], molar volume: 154.4 cm3·mol-1 at 293 K) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2C1Im][Tf2N], molar volume: 256.2 cm3·mol-1 at 293 K), with very different surface tensions, and with anions of very different chemical structure and size were studied over the whole composition range. The surface tension was obtained by pendant-drop (PD) measurements in the presence of 0.1 MPa argon between 294 and 323 K, and the surface composition was determined by angle-resolved photoelectron spectroscopy (ARXPS) in ultrahigh vacuum at 293 K. The ARXPS results reveal a strong preferential enrichment of [C2C1Im][Tf2N] at the vacuum-liquid interface of the binary mixtures, which is more pronounced at lower [C2C1Im][Tf2N] bulk contents. This microscopic behavior is reflected in the macroscopic surface tensions, which are significantly lower than calculated assuming a linear mixing behavior based on the bulk composition. A previously developed prediction model to correlate the surface tension with the molar surface composition yields deviations of more than 5% from the measured values, which we attribute to the strongly different sizes of the anions. By accounting for the surface areas occupied by the ILs, we present an improved new model which describes the experimental data very well within 1.4%.
Collapse
Affiliation(s)
- Ziwen Zhai
- Institute of Advanced Optical Technologies─Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 8, 91052 Erlangen, Germany
| | - Jade Barreto
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Daniel Hemmeter
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Florian Maier
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Thomas M Koller
- Institute of Advanced Optical Technologies─Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 8, 91052 Erlangen, Germany
| |
Collapse
|
3
|
Palos-Hernández A, González-Paramás AM, Santos-Buelga C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024; 30:55. [PMID: 39795112 PMCID: PMC11722096 DOI: 10.3390/molecules30010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Phenolic compounds present in plants and foods are receiving increasing attention for their bioactive and sensory properties, accompanied by consumers' interest in products with health benefits derived from natural rather than artificial sources. This, together with the sustainable development goals for the 21st century, has driven the development of green extraction techniques that allow obtaining these compounds with the safety and quality required to be applied in the food, cosmetic and pharmaceutical industries. Green extraction of natural products involves practices aiming at reducing the environmental impact of the preparation processes, based on using natural or less-polluting solvents, lower energetic requirements and shorter extraction times, while providing greater efficiency in the recovery of target compounds. In this article, the principles of sustainable extraction techniques and the advances produced in recent years regarding green isolation of polyphenols from plants, food and food waste are reviewed.
Collapse
Affiliation(s)
- Andrea Palos-Hernández
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
| | - Ana M. González-Paramás
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Celestino Santos-Buelga
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (A.P.-H.); (A.M.G.-P.)
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Opare-Addo J, Morgan I, Tryon-Tasson N, Twedt-Gutierrez DF, Anderson JL, Petrich JW, Song X, Smith EA. Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study. J Phys Chem B 2024; 128:11714-11722. [PMID: 39542705 DOI: 10.1021/acs.jpcb.4c05184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ionic liquids (ILs) exhibit a unique nanoscale structure (i.e., nanodomains) characterized by their organization into distinct domains. We present evidence of nanodomains in trihexyl(tetradecyl)phosphonium chloride, [P66614][Cl], using single-molecule tracking (SMT) and the maximum entropy method (MEM) to analyze single-molecule trajectories. The diffusion properties of ATTO 647N were assessed as the temperature of [P66614][Cl] increased from 20 °C (4020 cP), 35 °C (1239 cP), 45 °C (599 cP) to 50 °C (439 cP). The MEM analysis revealed a distinct two-population distribution of diffusion coefficients representing nanodomains in [P66614][Cl] at 20 °C (4020 cP). The slow population accounts for 16%, with a diffusion coefficient of 0.104 μm2/s, while the fast population constitutes 84% with a diffusion coefficient of 0.634 μm2/s. Two diffusing populations were also measured for the chemically different probes ATTO 647N, DiD, and Nile Blue chloride in [P66614][Cl] at 20 °C. In contrast, only a single fast population was measured in [P66614][Cl] at 50 °C. At a similar viscosity (640 cP) but a lower temperature of 20 °C, trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)-sulfonyl]imide, [P66614][NTf2], also showed only a single diffusing population. The elimination of the slow population and the presence of a single diffusing population in [P66614][Cl] as the temperature increases and the viscosity decreases is consistent with liquid-liquid phase separation (LLPS) as a mechanism of nanodomain formation. In addition, the measurement of two diffusing populations for three fluorophores with different chemical structures is also consistent with a physical mechanism, and not a chemical mechanism, for nanodomain formation.
Collapse
Affiliation(s)
- Jemima Opare-Addo
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Ian Morgan
- Department of Mathematics, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Nicholas Tryon-Tasson
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Dorian F Twedt-Gutierrez
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Jared L Anderson
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Jacob W Petrich
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Xueyu Song
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Emily A Smith
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
5
|
Liaqat F, Xu L, Khazi MI, Ali S, Rahman MU, Zhu D. Extraction, purification, and applications of vanillin: A review of recent advances and challenges. INDUSTRIAL CROPS AND PRODUCTS 2023; 204:117372. [DOI: 10.1016/j.indcrop.2023.117372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
6
|
Ando M, Koyakkat M, Ueda T, Minato T, Shirota H. Wettability and Surface Tension of Imidazolium, Ammonium, and Phosphonium Bis(fluorosulfonyl)amide Ionic Liquids: Comparison between Pentyl, Ethoxyethyl, and Ethylthioethyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12090-12098. [PMID: 37578197 DOI: 10.1021/acs.langmuir.3c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
This study particularly compares the surface tensions and contact angles for molten bis(fluorosulfonyl)amide salts of imidazolium, ammonium, and phosphonium cations with the pentyl, ethoxyethyl, or ethylthioethyl group. The examined substrate plates for contact angle measurements include silicate glass, platinum, copper, graphene, and polytetrafluoroethylene (PTFE). In addition, quantum chemistry calculations were performed to obtain the optimized structures of the cations and anions of the ionic liquids (ILs) that were studied here along with some typical anions and their dipole moments, mean polarizabilities, and charge distributions. All ILs showed the same order of contact angles with respect to the substrates: PTFE > graphene ≈ copper ≈ platinum > silicate glass. By comparing the three functional groups, i.e., pentyl, ethoxyethyl, and ethylthioethyl, the ILs with the ethylthioethyl group featured a higher work of adhesion than the respective ILs with the pentyl or ethoxyethyl group. The values of the surface tensions of the ILs followed the same trend for the three functional groups. Based on the Fowkes theory, it was found that the larger surface tensions of the ILs with the ethylthioethyl group compared with pentyl and ethoxyethyl groups were because of the increase in both dispersive and nondispersive components. The quantum chemistry calculations of the ions showed a larger dipole moment and mean polarizability for the cations with the ethylthioethyl group as compared with the pentyl and ethoxyethyl groups. This is consistent with the analysis results of the surface tensions based on the Fowkes theory. By comparing other anions, the dispersive component of the surface tension of the ILs with bis(fluorosulfonyl)amide was large, which is attributed to the small dipole moment of the anion.
Collapse
Affiliation(s)
- Masatoshi Ando
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Maharoof Koyakkat
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Tadashi Ueda
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Taketoshi Minato
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | - Hideaki Shirota
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Zhai Z, Koller TM. Influence of Dissolved Argon or Carbon Dioxide on the Viscosity and Surface Tension of the Imidazolium-Based Ionic Liquids [OMIM][PF6] or [m(PEG2)2IM]I. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
8
|
Kure AS, Konda SG, Chobe SS, Mandawad GG, Hote BS. Four Component One Pot Synthesis of Benzyl Pyrazolyl Coumarin Derivatives Catalyzed by Metal-Free, Heterogeneous Chitosan Supported Ionic Liquid Carbon Nanotubes. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2153885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | - Baliram S. Hote
- Department of Chemistry, Maharashtra Udayagiri Mahavidyalaya, Udgir, India
| |
Collapse
|
9
|
Kalhor S, Fattahi A. Design of ionic liquids containing glucose and choline as drug carriers, finding the link between QM and MD studies. Sci Rep 2022; 12:21941. [PMID: 36535965 PMCID: PMC9763358 DOI: 10.1038/s41598-022-25963-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Designing drug delivery systems for therapeutic compounds whose receptors are located in the cytosol of cells is challenging as a bilayer cell membrane is negatively charged. The newly designed drug delivery systems should assist the mentioned drugs in passing the membrane barriers and achieving their targets. This study concentrated on developing novel ionic liquids (ILs) that interact effectively with cell membranes. These ILs are based on glucose-containing choline and are expected to be non-toxic. The binding energies of the known pharmaceutically active ionic liquids were calculated at the B3LYP/6-311++G(d,p) level in the gas phase and compared with those of our newly designed carbohydrate-based ionic liquids. Subsequently, we employed MD simulations to obtain information about the interactions of these known and designed ILs with the cell membrane. In our approach, we adopted QM and MD studies and illustrated that there could be a link between the QM and MD results.
Collapse
Affiliation(s)
- Sepideh Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Alireza Fattahi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
10
|
Ratnani S, Mahilkar Sonkar S, Kumari R. Strategies for sustainable organic synthesis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Molecule(s) of Interest: I. Ionic Liquids-Gateway to Newer Nanotechnology Applications: Advanced Nanobiotechnical Uses', Current Status, Emerging Trends, Challenges, and Prospects. Int J Mol Sci 2022; 23:ijms232214346. [PMID: 36430823 PMCID: PMC9696100 DOI: 10.3390/ijms232214346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids are a potent class of organic compounds exhibiting unique physico-chemical properties and structural compositions that are different from the classical dipolar organic liquids. These molecules have found diverse applications in different chemical, biochemical, biophysical fields, and a number of industrial usages. The ionic liquids-based products and procedural applications are being developed for a number of newer industrial purposes, and academic uses in nanotechnology related procedures, processes, and products, especially in nanobiotechnology and nanomedicine. The current article overviews their uses in different fields, including applications, functions, and as parts of products and processes at primary and advanced levels. The application and product examples, and prospects in various fields of nanotechnology, domains of nanosystem syntheses, nano-scale product development, the process of membrane filtering, biofilm formation, and bio-separations are prominently discussed. The applications in carbon nanotubes; quantum dots; and drug, gene, and other payload delivery vehicle developments in the nanobiotechnology field are also covered. The broader scopes of applications of ionic liquids, future developmental possibilities in chemistry and different bio-aspects, promises in the newer genres of nanobiotechnology products, certain bioprocesses controls, and toxicity, together with emerging trends, challenges, and prospects are also elaborated.
Collapse
|
12
|
Madan Bhatt A, Deshmukh S, Boda A, Singh Chauhan R, Musharaf Ali S, Sengupta A. Synthesis and application of chloroacetamides in pyridinium based ionic liquid for high temperature extraction of uranyl ion: A novel and 'green' approach for extractive mass transfer at elevated temperature. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Maarfavi M, Zare M, Noorizadeh S. Structural, Electronic, and Thermochemical Properties of Salicylic Acid-Containing Ionic Liquids as Active Pharmaceutical Ingredients. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Rani A, Sindhu A, Yao TJ, Horng JC, Venkatesu P. Profiling the impact of choline chloride on the self-assembly of collagen mimetic peptide (Pro-Hyp-Gly)10. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Catalytic performance of pyridinium dihydrogen phosphate ionic liquid for butyl acetate production: theoretical insights and reaction kinetic studies. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Blaga AC, Tucaliuc A, Kloetzer L. Applications of Ionic Liquids in Carboxylic Acids Separation. MEMBRANES 2022; 12:771. [PMID: 36005686 PMCID: PMC9414664 DOI: 10.3390/membranes12080771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass-solid/liquid extraction, or obtained through fermentation-liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic media in chemical separation processes) as solvents for extraction (physical and reactive) and pertraction (extraction and transport through liquid membranes) in the downstream part of organic acids production, focusing on current advances and future trends of ILs in the fields of promoting environmentally friendly products separation.
Collapse
Affiliation(s)
| | - Alexandra Tucaliuc
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Lenuta Kloetzer
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
17
|
Gurjar S, Sharma SK, Sharma A, Ratnani S. Pyridazinium based ionic liquids as green corrosion inhibitors: An overview. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shriniwas Gurjar
- Research Scholar Department of Pure and Applied Chemistry University of Kota Kota Rajasthan India
| | - Sushil Kumar Sharma
- Assistant Professor Department of Pure and Applied Chemistry University of Kota Kota Rajasthan India
| | - Ankit Sharma
- Assistant Professor Department of Pure and Applied Chemistry University of Kota Kota Rajasthan India
| | - Sonia Ratnani
- Associate Professor Department of Chemistry Ramjas College University of Delhi Delhi India
| |
Collapse
|
18
|
Liu W, Kong F, Zhang J, Wu Q, Huo S, Cheng P, Li Q, Chen Q, Cobb K, Ruan R. Modification of Haematococcus pluvialis algal residue by ionic liquid for improved extraction of astaxanthin followed by removal of acid red dye in water. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Mahandra H, Faraji F, Azizitorghabeh A, Ghahreman A. Selective Extraction and Recovery of Gold from Complex Thiosulfate Pregnant Leach Liquor Using Cyphos IL 101. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harshit Mahandra
- Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Fariborz Faraji
- Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Atefeh Azizitorghabeh
- Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Ahmad Ghahreman
- Hydrometallurgy and Environment Laboratory, The Robert M. Buchan Department of Mining, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
20
|
Lanaridi O, Schnürch M, Limbeck A, Schröder K. Liquid- and Solid-based Separations Employing Ionic Liquids for the Recovery of Platinum Group Metals Typically Encountered in Catalytic Converters: A Review. CHEMSUSCHEM 2022; 15:e202102262. [PMID: 34962087 PMCID: PMC9306556 DOI: 10.1002/cssc.202102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The wide application range and ascending demand for platinum group metals combined with the progressive depletion of their natural resources renders their efficient recycling a very important and pressing matter. Primarily environmental considerations associated with state-of-the-art recovery processes have shifted the focus of the scientific community toward the investigation of alternative recycling approaches. Within this context, ionic liquids have gained considerable attention in the last two decades chiefly sparked by properties such as tunabilty, low-volatility, and relatively easy recyclability. In this review an understanding of the state-of-the-art processes, including their drawbacks and limitations, is provided. The core of the discussion is focused on platinum group metal recovery with ionic liquid-based systems. A brief insight in some environmental considerations related to ionic liquids is also provided while some discussion on research gaps, common misconceptions related to ionic liquids and outlook on unresolved issues could not be absent from this review.
Collapse
Affiliation(s)
- Olga Lanaridi
- Institute of Applied Synthetic ChemistryTechnische Universität Wien1060ViennaAustria
| | - Michael Schnürch
- Institute of Applied Synthetic ChemistryTechnische Universität Wien1060ViennaAustria
| | - Andreas Limbeck
- Institute of Chemical Technologies and AnalyticsTechnische Universität Wien1060ViennaAustria
| | - Katharina Schröder
- Institute of Applied Synthetic ChemistryTechnische Universität Wien1060ViennaAustria
| |
Collapse
|
21
|
Forero-Martinez NC, Cortes-Huerto R, Benedetto A, Ballone P. Thermoresponsive Ionic Liquid/Water Mixtures: From Nanostructuring to Phase Separation. Molecules 2022; 27:1647. [PMID: 35268747 PMCID: PMC8912101 DOI: 10.3390/molecules27051647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/10/2022] Open
Abstract
The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.
Collapse
Affiliation(s)
- Nancy C. Forero-Martinez
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany;
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Antonio Benedetto
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy
| | - Pietro Ballone
- School of Physics, University College Dublin, 94568 Dublin, Ireland; (A.B.); (P.B.)
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, 94568 Dublin, Ireland
| |
Collapse
|
22
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
23
|
Santos Klienchen Dalari BL, Lisboa Giroletti C, Malaret FJ, Skoronski E, Hallett JP, Matias WG, Puerari RC, Nagel-Hassemer ME. Application of a phosphonium-based ionic liquid for reactive textile dye removal: Extraction study and toxicological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114322. [PMID: 35021594 DOI: 10.1016/j.jenvman.2021.114322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Textile dyeing processes are known for their negative environmental impacts due to the production of aqueous effluents containing toxic dyes. Therefore, new wastewater treatment processes need to be developed to treat such effluents, including Liquid-Liquid Extraction (LLE) process using Ionic Liquids (IL). This work aimed to evaluate the application of the hydrophobic IL trihexyltetradecylphosphonium decanoate to extract black, navy, and royal reactive dyes from water and evaluate the toxicological aspects of the resulting water stream. We investigated the effect of selected parameters, such as pH (2-12), temperature (20-50 °C), salt effects, dye concentration (0.5-50 mg/L), and phase volume ratio (900-9000) on the dye extraction. The results showed extraction yields as high as 97% for the three dyes and an extraction capacity of approximately 300 mg/g for black and navy dyes and 400 mg/g for royal. The toxicity tests involved Lactuca sativa, Triticum aestivium L, and Daphnia magna as bioindicators. The difference between the toxicity of the dye solutions before and after extraction was not statistically significant when L. sativa and Triticum aestivum L were used as bioindicators. However, the extracted solution showed increased toxicity towards D. magna due to traces of IL. Overall, the IL has a high extraction capacity for the black, navy, and royal dyes. Nevertheless, further studies on LLE associated with other processes must be carried out to reduce the risk linked to the toxicity of IL transferred to the water.
Collapse
Affiliation(s)
- Beatriz Lima Santos Klienchen Dalari
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil.
| | - Cristiane Lisboa Giroletti
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| | - Francisco J Malaret
- Imperial College London, Department of Chemical Engineering, London, SW7 2AZ, United Kingdom
| | - Everton Skoronski
- Santa Catarina State University, Department of Environmental and Sanitary Engineering, 2090 Luis de Camões Avenue, 88520-000 Lages, Santa Catarina, Brazil
| | - Jason P Hallett
- Imperial College London, Department of Chemical Engineering, London, SW7 2AZ, United Kingdom
| | - William Gerson Matias
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| | - Rodrigo Costa Puerari
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| | - Maria Eliza Nagel-Hassemer
- Federal University of Santa Cataria, Department of Sanitary and Environmental Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Shamsipur M, Mafakheri N, Babajani N. A Natural Deep Eutectic Solvent–based Ultrasound-Vortex-assisted Dispersive Liquid–Liquid Microextraction Method for Ligand-less Pre-concentration and Determination of Traces of Cadmium Ions in Water and Some Food Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Desai K, Dharaskar S, Khalid M, Gedam V. Effectiveness of ionic liquids in extractive–oxidative desulfurization of liquid fuels: a review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02038-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Tomaš R, Kinart Z, Tot A, Papović S, Teodora Borović T, Vraneš M. Volumetric properties, conductivity and computation analysis of selected imidazolium chloride ionic liquids in ethylene glycol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Development of New Efficient Adsorbent by Functionalization of Mg 3Al-LDH with Methyl Trialkyl Ammonium Chloride Ionic Liquid. Molecules 2021; 26:molecules26237384. [PMID: 34885965 PMCID: PMC8659049 DOI: 10.3390/molecules26237384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
The present paper describes a new way of obtaining an efficient adsorbent material by functionalization of Mg3Al layered double hydroxides (LDH) with methyl trialkyl ammonium chloride-ionic liquid (IL) using two methods: ultrasound and cosynthesis. Layered double hydroxides are good solid support for the functionalization with ionic liquids due to their well-ordered structure. The immobilization of the ILs in suitable solid supports combine the advantages of the ILs with the properties of the solid supports bringing more benefits such as use of lower quantity of ILs and avoiding of ILs loss in the aqua phase which overall decrease the treatment costs. In case of ultrasound method of functionalization is assured a uniform distribution of IL on the solid surface, but through immobilization by cosynthesis due to the tunable properties of LDH, is assured an intercalation of the ILs between the LDH layers. This fact was highlighted by the X-ray diffraction (RXD), scanning electron microscopy (SEM) analyses and Fourier-transform infrared (FTIR) spectroscopy of the obtained adsorbent. The added value brought by the functionalization of Mg3Al with the studied IL was underlined by the adsorption studies conducted in the treatment process of water with diclofenac content. Kinetic, thermodynamic, and equilibrium studies were performed. DCF adsorption onto the studied materials correspond to a chemisorption, the pseudo-second-order kinetic model describing the most accurately the experimental data. DCF adsorption onto the studied materials occurs as a heterogeneous process, with the experimental data fitting best with the SIPS isotherm. The sample obtained through cosynthesis developed a maximum adsorption capacity of 648 mg/g.
Collapse
|
28
|
|
29
|
Asensio-Delgado S, Pardo F, Zarca G, Urtiaga A. Absorption separation of fluorinated refrigerant gases with ionic liquids: Equilibrium, mass transport, and process design. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Kharazi M, Saien J, Asadabadi S. Review on Amphiphilic Ionic Liquids as New Surfactants: From Fundamentals to Applications. Top Curr Chem (Cham) 2021; 380:5. [PMID: 34842981 DOI: 10.1007/s41061-021-00362-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
The demand for lowering interfacial tension (IFT) in different processes has persuaded researchers to use stable and resistant surfactants with low environmental impact. For this purpose, surface-active ionic liquids (SAILs) have attracted much attention owing to their good amphiphilic nature and prominent properties like recyclability and high performance under harsh conditions. This review initially explains how the IFT and critical micelle concentration of different systems vary in the presence of different SAILs with a variety of alkyl chain lengths, head groups, and counter anions. Towards this aim, some physicochemical properties of SAILs as well as the corresponding theoretical aspects of adsorption are considered. Then, recent advances in utilizing SAILs for reducing IFT of different chemical systems are surveyed. Relevantly, the role of important operating parameters of temperature, pH, presence of electrolytes, and the chemical nature of involved phases are adequately discussed. Further, an overview of different SAILs applications in stabilization, separation, and in petroleum industries is scrutinized. To allow better judgment, precise comparisons between different types of SAILs and conventional surfactants are provided. Finally, challenges and possible directions of future research on SAILs are highlighted.
Collapse
Affiliation(s)
- Mona Kharazi
- Department of Applied Chemistry, Bu-Ali Sina University, 65174, Hamedan, Iran
| | - Javad Saien
- Department of Applied Chemistry, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | - Simin Asadabadi
- Department of Applied Chemistry, Bu-Ali Sina University, 65174, Hamedan, Iran
| |
Collapse
|
31
|
Yu JM, Luo D, Ma ZJ, Zheng B, Cheng FF, Xiong WW. Effective Enrichment of Low-Concentration Rare-Earth Ions by Three-Dimensional Thiostannate K 2Sn 2S 5. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55188-55197. [PMID: 34757713 DOI: 10.1021/acsami.1c17465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rare-earth elements (REEs) in industrial wastewaters have great value for recycling and reuse, but their characteristic of low concentration poses a challenge to an efficient enrichment from wastewaters. In recent years, thiometallates featuring two-dimensional layers have shown great potential in the enrichment of REEs via the ion-exchange process. However, investigations on thiometallates featuring three-dimensional anionic frameworks for the recovery of REEs have not been reported. Herein, K2Sn2S5 (KTS-2), a thiostannate possessing a three-dimensional porous framework, was chosen as an ion-exchange material for capturing REEs from an aqueous solution. Indeed, KTS-2 exhibited excellent ion-exchange performance for all 16 REEs (except Pm). Specifically, KTS-2 displayed a high capture capacity (232.7 ± 7.8 mg/g) and a short equilibrium time (within 10 min) for Yb3+ ions. In addition, KTS-2 had a high distribution coefficient for Yb3+ ions (Kd > 105 mL/g) in the presence of excessive interfering ions. Impressively, KTS-2 could reach removal rates of above 95% for all 16 REEs in a large quantity of wastewater with low initial concentration (∼7 mg/L). Moreover, KTS-2 could be used as an eco-friendly material for ion exchange of REEs, since the released K+ cations would not cause secondary pollution to the water solution.
Collapse
Affiliation(s)
- Ji-Ming Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Da Luo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhong-Jie Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and National and Local Collaborative Engineering Center of Chinese Medicinal Resources and Industrialization and Formulae Innovative Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wei-Wei Xiong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
32
|
Bello TO, Bresciani AE, Oller Nascimento CA, Brito Alves RM. Systematic Screening of Ionic Liquids for the Hydrogenation of Carbon Dioxide to Formic Acid and Methanol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taofeeq O. Bello
- Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo 05508-010, Brazil
| | - Antonio E. Bresciani
- Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo 05508-010, Brazil
| | | | - Rita M. Brito Alves
- Escola Politécnica, Universidade de São Paulo, São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
33
|
Olea F, Merlet G, Araya-López C, Cabezas R, Villarroel E, Quijada-Maldonado E, Romero J. Separation of vanillin by perstraction using hydrophobic ionic liquids as extractant phase: Analysis of mass transfer and screening of ILs via COSMO-RS. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Filipowiak K, Dudzińska P, Wieszczycka K, Buchwald T, Nowicki M, Lewandowska A, Marcinkowska A. Novel Polymer Sorbents with Imprinted Task-Specific Ionic Liquids for Metal Removal. MATERIALS 2021; 14:ma14175008. [PMID: 34501098 PMCID: PMC8434268 DOI: 10.3390/ma14175008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
In this paper, the potential of novel polymer sorbents with the imprinted IL-functional group for the removal of Cu(II), Cd(II), and Zn(II) from aqueous solutions was investigated by batch mode. The sorbents were fabricated by direct reaction of the prepared polymer matrix (poly(vinylbenzyl chloride-divinylbenzene), VBC, and poly(vinylbenzyl bromide-divinylbenzene), VBBr) with 1-(3- or 4-pyridyl)undecan-1-one and oxime of 1-(3- or 4-pyridyl)undecan-1-one. The Fourier Transform Infrared Spectroscopy (FT-IR), Raman Spectroscopy (Raman), Thermogravimetric Analysis (TG), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques were used to show functionality and stability of the sorbents. The materials were also characterized by contact-angle goniometry, X-rayphotoelectron spectroscopy (XPS), and Zeta potential analysis. The removal of Cd(II), Cu(II), and Zn(II) was monitored and optimized under the influence of several operational controlling conditions and factors such as pH, shaking time, temperature, initial metal ions concentration, and counter-ions at the functional group. The results obtained confirmed the very high potential of the sorbents; however, the properties depend on the structure of the functional group. The tested sorbents showed fast kinetics, significant capacity at 25 °C (84 mg/g for the Zn(II) sorption with VBC-Ox4.10, 63 mg/g for the Cd(II) sorption with VBBr-Ox3.10, and 69 mg/g for the Cu(II) sorption with VBC-K3.10), and temperature dependence (even 100% increase in capacity values at 45 °C). The selected sorbent can be regenerated without a significant decrease in the metal removal efficiency.
Collapse
Affiliation(s)
- Kinga Filipowiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| | - Patrycja Dudzińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| | - Karolina Wieszczycka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
- Correspondence: ; Tel.: +48-61-665-36-88
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marek Nowicki
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Aneta Lewandowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| | - Agnieszka Marcinkowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland; (K.F.); (P.D.); (A.L.); (A.M.)
| |
Collapse
|
35
|
Khraisheh M, AlMomani F, Inamdar M, Hassan MK, Al-Ghouti MA. Ionic liquids application for wastewater treatment and biofuel production: A mini review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Zhang J, Kamio E, Kinoshita M, Matsuoka A, Nakagawa K, Yoshioka T, Matsuyama H. Inorganic/Organic Micro-Double-Network Ion Gel-Based Composite Membrane with Enhanced Mechanical Strength and CO 2 Permeance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinhui Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masayuki Kinoshita
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
37
|
Akl ZF, Ezat A. Preparation and application of a novel ionic liquid-type dicationic surfactant in extractive preconcentration of trace uranium (VI). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Pandey A, Hashmi S, Salunkhe G, Kathirvelu V, Singh KS, Singh Chauhan R, Sengupta A. Tuning the extraction mechanism of uranyl ion in bicyclooctanium, propylpyridinium, piperidinium and imidazolium based ionic liquids: First ever evidence of 'cation exchange', 'anion exchange' and 'solvation' mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Sinha B, Bhattacharya M, Saha S, Saha S. Spectroscopic Studies and Antimicrobial Evaluation of New Mixed Ligand Mn(II), Ni(II), Cu(II) Complexes Synthesized from an Ionic Liquid-Supported Schiff Base and 1-Methyl Imidazole. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1963790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Biswajit Sinha
- Department of Chemistry, University of North Bengal, Darjeeling, India
| | - Malay Bhattacharya
- Department of Tea Science, University of North Bengal, Darjeeling, India
| | - Sumedha Saha
- Department of Tea Science, University of North Bengal, Darjeeling, India
| | - Sanjoy Saha
- Department of Chemistry, Kaliyaganj College, Kaliyaganj, India
| |
Collapse
|
40
|
Machado DB, Skoronski E, Soares C, Padoin N. Immobilisation of phosphonium-based ionic liquid in polysulfone capsules for the removal of phenolic compounds, with an emphasis on 2,4-dichlorophenol, in aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112670. [PMID: 33962283 DOI: 10.1016/j.jenvman.2021.112670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Phosphonium-based ionic liquid immobilised in polysulfone capsules were prepared by the phase inversion technique for the adsorption of different phenolic compounds from aqueous solution. Some techniques, including Scanning Electron Microscopy (SEM), surface analysis by Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FT-IR) and Thermogravimetric Analysis (TGA), were used to characterize the capsule and indicated that trihexyltetradecylphosphonium decanoate (ionic liquid) was successfully immobilised in polysulfone, the immobilisation was determined to be 63.29%. Adsorption tests showed that the developed capsules have the potential to remove varied phenolic compounds. For compounds 2,4-dichlorophenol (2,4-DCP) the best removal was achieved between pH 3.0 and 9.0. Temperature variation (25-70 °C) and sodium chloride concentration (0-1000 mg⋅L-1) had no significant changes in adsorption, demonstrating the scope for using this adsorbent with real effluents. Adsorption kinetics demonstrated the mechanism occurs in second order, the Weber-Morris model delimited the intraparticle diffusion as the adsorption limiter. The Redlich-Peterson model was the isothermal analysis that best suited the experimental data, with a β value equal to 0.821 approaching the Langmuir model, which obtained a qmax of 404.50 mg⋅g-1. Consequently, these results demonstrate that these capsules have potential application in the treatment of environmental pollution caused by phenolic compounds.
Collapse
Affiliation(s)
- Diego Bittencourt Machado
- Federal University of Santa Catarina, Department of Chemical and Food Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil.
| | - Everton Skoronski
- Santa Catarina State University, Department of Environmental and Sanitary Engineering, 2090 Luis de Camões Avenue, 88520-000, Lages, Santa Catarina, Brazil
| | - Cíntia Soares
- Federal University of Santa Catarina, Department of Chemical and Food Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil.
| | - Natan Padoin
- Federal University of Santa Catarina, Department of Chemical and Food Engineering, Campus Universitário Trindade, 87504-200, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
41
|
Kim E, Han J, Ryu S, Choi Y, Yoo J. Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4000. [PMID: 34300918 PMCID: PMC8308040 DOI: 10.3390/ma14144000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/04/2023]
Abstract
For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.
Collapse
Affiliation(s)
| | | | | | | | - Jeeyoung Yoo
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Korea; (E.K.); (J.H.); (S.R.); (Y.C.)
| |
Collapse
|
42
|
Slade J, Merunka D, Huerta E, Peric M. Rotation of a Charged Spin Probe in Room-Temperature Ionic Liquids. J Phys Chem B 2021; 125:7435-7446. [PMID: 34197101 DOI: 10.1021/acs.jpcb.1c02471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-band electron paramagnetic resonance spectroscopy has been used to investigate the rotational diffusion of a stable, positively charged nitroxide 4-trimethylammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (Cat-1) in a series of 1-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids (RTILs) having alkyl chain lengths from two to eight carbons. The rotation of Cat-1 is anisotropic with the preferential axis of rotation along the NO• moiety. The Stokes-Einstein-Debye law describes the mean rotational correlation time of Cat-1, assuming that the hydrodynamic radius is smaller than the van der Waals radius of the probe. This implies that the probe rotates freely, experiencing slip boundary condition, which is solvent-dependent. The rotational correlation time of Cat-1 in RTILs can very well be fitted to a power-law functionality with a singular temperature, which suggests that the apparent activation energy of rotation exhibits non-Arrhenius behavior. Compared to the rotation of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO), which is neutral, the rotation of Cat-1 is several times slower. The rotational anisotropy, the ratio of the rotational times of pDTO and Cat-1, and the apparent activation energy indicate the transition from a homogeneously globular structure to a spongelike structure when the alkyl chain has four carbons, which is also observed in molecular dynamics computational studies. For the first time, we have been able to show that the rotational correlation time of a solute molecule can be analyzed in terms of the Cohen-Turnbull free volume theory. The Cohen-Turnbull theory fully describes the rotation of Cat-1 in all ionic liquids in the measured temperature range.
Collapse
Affiliation(s)
- Jakov Slade
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička cesta 54, Zagreb HR-10000, Croatia
| | - Dalibor Merunka
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička cesta 54, Zagreb HR-10000, Croatia
| | - Ezequiel Huerta
- Department of Physics and Astronomy and The Center for Biological Physics, California State University, Northridge, Northridge, California 91330, United States
| | - Miroslav Peric
- Department of Physics and Astronomy and The Center for Biological Physics, California State University, Northridge, Northridge, California 91330, United States
| |
Collapse
|
43
|
Mokhodoeva OB, Maksimova VV, Dzhenloda RK, Shkinev VM. Magnetic Nanoparticles Modified by Ionic Liquids in Environmental Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Perța-Crișan S, Ursachi CȘ, Gavrilaș S, Oancea F, Munteanu FD. Closing the Loop with Keratin-Rich Fibrous Materials. Polymers (Basel) 2021; 13:1896. [PMID: 34200460 PMCID: PMC8201023 DOI: 10.3390/polym13111896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
One of the agro-industry's side streams that is widely met is the-keratin rich fibrous material that is becoming a waste product without valorization. Its management as a waste is costly, as the incineration of this type of waste constitutes high environmental concern. Considering these facts, the keratin-rich waste can be considered as a treasure for the producers interested in the valorization of such slowly-biodegradable by-products. As keratin is a protein that needs harsh conditions for its degradation, and that in most of the cases its constitutive amino acids are destroyed, we review new extraction methods that are eco-friendly and cost-effective. The chemical and enzymatic extractions of keratin are compared and the optimization of the extraction conditions at the lab scale is considered. In this study, there are also considered the potential applications of the extracted keratin as well as the reuse of the by-products obtained during the extraction processes.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Simona Gavrilaș
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Florin Oancea
- Bioresource Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| |
Collapse
|
45
|
Phadagi R, Singh S, Hashemi H, Kaya S, Venkatesu P, Ramjugernath D, Ebenso E, Bahadur I. Understanding the role of Dimethylformamide as co-solvents in the dissolution of cellulose in ionic liquids: Experimental and theoretical approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
|
47
|
Eppink MHM, Ventura SPM, Coutinho JAP, Wijffels RH. Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends Biotechnol 2021; 39:1131-1143. [PMID: 33726917 DOI: 10.1016/j.tibtech.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs) are salts with low melting points that can be used as solvents for mild extraction and selective fractionation of biomolecules (e.g., proteins, carbohydrates, lipids, and pigments), enabling the valorisation of microalgal biomass in a multiproduct biorefinery concept, while maintaining the biomolecules' structural integrity and activity. Aqueous biphasic systems and emulsions stabilised by core-shell particles have been used to fractionate disrupted microalgal biomass into hydrophobic (lipids and pigments) and hydrophilic (proteins and carbohydrates) components. From nondisrupted biomass, the hydrophobic components can be directly extracted using ILs from intact cells, while the most fragile hydrophilic components can be obtained upon further mechanical cell disruption. These multiproduct biorefinery concepts will be discussed in an outlook on future separations using IL-based systems.
Collapse
Affiliation(s)
- Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands.
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049, Bodø, Norway
| |
Collapse
|
48
|
Wang Y, Swain GM, Blanchard GJ. Charge-Induced Birefringence in a Room-Temperature Ionic Liquid. J Phys Chem B 2021; 125:950-955. [PMID: 33464907 DOI: 10.1021/acs.jpcb.0c10045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have reported previously on the existence of a surface charge-induced free charge density gradient (ρf) in room-temperature ionic liquids (RTILs) with a characteristic persistence length of ca. 50 μm [Ma, K. Langmuir 2016, 32, 9507-9512]. The free charge density gradient is related to the dielectric response of the RTIL. We report here on the existence of a surface charge-induced gradient in the RTIL refractive index and quantify the relationship between the index gradient and ρf. Because ρf is uniaxial, the induced refractive index gradient is manifested as an induced birefringence. The RTIL sample holder has a curved surface such that the RTIL can function as a lens, and ρf is controlled by the surface charge density (σs) of the (concave) RTIL support. Current passed through an indium-doped tin oxide (ITO) surface layer on the support surface controls σs. The far-field image of light passed through the RTIL lens as a function of σs is used to measure the charge-induced changes of n in the RTIL. We demonstrate a modulation of the refractive index on the order of 15%, proportional to σs. This report places the relationship between ρf and RTIL dielectric response on a quantitative footing and suggests the utility of RTILs for electro-optic applications.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
49
|
Lanaridi O, Sahoo AR, Limbeck A, Naghdi S, Eder D, Eitenberger E, Csendes Z, Schnürch M, Bica-Schröder K. Toward the Recovery of Platinum Group Metals from a Spent Automotive Catalyst with Supported Ionic Liquid Phases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:375-386. [PMID: 33585084 PMCID: PMC7874140 DOI: 10.1021/acssuschemeng.0c07384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Indexed: 05/27/2023]
Abstract
We present a novel approach for the separation and recovery of Pt and Pd leached from a spent automotive catalyst relying on conventional and polymerized supported ionic liquid phases (SILPs and polySILPs, respectively). A variety of parameters with possible effects on the separation behavior, namely, acidity and concentration of the platinum group metal (PGM) containing solution, as well as different SILP and polySILP loadings, were evaluated for the separation of PGMs in the presence of high concentrations of Al, Fe, Zn, and Ce. The polySILP material demonstrated the ability to separate the PGMs from major accompanying interferences in a single separation step, while problems arising from ionic liquid leaching in the case of SILPs could be avoided. Moreover, the use of supported ionic liquid phases allowed the drastic reduction of the amount of required ionic liquid compared to conventional liquid-liquid separation, while avoiding problems arising from emulsion formation. Subsequent stripping experiments lead to further purification of the PGMs and finally desorption from the solid material into a pure solution. Eventually, the concept of chemisorbed polySILPs provides a new and convenient approach for the recycling of platinum group metals.
Collapse
Affiliation(s)
- Olga Lanaridi
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Apurba Ranjan Sahoo
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Andreas Limbeck
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Shaghayegh Naghdi
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
| | - Dominik Eder
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9/165, 1060 Vienna, Austria
| | - Elisabeth Eitenberger
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Zita Csendes
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Michael Schnürch
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Katharina Bica-Schröder
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
50
|
Tereshatov EE, Mazan V, Boltoeva M, Folden CM. Effect of hydrophobic ionic liquids aqueous solubility on metal extraction from hydrochloric acid media: Mathematical modelling and trivalent thallium behavior. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|