1
|
Kanwal M, Polakova I, Olsen M, Kasi MK, Tachezy R, Smahel M. Heterogeneous Response of Tumor Cell Lines to Inhibition of Aspartate β-hydroxylase. J Cancer 2024; 15:3466-3480. [PMID: 38817852 PMCID: PMC11134442 DOI: 10.7150/jca.94452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Cancer development involves alterations in key cellular pathways, with aspartate β-hydroxylase (ASPH) emerging as an important player in tumorigenesis. ASPH is upregulated in various cancer types, where it promotes cancer progression mainly by regulating the Notch1 and SRC pathways. Methods: This study explored the responses of various human cervical, pharyngeal, and breast tumor cell lines to second- and third-generation ASPH inhibitors (MO-I-1151 and MO-I-1182) using proliferation, migration, and invasion assays; western blotting; and cell cycle analysis. Results: ASPH inhibition significantly reduced cell proliferation, migration, and invasion and disrupted both the canonical and noncanonical Notch1 pathways. The noncanonical pathway was particularly mediated by AKT signaling. Cell cycle analysis revealed a marked reduction in cyclin D1 expression, further confirming the inhibitory effect of ASPH inhibitors on cell proliferation. Additional analysis revealed G0/G1 arrest and restricted progression into S phase, highlighting the regulatory impact of ASPH inhibitors on the cell cycle. Furthermore, ASPH inhibition induced distinctive alterations in nuclear morphology. The high heterogeneity in the responses of individual tumor cell lines to ASPH inhibitors, both quantitatively and qualitatively, underscores the complex network of mechanisms that are regulated by ASPH and influence the efficacy of ASPH inhibition. The effects of ASPH inhibitors on Notch1 pathway activity, cyclin D1 expression, and nuclear morphology contribute to the understanding of the multifaceted effects of these inhibitors on cancer cell behavior. Conclusion: This study not only suggests that ASPH inhibitors are effective against tumor cell progression, in part through the induction of cell cycle arrest, but also highlights the diverse and heterogeneous effects of these inhibitors on the behavior of tumor cells of different origins.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Polakova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
| | - Murtaza Khan Kasi
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
2
|
Khairinisa MA, Latarissa IR, Athaya NS, Charlie V, Musyaffa HA, Prasedya ES, Puspitasari IM. Potential Application of Marine Algae and Their Bioactive Metabolites in Brain Disease Treatment: Pharmacognosy and Pharmacology Insights for Therapeutic Advances. Brain Sci 2023; 13:1686. [PMID: 38137134 PMCID: PMC10741471 DOI: 10.3390/brainsci13121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Seaweeds, also known as edible marine algae, are an abundant source of phytosterols, carotenoids, and polysaccharides, among other bioactive substances. Studies conducted in the past few decades have demonstrated that substances derived from seaweed may be able to pass through the blood-brain barrier and act as neuroprotectants. According to preliminary clinical research, seaweed may also help prevent or lessen the symptoms of cerebrovascular illnesses by reducing mental fatigue, preventing endothelial damage to the vascular wall of brain vessels, and regulating internal pressure. They have the ability to control neurotransmitter levels, lessen neuroinflammation, lessen oxidative stress, and prevent the development of amyloid plaques. This review aims to understand the application potential of marine algae and their influence on brain development, highlighting the nutritional value of this "superfood" and providing current knowledge on the molecular mechanisms in the brain associated with their dietary introduction.
Collapse
Affiliation(s)
- Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| | - Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Nadiyah Salma Athaya
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Vandie Charlie
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Hanif Azhar Musyaffa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
| | - Eka Sunarwidhi Prasedya
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia;
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83126, Indonesia
| | - Irma Melyani Puspitasari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia; (I.R.L.); (N.S.A.); (V.C.); (H.A.M.); (I.M.P.)
- Centre of Excellence in Pharmaceutical Care Innovation, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Georgii ADNP, Teixeira VL. Dictyota and Canistrocarpus Brazilian Brown Algae and Their Bioactive Diterpenes-A Review. Mar Drugs 2023; 21:484. [PMID: 37755097 PMCID: PMC10532921 DOI: 10.3390/md21090484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Dictyotaceae algae have gained recognition as prolific producers of diterpenes, which are molecules with significant biotechnological potential. These diterpenes hold immense promise as potential active drug components, making the algae a compelling area of study. The present review aims to present the latest advancements in understanding the biopotential of Brazilian Dictyota and Canistrocarpus brown algae, shedding light on the remarkable diversity and the biological and pharmacological potential of the secondary metabolites they produce. A total of 78 articles featuring 26 distinct diterpenes are reported in this review, with their antiviral potential being the mosthighlighted biological activity. Despite considerable research on these algae and their diterpenes, significant knowledge gaps persist. Consequently, the present review is poised to serve as a pivotal resource for researchers who are actively engaged in the pursuit of active diterpenes beyond the immediate purview. Furthermore, it holds the potential to catalyze an increase in research endeavors centered around these algal species within the geographical confines of the Brazilian coastline. Also, it assumes a critical role in directing future scientific explorations toward a better comprehension of these compounds and their ecological implications.
Collapse
Affiliation(s)
| | - Valéria Laneuville Teixeira
- Algamar Laboratory, Institute of Biology, Fluminense Federal University, Rua Prof. Frames Waldemar de Freitas Reis, Block M, São Domingos, Niterói 24210-201, RJ, Brazil;
| |
Collapse
|
4
|
Agena R, Cortés-Sánchez ADJ, Hernández-Sánchez H, Álvarez-Salas LM, Martínez-Rodríguez OP, García VHR, Jaramillo Flores ME. Pro-Apoptotic Activity and Cell Cycle Arrest of Caulerpa sertularioides against SKLU-1 Cancer Cell in 2D and 3D Cultures. Molecules 2023; 28:molecules28114361. [PMID: 37298837 DOI: 10.3390/molecules28114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a disease with the highest mortality and morbidity rate worldwide. First-line drugs induce several side effects that drastically reduce the quality of life of people with this disease. Finding molecules to prevent it or generate less aggressiveness or no side effects is significant to counteract this problem. Therefore, this work searched for bioactive compounds of marine macroalgae as an alternative treatment. An 80% ethanol extract of dried Caulerpa sertularioides (CSE) was analyzed by HPLS-MS to identify the chemical components. CSE was utilized through a comparative 2D versus 3D culture model. Cisplatin (Cis) was used as a standard drug. The effects on cell viability, apoptosis, cell cycle, and tumor invasion were evaluated. The IC50 of CSE for the 2D model was 80.28 μg/mL versus 530 μg/mL for the 3D model after 24 h of treatment exposure. These results confirmed that the 3D model is more resistant to treatments and complex than the 2D model. CSE generated a loss of mitochondrial membrane potential, induced apoptosis by extrinsic and intrinsic pathways, upregulated caspases-3 and -7, and significantly decreased tumor invasion of a 3D SKLU-1 lung adenocarcinoma cell line. CSE generates biochemical and morphological changes in the plasma membrane and causes cell cycle arrest at the S and G2/M phases. These findings conclude that C. sertularioides is a potential candidate for alternative treatment against lung cancer. This work reinforced the use of complex models for drug screening and suggested using CSE's primary component, caulerpin, to determine its effect and mechanism of action on SKLU-1 in the future. A multi-approach with molecular and histological analysis and combination with first-line drugs must be included.
Collapse
Affiliation(s)
- Rosette Agena
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | - Humberto Hernández-Sánchez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Luis Marat Álvarez-Salas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Oswaldo Pablo Martínez-Rodríguez
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Víctor Hugo Rosales García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - María Eugenia Jaramillo Flores
- Ingeniería Bioquímica-Escuela Nacional de Ciencias Biológicas (ENCB)-Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| |
Collapse
|
5
|
Rushdi MI, Abdel-Rahman IAM, Attia EZ, Saber H, Saber AA, Bringmann G, Abdelmohsen UR. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Molecules 2022; 27:672. [PMID: 35163940 PMCID: PMC8838102 DOI: 10.3390/molecules27030672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Although a broad variety of classes of bioactive compounds have already been isolated from seaweeds of the genus Dictyota, most different species are still chemically and biologically unexplored. Dictyota species are well-known brown seaweeds belonging to the Dictyotaceae (Phaeophyta). The phytochemical composition within the genus Dictyota has recently received considerable interest, and a vast array of components, including diterpenes, sesquiterepenes, sterols, amino acids, as well as saturated and polyunsaturated fatty acids, have been characterized. The contribution of these valued metabolites to the biological potential, which includes anti-proliferative, anti-microbial, antiviral, antioxidant, anti-inflammatory, and anti-hyperpigmentation activities, of the genus Dictyota has also been explored. Therefore, this is the most comprehensive review, focusing on the published literature relevant to the chemically and pharmacologically diverse biopharmaceuticals isolated from different species of the genus Dictyota during the period from 1976 to now.
Collapse
Affiliation(s)
- Mohammed I. Rushdi
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt; (M.I.R.); (I.A.M.A.-R.)
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt; (M.I.R.); (I.A.M.A.-R.)
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Abdullah A. Saber
- Botany Department, Faculty of Science, Ain Shams University, Abbassia Square, Cairo 11566, Egypt;
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
6
|
Moga MA, Dima L, Balan A, Blidaru A, Dimienescu OG, Podasca C, Toma S. Are Bioactive Molecules from Seaweeds a Novel and Challenging Option for the Prevention of HPV Infection and Cervical Cancer Therapy?-A Review. Int J Mol Sci 2021; 22:E629. [PMID: 33435168 PMCID: PMC7826946 DOI: 10.3390/ijms22020629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer represents one of the leading causes of cancer-related death in women all over the world. The infection with human papilloma virus (HPV) is one of the major risk factors for the development of premalignant lesions, which will progress to cervical cancer. Seaweeds are marine organisms with increased contents of bioactive compounds, which are described as potential anti-HPV and anti-cervical cancer agents. Our study aims to bring together all the results of the previous studies, conducted in order to highlight the potency of bioactive molecules from seaweeds, as anti-HPV and anti-cervical agents. This paper is a review of the English literature published between January 2010 and August 2020. We performed a systematic study in the Google Academic and PubMed databases using the key words "HPV infection", "anticancer", "seaweeds", "cervical cancer" and "carcinogenesis process", aiming to evaluate the effects of different bioactive molecules from marine algae on cervical cancer cell lines and on HPV-infected cells. Only original studies were considered for our research. None of the papers was excluded due to language usage or affiliation. Recent discoveries pointed out that sulfated polysaccharides, such as dextran sulfate heparan or cellulose sulfate, blocked the ability of HPV to infect cells, and inhibited the carcinogenesis process. Carrageenans inhibited the virions of HPV from binding the cellular wall. Fucoidan induced the growth inhibition of HeLa cervical cells in vitro. Heterofucans exhibited antiproliferative effects on cancer cell lines. Terpenoids from brown algae are also promising agents with anti-cervical cancer activity. Considering all the results of the previous studies, we observed that great amounts of bioactive molecules from seaweeds could treat both unapparent HPV infection and clinical visible disease. Furthermore, these molecules were very efficient in the treatment of invasive cervical carcinomas. In these conditions, we consider seaweeds extracts as a novel and challenging therapeutic strategy, and we hope that our study paves the way for further clinical trials in the field.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| | - Andreea Balan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Alexandru Blidaru
- Department of Surgical Oncology, Oncological Institute “Al. Trestioneanu” of Bucharest, University of Medicine and Pharmacy Carol Davila Bucharest, 020021 Bucharest, Romania
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Cezar Podasca
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Sebastian Toma
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| |
Collapse
|
7
|
Shi H, Kim SH, Kim IH. Effect of dietary inclusion of fermented sea mustard by-product on growth performance, blood profiles, and meat quality in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4304-4308. [PMID: 30828811 DOI: 10.1002/jsfa.9663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/07/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sea mustards are traditionally consumed as human food in many Asian countries. However, owing to the large consumption of seaweed, there are a substantial number of by-products produced during processing. These by-products after fermentation can provide a good alternative nutrient source for broilers and serve as a recycled resource reducing the environmental pollution of the seaweed industry. Therefore, an experiment was conducted to evaluate the effect of fermented sea mustard by-product (FSM) supplementation on growth performance, nutrient digestibility, excreta microflora, blood profiles, relative organ weight, and meat quality in broilers. The treatments were: control (CON), basal diet; FSM, CON +2 g kg-1 FSM. RESULTS During days 1 to 35, with the supplementation of 2 g kg-1 FSM, body weight gain (BWG) increased (P < 0.05), whereas the feed conversion ratio (FCR) decreased (P < 0.05). On day 35, with the supplementation of 2 g kg-1 FSM, excreta Lactobacillus counts increased (P < 0.05), and the excreta Escherichia coli counts decreased (P < 0.05). There were no significant effects (P > 0.05) on nutrient digestibility, blood profile, relative organ weight, and breast meat quality of broilers fed with FSM diets. CONCLUSION Dietary supplementation of 2 g kg-1 FSM can improve growth performance, and shifted excreta microflora by increasing the proliferation of Lactobacillus counts and by decreasing E. coli counts. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Shi
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Seung Hee Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
8
|
Bernardes-Oliveira E, Farias KJS, Gomes DL, de Araújo JMG, da Silva WD, Rocha HAO, Donadi EA, Fernandes-Pedrosa MDF, Crispim JCDO. Tityus serrulatus Scorpion Venom Induces Apoptosis in Cervical Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5131042. [PMID: 31341494 PMCID: PMC6612397 DOI: 10.1155/2019/5131042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/15/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Cervical cancer (CC) is classified as the fourth most common type of cancer in women worldwide and remains a serious public health problem in many underdeveloped countries. Human papillomavirus (HPV), mainly types 16 and 18, has been established as a precursory etiologic agent for this type of cancer. Several therapeutic attempts have been studied and applied, aiming at its control. However, not only do classical treatments such as chemotherapies and radiotherapies target tumor cells, but also they cause damage to several healthy cells. For these reasons, the search for new biologically active chemotherapeutic components is of great importance. In this study, we investigated the effect of Tityus serrulatus scorpion venom (TsV) on CC lines. There are very few studies exploring venom of scorpions, and, to our knowledge, no study has been conducted using the venom of the scorpion TsV for treatment of cervical cancer lines. After challenge with TsV, the MTT assay demonstrated cytotoxic effect on HeLa line. Similarly, the cell death process in HeLa analyzed by flow cytometry suggests death via caspase, since the pan-caspase inhibitor z-VAD-fmk significantly reduced the apoptotic response to the treatment. These results suggest that venom of TsV can be a potential source for the isolation of effective antiproliferative and apoptotic molecules in the treatment of CC.
Collapse
Affiliation(s)
- Emanuelly Bernardes-Oliveira
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Kleber Juvenal Silva Farias
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Dayanne Lopes Gomes
- Departamento de Bioquímica, Centro Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josélio Maria Galvão de Araújo
- Departamento de Microbiologia e Parasitologia da Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratorio de Virologia, Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte, RN, Brazil
| | | | | | - Eduardo Antônio Donadi
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Janaina Cristiana de Oliveira Crispim
- Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Maternidade Escola Januário Cicco (MEJC), Natal, RN, Brazil
| |
Collapse
|
9
|
Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. BIOACTIVE NATURAL PRODUCTS 2019. [DOI: 10.1016/b978-0-12-817901-7.00005-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Barros-Gomes JAC, Nascimento DLA, Silveira ACR, Silva RK, Gomes DL, Melo KRT, Almeida-Lima J, Camara RBG, Silva NB, Rocha HAO. In Vivo Evaluation of the Antioxidant Activity and Protective Action of the Seaweed Gracilaria birdiae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9354296. [PMID: 30154951 PMCID: PMC6093003 DOI: 10.1155/2018/9354296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/15/2018] [Accepted: 06/24/2018] [Indexed: 12/26/2022]
Abstract
The red seaweed Gracilaria birdiae (GB) is farmed and used as food in northeast Brazil. However, the economic potential of this seaweed has been explored little. To enable direct consumption and/or product diversification from GB, it is necessary to evaluate its effect in vivo. In this study, the food of mice was improved with the addition of GB. After 21 days, the consumption of seaweed reduced the weight gain and blood glucose levels in mice. In addition, it increased the trolox equivalent antioxidant capacity and glutathione reductase and catalase levels compared to those of the control group. In addition, some mice also received carbon tetrachloride (CCl4). In this case, histological, enzymatic, and antioxidant tests showed that the seaweed could protect animals from damage caused by this toxic agent. In addition, GB aqueous extract (AE) inhibited 50% of 3T3-L1 cell differentiation into adipocytes, whereas GB ethanolic extract was not effective. AE is composed mainly of sulfated polysaccharides. The results of the present study indicate that the alga GB protected the mice from CCl4-induced damage, indicating that the seaweed exhibits protective action in vivo. In addition, GB decreased the animal weight gain, which was mainly due to the action of the sulfated polysaccharides synthesized by this seaweed.
Collapse
Affiliation(s)
- Joanna Angelis Costa Barros-Gomes
- Laboratório de Biotecnologia de Polímeros Naturais (Biopol), Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Av. Sen. Salgado Filho 3000, 59072970 Natal, RN, Brazil
| | - Daiany Laise Araújo Nascimento
- Departamento de Nutrição, Centro Universitário do Rio Grande do Norte (UNI-RN), Rua Prefeita Eliane Barros, 2000 Tirol, 59014-545 Natal, RN, Brazil
| | - Ana Cristina Rodrigues Silveira
- Departamento de Nutrição, Centro Universitário do Rio Grande do Norte (UNI-RN), Rua Prefeita Eliane Barros, 2000 Tirol, 59014-545 Natal, RN, Brazil
| | - Rayanne Kelly Silva
- Departamento de Nutrição, Centro Universitário do Rio Grande do Norte (UNI-RN), Rua Prefeita Eliane Barros, 2000 Tirol, 59014-545 Natal, RN, Brazil
| | - Dayane Lopes Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí (IFPI), São Raimundo Nonato, 64.770-000 Piauí, PI, Brazil
| | - Karoline Rachel Teodosio Melo
- Laboratório de Biotecnologia de Polímeros Naturais (Biopol), Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Av. Sen. Salgado Filho 3000, 59072970 Natal, RN, Brazil
| | - Jailma Almeida-Lima
- Laboratório de Biotecnologia de Polímeros Naturais (Biopol), Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Av. Sen. Salgado Filho 3000, 59072970 Natal, RN, Brazil
| | - Rafael Barros Gomes Camara
- Escola Multicampi de Ciências Médicas, Universidade Federal do Rio Grande do Norte (UFRN), Av. Cel. Martiniano 541, 59300-00 Caicó, RN, Brazil
| | - Naisandra Bezerra Silva
- Laboratório de Histologia, Centro de Biociências, Departamento de Morfologia, Universidade Federal do Rio Grande do Norte (UFRN), Av. Sen. Salgado Filho 3000, 59072970 Natal, RN, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (Biopol), Centro de Biociências, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Av. Sen. Salgado Filho 3000, 59072970 Natal, RN, Brazil
| |
Collapse
|
11
|
Comparison of the Inhibitory Mechanisms of Diethyl Citrate, Sodium Citrate, and Phosphonoformic Acid on Calcification Induced by High Inorganic Phosphate Contents in Mouse Aortic Smooth Muscle Cells. J Cardiovasc Pharmacol 2018; 70:411-419. [PMID: 28902664 DOI: 10.1097/fjc.0000000000000537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed to investigate the differences and inhibitory effects of diethyl citrate (Et2Cit), sodium citrate (Na3Cit), and phosphonoformic acid (PFA) on calcification induced by high inorganic phosphate (Pi) contents in mouse aortic smooth muscle cells (MOVAS) and to develop drugs that can induce anticoagulation and inhibit vascular calcification (VC). METHODS Alive and fixed MOVAS were assessed for 14 days in the presence of high Pi with increasing Et2Cit, Na3Cit, and PFA concentrations. Calcification on MOVAS was measured through Alizarin red staining and the deposited calcium amount; apoptosis was detected by annexin V staining; and cell transdifferentiation was examined by measuring smooth muscle lineage gene (α-SMA) expression and alkaline phosphatase activity. RESULTS Coincubation of MOVAS with Et2Cit, Na3Cit, and PFA significantly decreased Pi-induced VC in live MOVAS, and the apoptotic rate was reduced by low inhibitor concentrations. The 3 inhibitors could prevent the alkaline phosphatase activity induced by high Pi contents and increased the expression of α-smooth muscle actin genes. Thus, the transdifferentiation of MOVAS into osteoblast-like cells was blocked. Their inhibitory effects exhibited concentration dependence. The inhibitory effect of each inhibitor at the same concentration showed the following trend: PFA > Na3Cit > Et2Cit. CONCLUSIONS Et2Cit, Na3Cit, and PFA prevented the calcification of MOVAS and inhibited the osteochondrocytic conversion of vascular smooth muscle cells. Thus, Et2Cit and Na3Cit as anticoagulants may alleviate VC in clinical applications.
Collapse
|
12
|
Kim IH, Choi JW, Lee MK, Kwon CJ, Nam TJ. Anti-obesity effects of pectinase and cellulase enzyme‑treated Ecklonia cava extract in high‑fat diet‑fed C57BL/6N mice. Int J Mol Med 2018; 41:924-934. [PMID: 29207025 PMCID: PMC5752156 DOI: 10.3892/ijmm.2017.3295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022] Open
Abstract
The present study investigated the anti‑obesity effects of enzyme‑treated Ecklonia cava extract (EEc) in C57BL/6N mice with high‑fat diet (HFD)‑induced obesity. The EEc was separated and purified with the digestive enzymes pectinase (Rapidase X‑Press L) and cellulase (Rohament CL) and its effects on the progression of HFD‑induced obesity were examined over 10 weeks. The mice were divided into 6 groups (n=10/group) as follows: Normal diet group, HFD group, mice fed a HFD with 25 mg/kg/day Garcinia cambogia extract and mice fed a HFD with 5, 25 or 150 mg/kg/day EEc (EHD groups). Changes in body weight, fat, serum lipid levels and lipogenic enzyme levels were determined. The body weight and liver weight were increased in the HFD group compared with those in the ND group, which was significantly reduced by EEc supplementation. In addition, significant reductions in epididymal, perirenal and mesenteric white adipose tissues were present in the EHD groups and all three EHD groups exhibited decreases in insulin, leptin and glutamate pyruvate transaminase levels compared with those in the HFD group. In addition, EEc treatment significantly decreased the serum and hepatic triglyceride levels compared with those in the HFD group. However, the levels of high‑density lipoprotein cholesterol/total cholesterol ration increased significantly in EHD‑25 and ‑150 groups compared with those in the HFD group. Changes in adipogenic and lipogenic protein expression in the liver was assessed by western blot analysis. The EHD‑25 and -150 groups exhibited reduced levels of CCAAT/enhancer‑binding protein α and peroxisome proliferator activated receptor γ. However, the phosphorylation ratios of AMP‑activated protein kinase and acetyl‑CoA carboxylase were significantly increased in the liver tissue obtained from the EHD (5, ‑25 and ‑150 mg/kg/day) groups compared with those in the HFD group. EEc supplementation reduced levels of sterol regulatory element‑binding protein‑1c, adipose fatty acid‑binding protein, fatty acid synthase and leptin, while it significantly increased glucose transporter type 4 and adiponectin protein levels in the liver tissues of all three EHD groups compared with those in the HFD group. Taken together, these results suggest that EEc exerts anti‑obesity effects by reducing body weight and the serum and hepatic levels of obesity‑associated factors. Thus, EEc supplementation reduces HFD‑induced obesity in C57BL/6N mice and has the potential to prevent obesity and subsequent metabolic disorders.
Collapse
Affiliation(s)
- In-Hye Kim
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan, Gijang-gun 46041
| | - Jung-Wook Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, Nam-gu 48513
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Nam-gu 48513
| | - Chang-Ju Kwon
- Ju Yeong NS Co., Ltd., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Taek-Jeong Nam
- Cell Biology Laboratory, Institute of Fisheries Sciences, Pukyong National University, Busan, Gijang-gun 46041
- Department of Food Science and Nutrition, Pukyong National University, Busan, Nam-gu 48513
| |
Collapse
|
13
|
Nowak A, Sójka M, Klewicka E, Lipińska L, Klewicki R, Kołodziejczyk K. Ellagitannins from Rubus idaeus L. Exert Geno- and Cytotoxic Effects against Human Colon Adenocarcinoma Cell Line Caco-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2947-2955. [PMID: 28301143 DOI: 10.1021/acs.jafc.6b05387] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ellagitannins possess several biological activities, including anticancer properties. The goal of the present study was to investigate the cyto- and genotoxic activities of a red raspberry ellagitannin preparation (REP) in the concentration range of 2.5-160 μg/mL, as well as that of the main individual raspberry ellagitannins, sanguiin H-6 (SH-6, 12.8-256 μM) and lambertianin C (LC, 9.3-378 μM), against human colon adenocarcinoma cell line Caco-2. The ellagitannin concentrations used in the study correspond to those found in foodstuffs containing raspberry fruit. REP, SH-6, and LC exhibited strong concentration-dependent genotoxic properties, inducing DNA damage ranging from 7.3 ± 1.3 to 56.8 ± 4.3%, causing double-strand breaks and oxidation of DNA bases. At IC50 (124 μg/mL) the REP affected the nuclear morphology and induced the apoptosis of Caco-2 cells. Because the REP has been found to possess chemopreventive activity, it can be used as a natural food additive to enhance the health benefits of foodstuffs.
Collapse
Affiliation(s)
- Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology , Wólczańska 171/173, 90-924 Lodz, Poland
| | - Michał Sójka
- Institute of Food Technology and Analysis, Lodz University of Technology , Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology , Wólczańska 171/173, 90-924 Lodz, Poland
| | - Lidia Lipińska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology , Wólczańska 171/173, 90-924 Lodz, Poland
| | - Robert Klewicki
- Institute of Food Technology and Analysis, Lodz University of Technology , Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Krzysztof Kołodziejczyk
- Institute of Food Technology and Analysis, Lodz University of Technology , Stefanowskiego 4/10, 90-924 Lodz, Poland
| |
Collapse
|
14
|
Kim IH, Nam TJ. Enzyme-treated Ecklonia cava extract inhibits adipogenesis through the downregulation of C/EBPα in 3T3-L1 adipocytes. Int J Mol Med 2017; 39:636-644. [PMID: 28204815 PMCID: PMC5360387 DOI: 10.3892/ijmm.2017.2869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we examined the inhibitory effects of enzyme- treated Ecklonia cava (EEc) extract on the adipogenesis of 3T3-L1 adipocytes. The components of Ecklonia cava (E. cava) were first separated and purified using the digestive enzymes pectinase (Rapidase® X‑Press L) and cellulase (Rohament® CL). We found that the EEc extract contained three distinct phlorotannins: eckol, dieckol and phlorofucofuroeckol-A. Among the phlorotannins, dieckol was the most abundant in the EEc extract at 16 mg/g. Then we examined the inhibitory effects of EEc extract treatment on differentiation‑related transcription factors and on adipogenesis‑related gene expression in vitro using 3T3-L1 adipocytes. 3T3‑L1 pre‑adipocytes were used to determine the concentrations of the EEc extract and Garcinia cambogia (Gar) extract that did not result in cytotoxicity. Glucose utilization and triglyceride (TG) accumulation in the EEc‑treated adipocytes were similarly inhibited by 50 µg/ml EEc and 200 µg/ml Gar, and these results were confirmed by Oil Red O staining. Protein expression of adipogenesis differentiation‑related transcription factors following treatment with the EEc extract was also examined. Only the expression of CCAAT/enhancer‑binding protein (C/EBP)α was decreased, while there was no effect on the expression of C/EBPβ, C/EBPδ, and peroxisome proliferator‑activated receptor γ (PPARγ). Treatment with the EEc extract decreased the expression levels of adipogenesis‑related genes, in particular sterol regulatory element binding protein‑1c (SREBP‑1c), adipocyte fatty acid binding protein (A‑FABP), fatty acid synthase (FAS) and adiponectin. These results suggest that EEc extract treatment has an inhibitory effect on adipogenesis, specifically by affecting the activation of the C/EBPα signaling pathway and the resulting adipogenesis-related gene expression.
Collapse
Affiliation(s)
- In-Hye Kim
- Institute of Fisheries Science, Pukyong National University, Busan 619-911
| | - Taek-Jeong Nam
- Institute of Fisheries Science, Pukyong National University, Busan 619-911
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
15
|
Bothrops jararaca and Bothrops erythromelas Snake Venoms Promote Cell Cycle Arrest and Induce Apoptosis via the Mitochondrial Depolarization of Cervical Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1574971. [PMID: 28050190 PMCID: PMC5168552 DOI: 10.1155/2016/1574971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
Bothrops jararaca (BJ) and Bothrops erythromelas (BE) are viper snakes found in South-Southeast and Northeast regions of Brazil, respectively. Snake venoms are bioactive neurotoxic substances synthesized and stored by venom glands, with different physiological and pharmacological effects, recently suggesting a possible preference for targets in cancer cells; however, mechanisms of snakes have been little studied. Here, we investigated the mechanism responsible for snake crude venoms toxicity in cultured cervical cancer cells SiHa and HeLa. We show that BJ and BE snake crude venoms exert cytotoxic effects to these cells. The percentage of apoptotic cells and cell cycle analysis and cell proliferation were assessed by flow cytometry and MTT assay. Detection of mitochondrial membrane potential (Rhodamine-123), nuclei morphological change, and DNA fragmentation were examined by staining with DAPI. The results showed that both the BJ and BE venoms were capable of inhibiting tumor cell proliferation, promoting cytotoxicity and death by apoptosis of target SiHa and HeLa cells when treated with BJ and BE venoms. Furthermore, data revealed that both BJ venoms in SiHa cell promoted nuclear condensation, fragmentation, and formation of apoptotic bodies by DAPI assay, mitochondrial damage by Rhodamine-123, and cell cycle block in the G1-G0 phase. BJ and BE venoms present anticancer potential, suggesting that both Bothrops venoms could be used as prototypes for the development of new therapies.
Collapse
|
16
|
Roohinejad S, Koubaa M, Barba FJ, Saljoughian S, Amid M, Greiner R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res Int 2016; 99:1066-1083. [PMID: 28865618 DOI: 10.1016/j.foodres.2016.08.016] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/05/2016] [Accepted: 08/13/2016] [Indexed: 12/16/2022]
Abstract
Edible seaweeds are a good source of antioxidants, dietary fibers, essential amino acids, vitamins, phytochemicals, polyunsaturated fatty acids, and minerals. Many studies have evaluated the gelling, thickening and therapeutic properties of seaweeds when they are used individually. This review gives an overview on the nutritional, textural, sensorial, and health-related properties of food products enriched with seaweeds and seaweed extracts. The effect of seaweed incorporation on properties of meat, fish, bakery, and other food products were highlighted in depth. Moreover, the positive effects of foods enriched with seaweeds and seaweed extracts on different lifestyle diseases such as obesity, dyslipidemia, hypertension, and diabetes were also discussed. The results of the studies demonstrated that the addition of seaweeds, in powder or extract form, can improve the nutritional and textural properties of food products. Additionally, low-fat products with less calories and less saturated fatty acids can be prepared using seaweeds. Moreover, the addition of seaweeds also affected the health properties of food products. The results of these studies demonstrated that the health value, shelf-life and overall quality of foods can be improved through the addition of either seaweeds or seaweed extracts.
Collapse
Affiliation(s)
- Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany.
| | - Mohamed Koubaa
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Francisco J Barba
- Nutrition and Food Science Area, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Sania Saljoughian
- Nutritional Science Department, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Mehrnoush Amid
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| |
Collapse
|
17
|
Rocha Amorim MO, Lopes Gomes D, Dantas LA, Silva Viana RL, Chiquetti SC, Almeida-Lima J, Silva Costa L, Oliveira Rocha HA. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death. Int J Biol Macromol 2016; 93:57-65. [PMID: 27543345 DOI: 10.1016/j.ijbiomac.2016.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 12/22/2022]
Abstract
Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.
Collapse
Affiliation(s)
- Monica Oliveira Rocha Amorim
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil
| | - Dayanne Lopes Gomes
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil
| | - Larisse Araujo Dantas
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Rony Lucas Silva Viana
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Samanta Cristina Chiquetti
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Jailma Almeida-Lima
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Leandro Silva Costa
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Intituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Ceara-Mirim, Rio Grande do Norte - RN, 59580-000, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil.
| |
Collapse
|