1
|
Satapathy SN, Nial PS, Tulsiyan KD, Subudhi U. Light rare earth elements stabilize G-quadruplex structure in variants of human telomeric sequences. Int J Biol Macromol 2024; 254:127703. [PMID: 37918592 DOI: 10.1016/j.ijbiomac.2023.127703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Recently, light rare earth elements (LREEs) are gaining importance in modern-day technologies. Thus, the entry of LREEs into biochemical pathways cannot be ignored, which might affect the conformation of biomacromolecules. Herein, for the first time, we discover the G-quadruplex formation in the human telomeric variants in presence of micromolar concentrations of LREEs. Thermal melting show that the LREE-induced unimolecular G-quadruplex structure. Isothermal titration calorimetry, UV-vis, and CD spectroscopy results suggest the binding stoichiometry of lanthanide ions to telomeric variants is 2:1. The data confirms that the LREE ions coordinate between adjacent G-quartets. The excess LREE ions are most likely binding to quadruplex loops. The CD spectra revealed that the LREE-induced quadruplex in human telomere and its variant have antiparallel orientation. The binding equilibria of LREEs have been studied both in the presence and absence of competing metal cations. Addition of LREEs to the Na+ or K+-induced G-quadruplexes led to conformational change, which may be ascribed to the displacement of K+ or Na+ ions by LREE ions and formation of a more compact LREE-induced G-quadruplex structure in human telomeric variant. Moreover, the thymine in the central loop of the human telomeric sequence stabilizes LREE induced G-quadruplex.
Collapse
Affiliation(s)
- Sampat N Satapathy
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 752050, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Moscato D, Gabas F, Conte R, Ceotto M. Vibrational spectroscopy simulation of solvation effects on a G-quadruplex. J Biomol Struct Dyn 2023; 41:14248-14258. [PMID: 36856120 DOI: 10.1080/07391102.2023.2180435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
It is commonly believed that solvation effects on the vibrational properties of a solute are easily accounted for by simple rules of thumbs, that is, solvating a polar molecule in a polar medium has the only effect of red shifting all its spectroscopical features and, similarly, solvating a polar molecule in a nonpolar medium has the opposite effect. In this work, we use theoretical vibrational spectroscopy at quasi-classical and quantum approximate semiclassical level to gain atomistic insights about solvent-solute interactions for 2'-deoxyguanosine and the G-quadruplex. We employ the quasi-classical trajectory method to include full anharmonicity into our calculated spectra, and then introduce quantum nuclear effects by means of divide-and-conquer semiclassical spectroscopy calculations. Solvation is treated explicitly leading to a good reproducibility of the available experimental data and reliable predictions when an experimental reference is missing.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Davide Moscato
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Devi G, Winnerdy FR, Ang JCY, Lim KW, Phan AT. Four-Layered Intramolecular Parallel G-Quadruplex with Non-Nucleotide Loops: An Ultra-Stable Self-Folded DNA Nano-Scaffold. ACS NANO 2022; 16:533-540. [PMID: 34927423 DOI: 10.1021/acsnano.1c07630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A four-stranded scaffold of nucleic acids termed G-quadruplex (G4) has found growing applications in nano- and biotechnology. Propeller loops are a hallmark of the most stable intramolecular parallel-stranded G4s. To date, propeller loops have been observed to span only a maximum of three G-tetrad layers. Going beyond that would allow creation of more stable scaffolds useful for building robust nanodevices. Here we investigate the formation of propeller loops spanning more than three layers. We show that native nucleotide sequences are incompatible toward this goal, and we report on synthetic non-nucleotide linkers that form a propeller loop across four layers. With the established linkers, we constructed a four-layered intramolecular parallel-stranded G4, which exhibited ultrahigh thermal stability. Control on loop design would augment the toolbox toward engineering of G4-based nanoscaffolds for diverse applications.
Collapse
Affiliation(s)
- Gitali Devi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jason Cheng Yu Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
4
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
5
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
6
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
7
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
8
|
Pérez de Carvasal K, Riccardi C, Russo Krauss I, Cavasso D, Vasseur JJ, Smietana M, Morvan F, Montesarchio D. Charge-Transfer Interactions Stabilize G-Quadruplex-Forming Thrombin Binding Aptamers and Can Improve Their Anticoagulant Activity. Int J Mol Sci 2021; 22:9510. [PMID: 34502432 PMCID: PMC8430690 DOI: 10.3390/ijms22179510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
In the search for optimized thrombin binding aptamers (TBAs), we herein describe the synthesis of a library of TBA analogues obtained by end-functionalization with the electron-rich 1,5-dialkoxy naphthalene (DAN) and the electron-deficient 1,8,4,5-naphthalenetetra-carboxylic diimide (NDI) moieties. Indeed, when these G-rich oligonucleotides were folded into the peculiar TBA G-quadruplex (G4) structure, effective donor-acceptor charge transfer interactions between the DAN and NDI residues attached to the extremities of the sequence were induced, providing pseudo-cyclic structures. Alternatively, insertion of NDI groups at both extremities produced TBA analogues stabilized by π-π stacking interactions. All the doubly-modified TBAs were characterized by different biophysical techniques and compared with the analogues carrying only the DAN or NDI residue and unmodified TBA. These modified TBAs exhibited higher nuclease resistance, and their G4 structures were markedly stabilized, as evidenced by increased Tm values compared to TBA. These favorable properties were also associated with improved anticoagulant activity for one DAN/NDI-modified TBA, and for one NDI/NDI-modified TBA. Our results indicated that TBA pseudo-cyclic structuring by ad hoc designed end-functionalization represents an efficient approach to improve the aptamer features, while pre-organizing and stabilizing the G4 structure but allowing sufficient flexibility to the aptamer folding, which is necessary for optimal thrombin recognition.
Collapse
Affiliation(s)
- Kévan Pérez de Carvasal
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
- CSGI—Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Domenico Cavasso
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
- CSGI—Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - François Morvan
- Institut des Biomolécules Max Mousseron, University Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (K.P.d.C.); (J.-J.V.); (M.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (I.R.K.); (D.C.)
| |
Collapse
|
9
|
Ripanti F, Fasolato C, Mazzarda F, Palleschi S, Ceccarini M, Li C, Bignami M, Bodo E, Bell SEJ, Mazzei F, Postorino P. Advanced Raman Spectroscopy Detection of Oxidative Damage in Nucleic Acid Bases: Probing Chemical Changes and Intermolecular Interactions in Guanosine at Ultralow Concentration. Anal Chem 2021; 93:10825-10833. [PMID: 34324303 PMCID: PMC8382216 DOI: 10.1021/acs.analchem.1c01049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with ab initio calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration. We also show that the Raman signature in the terahertz spectral range (<100 cm-1) contains information on the intermolecular assembly of guanine in tetrads, which allows us to further boost the oxidative damage detection limit. Eventually, we provide evidence that similar analyses can be carried out on samples in very small volumes at very low concentrations by exploiting the high sensitivity of surface-enhanced Raman scattering combined with properly designed superhydrophobic substrates. These results pave the way for employing such advanced spectroscopic methods for quantitatively sensing the oxidative damage of nucleotides in the cell.
Collapse
Affiliation(s)
- Francesca Ripanti
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Claudia Fasolato
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, Perugia, Italy
| | - Flavia Mazzarda
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Simonetta Palleschi
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Marina Ceccarini
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland
| | - Margherita Bignami
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Enrico Bodo
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, Rome, Italy
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland
| | - Filomena Mazzei
- Department of Environment & Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Paolo Postorino
- Department of Physics, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| |
Collapse
|
10
|
Reddy Sannapureddi RK, Mohanty MK, Gautam AK, Sathyamoorthy B. Characterization of DNA G-quadruplex Topologies with NMR Chemical Shifts. J Phys Chem Lett 2020; 11:10016-10022. [PMID: 33179931 DOI: 10.1021/acs.jpclett.0c02969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
G-quadruplexes are nucleic acid motifs formed by stacking of guanosine-tetrad pseudoplanes. They perform varied biological roles, and their distinctive structural features enable diverse applications. High-resolution structural characterization of G-quadruplexes is often time-consuming and expensive, calling for effective methods. Herein, we develop NMR chemical shifts and machine learning-based methodology that allows direct, rapid, and reliable analysis of canonical three-plane DNA G-quadruplexes sans isotopic enrichment. We show, for the first time, that each unique topology enforces a specific distribution of glycosidic torsion angles. Newly acquired carbon chemical shifts are exquisite probes for the dihedral angle distribution and provide immediate and unambiguous backbone topology assignment. The support vector machine learning methodology aids resonance assignment by providing plane indices for tetrad-forming guanosines. We further demonstrate the robustness by successful application of the methodology to a sequence that folds in two dissimilar topologies under different ionic conditions, providing its first atomic-level characterization.
Collapse
Affiliation(s)
| | - Manish Kumar Mohanty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Anoop Kumar Gautam
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
11
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
12
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Melone MAB, Montesarchio D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med Res Rev 2020; 41:464-506. [PMID: 33038031 DOI: 10.1002/med.21737] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelial growth factor (VEGF) family and its receptors play fundamental roles not only in physiological but also in pathological angiogenesis, characteristic of cancer progression. Aiming at finding putative treatments for several malignancies, various small molecules, antibodies, or protein-based drugs have been evaluated in vitro and in vivo as VEGF inhibitors, providing efficient agents approved for clinical use. Due to the high clinical importance of VEGF, also a great number of anti-VEGF nucleic acid-based aptamers-that is, oligonucleotides able to bind with high affinity and specificity a selected biological target-have been developed as promising agents in anticancer strategies. Notable research efforts have been made in optimization processes of the identified aptamers, searching for increased target affinity and/or bioactivity by exploring structural analogues of the lead compounds. This review is focused on recent studies devoted to the development of DNA-based aptamers designed to target VEGF. Their therapeutic potential as well as their significance in the construction of highly selective biosensors is here discussed.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimages, Naples, Italy
| | - Mariarosa A B Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and Inter-University Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
14
|
Maity A, Winnerdy FR, Chang WD, Chen G, Phan AT. Intra-locked G-quadruplex structures formed by irregular DNA G-rich motifs. Nucleic Acids Res 2020; 48:3315-3327. [PMID: 32100003 PMCID: PMC7102960 DOI: 10.1093/nar/gkaa008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
G-rich DNA sequences with tracts of three or more continuous guanines (G≥3) are known to have high propensity to adopt stable G-quadruplex (G4) structures. Bioinformatic analyses suggest high prevalence of G-rich sequences with short G-tracts (G≤2) in the human genome. However, due to limited structural studies, the folding principles of such sequences remain largely unexplored and hence poorly understood. Here, we present the solution NMR structure of a sequence named AT26 consisting of irregularly spaced G2 tracts and two isolated single guanines. The structure is a four-layered G4 featuring two bi-layered blocks, locked between themselves in an unprecedented fashion making it a stable scaffold. In addition to edgewise and propeller-type loops, AT26 also harbors two V-shaped loops: a 2-nt V-shaped loop spanning two G-tetrad layers and a 0-nt V-shaped loop spanning three G-tetrad layers, which are named as VS- and VR-loop respectively, based on their distinct structural features. The intra-lock motif can be a basis for extending the G-tetrad core and a very stable intra-locked G4 can be formed by a sequence with G-tracts of various lengths including several G2 tracts. Findings from this study will aid in understanding the folding of G4 topologies from sequences containing irregularly spaced multiple short G-tracts.
Collapse
Affiliation(s)
- Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Gang Chen
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
15
|
Tateishi-Karimata H, Sugimoto N. Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chem Commun (Camb) 2020; 56:2379-2390. [PMID: 32022004 DOI: 10.1039/c9cc09771f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA forms not only the canonical duplex structure but also non-canonical structures. Most potential sequences that induce the formation of non-canonical structures are present in disease-related genes. Interestingly, biological reactions are inhibited or dysregulated by non-canonical structure formation in disease-related genes. To control biological reactions, methods for inducing the formation of non-canonical structures have been developed using small molecules and oligonucleotides. In this feature article, we review biological reactions such as replication, transcription, and reverse transcription controlled by non-canonical DNA structures formed by disease-related genes. Furthermore, we discuss recent studies aimed at developing methods for regulating these biological reactions using drugs targeting the DNA structure.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, 650-0047, Japan.
| | | |
Collapse
|
16
|
Cheng M, Cheng Y, Hao J, Jia G, Zhou J, Mergny JL, Li C. Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Res 2019; 46:9264-9275. [PMID: 30184167 PMCID: PMC6182180 DOI: 10.1093/nar/gky757] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
G-quadruplexes are unusual DNA and RNA secondary structures ubiquitous in a variety of organisms including vertebrates, plants, viruses and bacteria. The folding topology and stability of intramolecular G-quadruplexes are determined to a large extent by their loops. Loop permutation is defined as swapping two or three of these regions so that intramolecular G-quadruplexes only differ in the sequential order of their loops. Over the past two decades, both length and base composition of loops have been studied extensively, but a systematic study on the effect of loop permutation has been missing. In the present work, 99 sequences from 21 groups with different loop permutations were tested. To our surprise, both conformation and thermal stability are greatly dependent on loop permutation. Loop permutation actually matters as much as loop length and base composition on G-quadruplex folding, with effects on Tm as high as 17°C. Sequences containing a longer central loop have a high propensity to adopt a stable non-parallel topology. Conversely, sequences containing a short central loop tend to form a parallel topology of lower stability. In addition, over half of interrogated sequences were found in the genomes of diverse organisms, implicating their potential regulatory roles in the genome or as therapeutic targets. This study illustrates the structural roles of loops in G-quadruplex folding and should help to establish rules to predict the folding pattern and stability of G-quadruplexes.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Inserm U1212, CNRS UMR5320, IECB, Université de Bordeaux, Pessac 33607, France.,Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
17
|
Puig Lombardi E, Londoño-Vallejo A, Nicolas A. Relationship Between G-Quadruplex Sequence Composition in Viruses and Their Hosts. Molecules 2019; 24:molecules24101942. [PMID: 31137580 PMCID: PMC6572409 DOI: 10.3390/molecules24101942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
A subset of guanine-rich nucleic acid sequences has the potential to fold into G-quadruplex (G4) secondary structures, which are functionally important for several biological processes, including genome stability and regulation of gene expression. Putative quadruplex sequences (PQSs) G3+N1-7G3+N1-7G3+N1-7G3+ are widely found in eukaryotic and prokaryotic genomes, but the base composition of the N1-7 loops is biased across species. Since the viruses partially hijack their hosts' cellular machinery for proliferation, we examined the PQS motif size, loop length, and nucleotide compositions of 7370 viral genome assemblies and compared viral and host PQS motifs. We studied seven viral taxa infecting five distant eukaryotic hosts and created a resource providing a comprehensive view of the viral quadruplex motifs. Overall, short-looped PQSs are predominant and with a similar composition across viral taxonomic groups, albeit subtle trends emerge upon classification by hosts. Specifically, there is a higher frequency of pyrimidine loops in viruses infecting animals irrespective of the viruses' genome type. This observation is confirmed by an in-depth analysis of the Herpesviridae family of viruses, which showed a distinctive accumulation of thermally stable C-looped quadruplexes in viruses infecting high-order vertebrates. The occurrence of viral C-looped G4s, which carry binding sites for host transcription factors, as well as the high prevalence of viral TTA-looped G4s, which are identical to vertebrate telomeric motifs, provide concrete examples of how PQSs may help viruses impinge upon, and benefit from, host functions. More generally, these observations suggest a co-evolution of virus and host PQSs, thus underscoring the potential functional significance of G4s.
Collapse
Affiliation(s)
- Emilia Puig Lombardi
- Institut Curie, PSL Research University, UMR3244 CNRS, 75248 Paris CEDEX 05, France.
| | | | - Alain Nicolas
- Institut Curie, PSL Research University, UMR3244 CNRS, 75248 Paris CEDEX 05, France.
| |
Collapse
|
18
|
Ying G, Lu X, Mei J, Zhang Y, Chen J, Wang X, Ou Z, Yi Y. A structure-activity relationship of a thrombin-binding aptamer containing LNA in novel sites. Bioorg Med Chem 2019; 27:3201-3207. [PMID: 31171404 DOI: 10.1016/j.bmc.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
In this report, structural characterization, aptamer stability and thrombin of a new modified thrombin-ligand complex binding aptamer (TBA) containing anti-guanine bases and a loop position locked nucleic acid (LNA) are presented. NMR, circular dichroic spectroscopy and molecular modeling were used to characterize the three-dimensional structure of two G-quadruplexes. LNA-modification of the anti-guanosines yields G-quadruplexes that show affinity and inhibitory activity toward thrombin, whereas LNA-modification of a thymine nucleotide in the TGT loop increases the thermal stability of TBA. As assessed by denatured PAGE electrophoresis, all modified aptamers display an increase in environmental stability. The prothrombin time assay and fibrinogen assay showed that the aptamers still had good inhibitory activity, and 15 of them had the longest PT time. Therefore, the LNA modification is well suited to improve the physicochemical and biological properties of the native thrombin-binding aptamer.
Collapse
Affiliation(s)
- GuoQing Ying
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - XingRu Lu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - JianFeng Mei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - YanLu Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - JianShu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - XuDong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - ZhiMing Ou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
19
|
Hotoda's Sequence and Anti-HIV Activity: Where Are We Now? Molecules 2019; 24:molecules24071417. [PMID: 30974914 PMCID: PMC6479790 DOI: 10.3390/molecules24071417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/24/2023] Open
Abstract
The pharmacological relevance of ODNs forming G-quadruplexes as anti-HIV agents has been extensively reported in the literature over the last few years. Recent detailed studies have elucidated the peculiar arrangement adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. In this review, we have reported the history of a strong anti-HIV agent: the 6-mer d(TGGGAG) sequence, commonly called "Hotoda's sequence". In particular, all findings reported on this sequence and its modified sequences have been discussed considering the following research phases: (i) discovery of the first 5'-modified active d(TGGGAG) sequences; (ii) synthesis of a variety of end-modified d(TGGGAG) sequences; (iii) biophysical and NMR investigations of natural and modified Hotoda's sequences; (iv); kinetic studies on the most active 5'-modified d(TGGGAG) sequences; and (v) extensive anti-HIV screening of G-quadruplexes formed by d(TGGGAG) sequences. This review aims to clarify all results obtained over the years on Hotoda's sequence, revealing its potentiality as a strong anti-HIV agent (EC50 = 14 nM).
Collapse
|
20
|
Parasitic Protozoa: Unusual Roles for G-Quadruplexes in Early-Diverging Eukaryotes. Molecules 2019; 24:molecules24071339. [PMID: 30959737 PMCID: PMC6480360 DOI: 10.3390/molecules24071339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Guanine-quadruplex (G4) motifs, at both the DNA and RNA levels, have assumed an important place in our understanding of the biology of eukaryotes, bacteria and viruses. However, it is generally little known that their very first description, as well as the foundational work on G4s, was performed on protozoans: unicellular life forms that are often parasitic. In this review, we provide a historical perspective on the discovery of G4s, intertwined with their biological significance across the protozoan kingdom. This is a history in three parts: first, a period of discovery including the first characterisation of a G4 motif at the DNA level in ciliates (environmental protozoa); second, a period less dense in publications concerning protozoa, during which DNA G4s were discovered in both humans and viruses; and third, a period of renewed interest in protozoa, including more mechanistic work in ciliates but also in pathogenic protozoa. This last period has opened an exciting prospect of finding new anti-parasitic drugs to interfere with parasite biology, thus adding new compounds to the therapeutic arsenal.
Collapse
|
21
|
Nici F, Oliviero G, Falanga AP, D'Errico S, Marzano M, Musumeci D, Montesarchio D, Noppen S, Pannecouque C, Piccialli G, Borbone N. Anti-HIV activity of new higher order G-quadruplex aptamers obtained from tetra-end-linked oligonucleotides. Org Biomol Chem 2019. [PMID: 29543291 DOI: 10.1039/c7ob02346d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
By combining the ability of short G-rich oligodeoxyribonucleotides (ODNs) containing the sequence 5'CGGA3' to form higher order G-quadruplex (G4) complexes with the tetra-end-linked (TEL) concept to produce aptamers targeting the HIV envelope glycoprotein 120 (gp120), three new TEL-ODNs (1-3) having the sequence 5'CGGAGG3' were synthesized with the aim of studying the effect of G4 dimerization on their anti-HIV activity. Furthermore, in order to investigate the effect of the groups at the 5' position, the 5' ends of 1-3 were left uncapped (1) or capped with either the lipophilic dimethoxytrityl (DMT) (2) or the hydrophilic glucosyl-4-phosphate (3) moieties. The here reported results demonstrate that only the DMT-substituted TEL-ODN 2 is effective in protecting human MT-4 cell cultures from HIV infection (76% max protection), notwithstanding all the three new aptamers proved to be capable of forming stable higher order dimeric G4s when annealed in K+-containing buffer, thus suggesting that the recognition of a hydrophobic pocket on the target glycoprotein by the aptamers represents a main structural feature for triggering their anti-HIV activity.
Collapse
Affiliation(s)
- F Nici
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - G Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
| | - A P Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - S D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - M Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - D Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - D Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - S Noppen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - C Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - G Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - N Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
22
|
DNA Quadruplex-Based Inhibitor With Flexible Fragments at the 3' Terminal Shows Enhanced Anti-HIV-1 Fusion Activity. J Pharm Sci 2019; 108:2243-2246. [PMID: 30797782 DOI: 10.1016/j.xphs.2019.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Chemically optimizing the molecular structure of aptamers may enhance properties such as biological activity or metabolic stability. DNA quadruplex-based HIV-1 fusion inhibitors were found to interact with HIV-1 surface glycoprotein in aptamer mode. In this work, a series of quadruplex-based HIV-1 fusion inhibitors with flexible oligodeoxynucleotide fragments at the 3' terminal was discovered. The flexible extension did not greatly influence quadruplex formation at the 5'-end. Increasing the length of the flexible fragment may increase antifusion activity. Compared with a traditional inhibitor, d(5'TGGGAG3')4, these novel inhibitors showed enhanced interaction with HIV-1 glycoproteins gp120 and gp41, which increased inhibition of 6-helical bundle formation during the course of virus fusion. These inhibitors also showed improved stability, compared with natural oligodeoxynucleotide. This work may inform the design of anti-HIV-1 DNA helix-based inhibitors with new structures or mechanisms.
Collapse
|
23
|
Bakalar B, Heddi B, Schmitt E, Mechulam Y, Phan AT. A Minimal Sequence for Left-Handed G-Quadruplex Formation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Blaž Bakalar
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore 637551 Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS; Ecole Normale Supérieure Paris-Saclay; 94235 Cachan France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS; Ecole Polytechnique; 91128 Palaiseau France
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS; Ecole Polytechnique; 91128 Palaiseau France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
24
|
Bakalar B, Heddi B, Schmitt E, Mechulam Y, Phan AT. A Minimal Sequence for Left-Handed G-Quadruplex Formation. Angew Chem Int Ed Engl 2019; 58:2331-2335. [PMID: 30481397 DOI: 10.1002/anie.201812628] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 12/20/2022]
Abstract
Recently, we observed the first example of a left-handed G-quadruplex structure formed by natural DNA, named Z-G4. We analysed the Z-G4 structure and inspected its primary 28-nt sequence in order to identify motifs that convey the unique left-handed twist. Using circular dichroism spectroscopy, NMR spectroscopy, and X-ray crystallography, we revealed a minimal sequence motif of 12 nt (GTGGTGGTGGTG) for formation of the left-handed DNA G-quadruplex, which is found to be highly abundant in the human genome. A systematic analysis of thymine loop mutations revealed a moderate sequence tolerance, which would further broaden the space of sequences prone to left-handed G-quadruplex formation.
Collapse
Affiliation(s)
- Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Laboratoire de Biologie et Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure Paris-Saclay, 94235, Cachan, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, 91128, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biochimie, UMR 7654, CNRS, Ecole Polytechnique, 91128, Palaiseau, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
25
|
Tang Y, Han Z, Ren H, Guo J, Chong H, Tian Y, Liu K, Xu L. A novel multivalent DNA helix-based inhibitor showed enhanced anti-HIV-1 fusion activity. Eur J Pharm Sci 2018; 125:244-253. [PMID: 30292749 DOI: 10.1016/j.ejps.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/27/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates, but further research is required to enhance their efficiency. The trimeric structure of the HIV-1 envelope glycoprotein provides a structural basis for multivalent drug design. In this work, a "multi-domain" strategy was adopted for design of an oligodeoxynucleotide with assembly, linkage, and activity domains. Built on the self-assembly of higher-order nucleic acid structure, a novel category of multivalent DNA helix-based HIV-1 fusion inhibitor could be easily obtained by a simple annealing course in solution buffer, with no other chemical synthesis for multivalent connection. An optimized multivalent molecule, M4, showed significantly higher anti-HIV-1 fusion activity than did corresponding monovalent inhibitors. Examination of the underlying mechanism indicated that M4 could interact with HIV-1 glycoproteins gp120 and gp41, thereby inhibiting 6HB formation in the fusion course. M4 also showed anti-RDDP and anti-RNase H activity of reverse transcriptase. Besides, these assembled molecules showed improved in vitro metabolic stability in liver homogenate, kidney homogenate, and rat plasma. Moreover, little acute toxicity was observed. Our findings aid in the structural design and understanding of the mechanisms of DNA helix-based HIV-1 inhibitors. This study also provides a general strategy based on a new structural paradigm for the design of other multivalent nucleic acid drugs.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, , Institute of Materia Medica, , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| |
Collapse
|
26
|
Molefe PF, Masamba P, Oyinloye BE, Mbatha LS, Meyer M, Kappo AP. Molecular Application of Aptamers in the Diagnosis and Treatment of Cancer and Communicable Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040093. [PMID: 30274155 PMCID: PMC6315466 DOI: 10.3390/ph11040093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays. Unfortunately, the control of these diseases depends on early detection and administration of effective treatment therefore any diagnostic delay is a huge challenge to curbing these diseases. Hence, there is a need for alternative diagnostic tools, discovery and development of novel therapeutic agents. Studies have demonstrated that aptamers could potentially offer one of the best solutions to these problems. Aptamers are short sequences of either DNA or RNA molecules, which are identified in vitro through a SELEX process. They are sensitive and bind specifically to target molecules. Their promising features suggest they may serve as better diagnostic agents and can be used as drug carriers for therapeutic purposes. In this article, we review the applications of aptamers in the theranostics of cancer and some infectious diseases.
Collapse
Affiliation(s)
- Philisiwe Fortunate Molefe
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Londiwe Simphiwe Mbatha
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
27
|
Platella C, Musumeci D, Arciello A, Doria F, Freccero M, Randazzo A, Amato J, Pagano B, Montesarchio D. Controlled Pore Glass-based oligonucleotide affinity support: towards High Throughput Screening methods for the identification of conformation-selective G-quadruplex ligands. Anal Chim Acta 2018; 1030:133-141. [PMID: 30032762 DOI: 10.1016/j.aca.2018.04.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
Abstract
Target selectivity is one of the main challenges in the search for small molecules able to act as effective and non-toxic anticancer and/or antiviral drugs. To achieve this goal, handy, rapid and reliable High Throughput Screening methodologies are needed. We here describe a novel functionalization for the solid phase synthesis of oligonucleotides on Controlled Pore Glass, including a flexible hexaethylene glycol spacer linking the first nucleoside through the nucleobase via a covalent bond stable to the final deprotection step. This allowed us preparing fully deprotected oligonucleotides still covalently attached to their supports. In detail, on this support we performed both the on-line synthesis of different secondary structure-forming oligonucleotides and the affinity chromatography-based screenings of conformation-selective G-quadruplex ligands. By using a fluorescent core-extended naphthalene diimide with different emitting response upon binding to sequences folding into G-quadruplexes of different topologies, we have been able to discriminate not only G-quadruplex vs. duplex DNA structures, but also different G-quadruplex conformations on the glass beads by confocal microscopy.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, 80126, Naples, Italy.
| |
Collapse
|
28
|
Musumeci D, Roviello V, Roviello GN. DNA- and RNA-binding ability of oligoDapT, a nucleobase-decorated peptide, for biomedical applications. Int J Nanomedicine 2018; 13:2613-2629. [PMID: 29750033 PMCID: PMC5936014 DOI: 10.2147/ijn.s156381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Nucleobase-bearing peptides and their interaction with DNA and RNA are an important topic in the development of therapeutic approaches. On one hand, they are highly effective for modulating the nucleic-acid-based biological processes. On the other hand, they permit to overcome some of the main factors limiting the therapeutic efficacy of natural oligonucleotides, such as their rapid degradation by nucleases. Methods and results This article describes the synthesis and characterization of a novel thymine-bearing nucleoamino acid based on the l-diaminopropionic acid (l-Dap) and its solid phase oligomerization to α-peptides (oligoDapT), characterized using mass spectrometry, spectroscopic techniques, and scanning electron microscopy (SEM) analysis. The interaction of the obtained nucleopeptide with DNA and RNA model systems as both single strands (dA12, rA12, and poly(rA)) and duplex structures (dA12/dT12 and poly(rA)/poly(rU)) was investigated by means of circular dichroism (CD) and ultraviolet (UV) experiments. From the analysis of our data, a clear ability of the nucleopeptide to bind nucleic acids emerged, with oligoDapT being able to form stable complexes with both unpaired and double-stranded DNA and RNA. In particular, dramatic changes in the dA12/dT12 and poly(rA)/poly(rU) structures were observed as a consequence of the nucleopeptide binding. CD titrations revealed that multiple peptide units bound all the examined nucleic acid targets, with TLdap/A or TLdap/A:T(U) ratios >4 in case of oligoDapT/DNA and ~2 in oligoDapT/RNA complexes. Conclusion Our findings seem to indicate that Dap-based nucleopeptides are interesting nucleic acid binding-tools to be further explored with the aim to efficiently modulate DNA- and RNA-based biological processes.
Collapse
Affiliation(s)
- Domenica Musumeci
- CNR-Institute of Biostructure and Bioimaging, Naples, Italy.,Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and Centro Servizi Metereologici Avanzati, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
29
|
Ruggiero E, Richter SN. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 2018; 46:3270-3283. [PMID: 29554280 PMCID: PMC5909458 DOI: 10.1093/nar/gky187] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that form within guanine-rich strands of regulatory genomic regions. G4s have been extensively described in the human genome, especially in telomeres and oncogene promoters; in recent years the presence of G4s in viruses has attracted increasing interest. Indeed, G4s have been reported in several viruses, including those involved in recent epidemics, such as the Zika and Ebola viruses. Viral G4s are usually located in regulatory regions of the genome and implicated in the control of key viral processes; in some cases, they have been involved also in viral latency. In this context, G4 ligands have been developed and tested both as tools to study the complexity of G4-mediated mechanisms in the viral life cycle, and as therapeutic agents. In general, G4 ligands showed promising antiviral activity, with G4-mediated mechanisms of action both at the genome and transcript level. This review aims to provide an updated close-up of the literature on G4s in viruses. The current state of the art of G4 ligands in antiviral research is also reported, with particular focus on the structural and physicochemical requirements for optimal biological activity. The achievements and the to-dos in the field are discussed.
Collapse
Affiliation(s)
- Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| |
Collapse
|
30
|
Tang Y, Han Z, Guo J, Tian Y, Liu K, Xu L. Synthesis, biophysical characterization, and anti-HIV-1 fusion activity of DNA helix-based inhibitors with a p-benzyloxyphenyl substituent at the 5'-nucleobase site. Bioorg Med Chem Lett 2018; 28:1842-1845. [PMID: 29680665 DOI: 10.1016/j.bmcl.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates. Introduction of hydrophobic groups to a nucleobase provides an opportunity to design inhibitors with novel structures and mechanisms of action. In this work, two novel nucleoside analogues (1 and 2) were synthesized and incorporated into four DNA duplex- and quadruplex-based inhibitors. All the molecules showed anti-HIV-1 fusion activity. The effect of the p-benzyloxyphenyl group and the attached linker on the helix formation and thermal stability were fully compared and discussed. Surface plasmon resonance analysis further indicated that inhibitors with the same DNA helix may still have variable reaction targets, mainly attributed to the different hydrophobic modifications.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
31
|
Caterino M, Squillaro T, Montesarchio D, Giordano A, Giancola C, Melone MAB. Huntingtin protein: A new option for fixing the Huntington's disease countdown clock. Neuropharmacology 2018. [PMID: 29526547 DOI: 10.1016/j.neuropharm.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed. The mutant protein comes with the aberrantly expanded poly-glutamine tract. It is primarily to blame for the build-up of β-amyloid-like HTT aggregates, deleterious once broadened beyond the critical ∼35-37 repeats threshold. Recent experimental findings have provided valuable information on the molecular basis underlying this HTT-driven neurodegeneration. These findings indicate that the poly-glutamine siding regions and many post-translation modifications either abet or counter the poly-glutamine tract. This review provides an overall, up-to-date insight into HTT biophysics and structural biology, particularly discussing novel pharmacological options to specifically target the mutated protein and thus inhibit its functions and toxicity.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Daniela Montesarchio
- InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, 80126, Napoli, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases, University of Campania "Luigi Vanvitelli", Napoli, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers (Basel) 2017; 9:cancers9120174. [PMID: 29261171 PMCID: PMC5742822 DOI: 10.3390/cancers9120174] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022] Open
Abstract
Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement (“signal-on”) or a quenching (“signal-off”) effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment.
Collapse
|
33
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
34
|
Do NQ, Chung WJ, Truong THA, Heddi B, Phan AT. G-quadruplex structure of an anti-proliferative DNA sequence. Nucleic Acids Res 2017; 45:7487-7493. [PMID: 28549181 PMCID: PMC5499593 DOI: 10.1093/nar/gkx274] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023] Open
Abstract
AGRO100 (also known as AS1411) is a G-rich oligonucleotide that has long been established as a potent anti-cancer aptamer. However, the structure of AGRO100 remained unresolved, due to the co-existence of multiple different G-quadruplex conformations. We identified a DNA sequence named AT11, derived from AGRO100, which formed a single major G-quadruplex conformation and exhibited a similar anti-proliferative activity as AGRO100. The solution structure of AT11 revealed a four-layer G-quadruplex comprising of two propeller-type parallel-stranded subunits connected through a central linker. The stacking between the two subunits occurs at the 3΄-end of the first block and the 5΄-end of the second block. The structure of the anti-proliferative DNA sequence AT11 will allow greater understanding on the G-quadruplex folding principles and aid in structural optimization of anti-proliferative oligonucleotides.
Collapse
Affiliation(s)
- Ngoc Quang Do
- School of Physical and Mathematical Sciences.,School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
35
|
Mitrasinovic PM. Structural insights into the binding of small ligand molecules to a G-quadruplex DNA located in the HIV-1 promoter. J Biomol Struct Dyn 2017; 36:2292-2302. [DOI: 10.1080/07391102.2017.1358670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Petar M. Mitrasinovic
- Center for Biophysical and Chemical Research, Department of Natural Sciences, Belgrade Institute of Science and Technology, Belgrade, Serbia
| |
Collapse
|
36
|
Platella C, Riccardi C, Montesarchio D, Roviello GN, Musumeci D. G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim Biophys Acta Gen Subj 2017; 1861:1429-1447. [PMID: 27865995 PMCID: PMC7117017 DOI: 10.1016/j.bbagen.2016.11.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules identified to recognize with high affinity specific targets including proteins, small molecules, ions, whole cells and even entire organisms, such as viruses or bacteria. They can be identified from combinatorial libraries of DNA or RNA oligonucleotides by SELEX technology, an in vitro iterative selection procedure consisting of binding (capture), partitioning and amplification steps. Remarkably, many of the aptamers selected against biologically relevant protein targets are G-rich sequences that can fold into stable G-quadruplex (G4) structures. Aiming at disseminating novel inspiring ideas within the scientific community in the field of G4-structures, the emphasis of this review is placed on: 1) recent advancements in SELEX technology for the efficient and rapid identification of new candidate aptamers (introduction of microfluidic systems and next generation sequencing); 2) recurrence of G4 structures in aptamers selected by SELEX against biologically relevant protein targets; 3) discovery of several G4-forming motifs in important regulatory regions of the human or viral genome bound by endogenous proteins, which per se can result into potential aptamers; 4) an updated overview of G4-based aptamers with therapeutic potential and 5) a discussion on the most attractive G4-based aptamers for diagnostic applications. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | | | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy; Institute of Biostructures and Bioimages, CNR, Napoli, Italy.
| |
Collapse
|
37
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
38
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:78. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Shibata T, Nakayama Y, Katahira Y, Tai H, Moritaka Y, Nakano Y, Yamamoto Y. Characterization of the interaction between heme and a parallel G-quadruplex DNA formed from d(TTGAGG). Biochim Biophys Acta Gen Subj 2016; 1861:1264-1270. [PMID: 27836758 DOI: 10.1016/j.bbagen.2016.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
Structure-function relationships of complexes between heme and G-quadruplex DNAs have attracted interest from researchers in related fields. A carbon monoxide adduct of a complex between heme and a parallel G-quadruplex DNA formed from hexanucleotide d(TTGAGG) (heme-[d(TTGAGG)]4 complex) has been characterized using 1H NMR spectroscopy, and the obtained results were compared with those for the heme-[d(TTAGGG)]4 complex previously studied in order to elucidate the effect of the incorporation of an A-quartet into stacked G-quartets in the 3'-terminal region of the DNA on the structure of the heme-DNA complex. We found that a π-π stacking interaction between the porphyrin moiety of the heme and the 3'-terminal G-quartet of the DNA is affected by the nature of the stacked G-quartets. This finding provides novel insights as to the design of the molecular architecture of a heme-DNA complex. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Tomokazu Shibata
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yusaku Nakayama
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yuya Katahira
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yuki Moritaka
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yusuke Nakano
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
40
|
Prokofjeva M, Tsvetkov V, Basmanov D, Varizhuk A, Lagarkova M, Smirnov I, Prusakov K, Klinov D, Prassolov V, Pozmogova G, Mikhailov SN. Anti-HIV Activities of Intramolecular G4 and Non-G4 Oligonucleotides. Nucleic Acid Ther 2016; 27:56-66. [PMID: 27763826 DOI: 10.1089/nat.2016.0624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
New natural and chemically modified DNA aptamers that inhibit HIV-1 activity at submicromolar concentrations (presumably via preventing viral entry into target cells) are reported. The new DNA aptamers were developed based on known intramolecular G-quadruplexes (G4s) that were functionally unrelated to HIV inhibition [the thrombin-binding aptamer and the fragment of the human oncogene promoter (Bcl2)]. The majority of previously described DNA inhibitors of HIV infection adopt intermolecular structures, and thus their folding variability represents an obvious disadvantage. Intramolecular architectures refold correctly after denaturation and are generally easier to handle. However, whether the G4 topology or other factors account for the anti-HIV activity of our aptamers is unknown. The impact of chemical modification (thiophosphoryl internucleotide linkages) on aptamer activity is discussed. The exact secondary structures of the active compounds and further elucidation of their mechanisms of action hopefully will be the subjects of future studies.
Collapse
Affiliation(s)
- Maria Prokofjeva
- 1 Engelhardt Institute of Molecular Biology RAS , Moscow, Russia
| | - Vladimir Tsvetkov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia .,3 Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences , Moscow, Russia
| | - Dmitry Basmanov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Anna Varizhuk
- 1 Engelhardt Institute of Molecular Biology RAS , Moscow, Russia .,2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Maria Lagarkova
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Igor Smirnov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Kirill Prusakov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Dmitry Klinov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia .,4 Moscow Institute of Physics and Technology (State University) , Moscow Region, Russia
| | | | - Galina Pozmogova
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | | |
Collapse
|
41
|
Gleghorn ML, Zhao J, Turner DH, Maquat LE. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation. Nucleic Acids Res 2016; 44:8417-24. [PMID: 27288442 PMCID: PMC5041459 DOI: 10.1093/nar/gkw526] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA7 forms well-ordered crystals, whereas rA6 forms fragile crystalline-like structures, and rA5, rA8 and rA11 fail to crystallize. Our findings support studies from ∼50 years ago: one showed using spectroscopic methods that duplex formation at pH 4.5 largely starts with rA7 and begins to plateau with rA8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP−rAMP helix base pair. Our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.
Collapse
Affiliation(s)
- Michael L Gleghorn
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Jianbo Zhao
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Perrone R, Butovskaya E, Lago S, Garzino-Demo A, Pannecouque C, Palù G, Richter SN. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int J Antimicrob Agents 2016; 47:311-6. [PMID: 27032748 PMCID: PMC4840014 DOI: 10.1016/j.ijantimicag.2016.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
The G-quadruplex-forming aptamer AS1411 strongly inhibits HIV-1 infection. AS1411 is non-toxic to the host cell at antiviral concentrations. AS1411 blocks viral attachment to the host cell. AS1411 binds cell-surface-expressed nucleolin, a putative HIV-1 co-receptor.
AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent.
Collapse
Affiliation(s)
- Rosalba Perrone
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elena Butovskaya
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara Lago
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padua, Padua, Italy; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christophe Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, B-3000 Leuven, Belgium
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
43
|
Romanucci V, Marchand A, Mendoza O, D’Alonzo D, Zarrelli A, Gabelica V, Di Fabio G. Kinetic ESI-MS Studies of Potent Anti-HIV Aptamers Based on the G-Quadruplex Forming Sequence d(TGGGAG). ACS Med Chem Lett 2016; 7:256-60. [PMID: 26985311 DOI: 10.1021/acsmedchemlett.5b00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
To investigate what properties make tetramolecular G-quadruplex ODNs good anti-HIV aptamers, we studied the stoichiometry and the self-assembly kinetics of the highly active 5'-end modified G-quadruplexes based on the d(TGGGAG) sequence. Our results demonstrate that the 5'-end conjugation does not necessarily increase the folding rate of the G-quadruplex; indeed, it ascribes anti-HIV activity. Unexpectedly, the G4-folding kinetics of the inactive G4 is similar to that of the 5'-end modified sequences. ESI-MS studies also revealed the formation of higher order G4 structures identified as octameric complexes along with tetramolecular G-quadruplexes.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Adrien Marchand
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Oscar Mendoza
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Valérie Gabelica
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Giovanni Di Fabio
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
44
|
Oliviero G, Stornaiuolo M, D'Atri V, Nici F, Yousif AM, D'Errico S, Piccialli G, Mayol L, Novellino E, Marinelli L, Grieco P, Carotenuto A, Noppen S, Liekens S, Balzarini J, Borbone N. Screening Platform toward New Anti-HIV Aptamers Set on Molecular Docking and Fluorescence Quenching Techniques. Anal Chem 2016; 88:2327-34. [PMID: 26810800 DOI: 10.1021/acs.analchem.5b04268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
By using a new rapid screening platform set on molecular docking simulations and fluorescence quenching techniques, three new anti-HIV aptamers targeting the viral surface glycoprotein 120 (gp120) were selected, synthesized, and assayed. The use of the short synthetic fluorescent peptide V35-Fluo mimicking the V3 loop of gp120, as the molecular target for fluorescence-quenching binding affinity studies, allowed one to measure the binding affinities of the new aptamers for the HIV-1 gp120 without the need to obtain and purify the full recombinant gp120 protein. The almost perfect correspondence between the calculated Kd and the experimental EC50 on HIV-infected cells confirmed the reliability of the platform as an alternative to the existing methods for aptamer selection and measuring of aptamer-protein equilibria.
Collapse
Affiliation(s)
- Giorgia Oliviero
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Mariano Stornaiuolo
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Valentina D'Atri
- University of Bordeaux , IECB, ARNA laboratory, Pessac, 33600, France.,INSERM , U869, ARNA laboratory, Bordeaux, 33000, France
| | - Fabrizia Nici
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Ali Munaim Yousif
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Stefano D'Errico
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Gennaro Piccialli
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy.,CNR , Institute of Protein Biochemistry, Napoli, 80131, Italy
| | - Luciano Mayol
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Ettore Novellino
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Luciana Marinelli
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Paolo Grieco
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Alfonso Carotenuto
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Sam Noppen
- KU Leuven , Rega Institute for Medical Research, Leuven, 3000, Belgium
| | - Sandra Liekens
- KU Leuven , Rega Institute for Medical Research, Leuven, 3000, Belgium
| | - Jan Balzarini
- KU Leuven , Rega Institute for Medical Research, Leuven, 3000, Belgium
| | - Nicola Borbone
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| |
Collapse
|
45
|
Roviello GN, Vicidomini C, Di Gaetano S, Capasso D, Musumeci D, Roviello V. Solid phase synthesis and RNA-binding activity of an arginine-containing nucleopeptide. RSC Adv 2016; 6:14140-14148. [PMID: 29057071 PMCID: PMC5635565 DOI: 10.1039/c5ra25809j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
Here we report the solid phase synthesis and characterization (LC-ESIMS, CD) of a cationic nucleobase-containing α-peptide, composed of both l-arginine residues and l-lysine-based nucleoamino acids sequentially present in the structure. The binding properties of this novel basic nucleopeptide towards nucleic acids were investigated by CD spectroscopy which revealed the ability of the thymine-containing oligomer to bind both adenine-containing DNA (dA12) and RNA (poly rA) molecules inducing high conformational variations in the nucleic acid structures. Moreover, the artificial oligonucleotide inhibited the enzymatic activity of HIV reverse transcriptase, opening the door to the exploitation of novel antiviral strategies inspired to this molecular tool.
Collapse
Affiliation(s)
- G N Roviello
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
| | - C Vicidomini
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
| | - S Di Gaetano
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
| | - D Capasso
- Università di Napoli "Federico II" , Dipartimento di Farmacia , 80134 Napoli , Italy
| | - D Musumeci
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
- Università di Napoli "Federico II" , Dipartimento di Scienze Chimiche , 80126 Napoli , Italy
| | - V Roviello
- Università di Napoli "Federico II" , Dipartimento di Ingegneria Chimica , dei Materiali e della Produzione Industriale (DICMaPI) , 80125 Napoli , Italy
| |
Collapse
|
46
|
Terracciano M, De Stefano L, Borbone N, Politi J, Oliviero G, Nici F, Casalino M, Piccialli G, Dardano P, Varra M, Rea I. Solid phase synthesis of a thrombin binding aptamer on macroporous silica for label free optical quantification of thrombin. RSC Adv 2016. [DOI: 10.1039/c6ra18401d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human α-thrombin (TB) is a serine protease with a crucial role in coagulation and hemostasis.
Collapse
Affiliation(s)
- Monica Terracciano
- Institute for Microelectronics and Microsystems
- National Council of Research
- Naples
- Italy
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems
- National Council of Research
- Naples
- Italy
| | - Nicola Borbone
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | - Jane Politi
- Institute for Microelectronics and Microsystems
- National Council of Research
- Naples
- Italy
| | - Giorgia Oliviero
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | - Fabrizia Nici
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | - Maurizio Casalino
- Institute for Microelectronics and Microsystems
- National Council of Research
- Naples
- Italy
| | | | - Principia Dardano
- Institute for Microelectronics and Microsystems
- National Council of Research
- Naples
- Italy
| | - Michela Varra
- Department of Pharmacy
- University of Naples Federico II
- Naples
- Italy
| | - Ilaria Rea
- Institute for Microelectronics and Microsystems
- National Council of Research
- Naples
- Italy
| |
Collapse
|