1
|
Mazzella V, Zahn G, Dell'Anno A, Pons LN. Marine Mycobiomes Colonize Mediterranean Sponge Hosts in a Random Fashion. MICROBIAL ECOLOGY 2025; 88:25. [PMID: 40208324 PMCID: PMC11985663 DOI: 10.1007/s00248-025-02523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Marine sponges are widespread, sessile, filter-feeding animals, known for living in association with complex prokaryotic communities structured by host species. Though marine fungi are ubiquitous across marine environments, little is known about sponge-associated fungal communities (mycobiome). Indeed, aside from a few studies based on the isolation of fungal strains for biotechnological purposes, little information is available to understand the diversity and structure of sponge mycobiome. Here, a metabarcoding approach based on the ITS1 marker was applied to examine the structure and composition of fungal communities associated with four Mediterranean sponges. The species: Petrosia ficiformis, Chondrosia reniformis, Crambe crambe, and Chondrilla nucula were analyzed along with the surrounding seawater, revealing Aspergillus (1-56%), Cladosporium (1-75%), Malassezia (1-38.5%), and Pennicillium (1.5-36%) as the most represented fungal genera. Our data showed high intra-specific variability and no clear core mycobiome within each of the sponge species host, suggesting stochastic and perhaps transient community membership. This study sheds light on one of the most abundant yet least understood components of the marine ecosystem. Unraveling the dynamics of fungal interactions within sponge holobionts is essential to advance our understanding of their ecological roles and functions. By addressing the enigmatic nature of sponge-associated fungi, this research opens new avenues for exploring their contributions to marine ecosystems and resolving the many unanswered questions in this field.
Collapse
Affiliation(s)
- Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, Naples, 80077, Italy.
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, 800 W University Parkway SB243c, Orem, UT 84058, USA
| | - Antonio Dell'Anno
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Laura Núñez Pons
- NBFC, National Biodiversity Future Center, Piazza Marina 61, Palermo, 90133, Italy.
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy.
| |
Collapse
|
2
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
3
|
Asmaey MA. Unravelling the Secrets of α-Pyrones from Aspergillus Fungi: A Comprehensive Review of Their Natural Sources, Biosynthesis, and Biological Activities. Chem Biodivers 2023; 20:e202301185. [PMID: 37823671 DOI: 10.1002/cbdv.202301185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Aspergillus, one of the most product-rich and genetically robust genera, contains a diverse range of species with potential economic and ecological implications. Chemically, Aspergillus is one of the essential sources of polyketides, alkaloids, diphenyl ethers, diketopiperazines, and other miscellaneous compounds, displaying a variety of pharmacological activities. The α-pyrones are unsaturated six-membered lactones. Although α-pyrone has a small structure, it is responsible for the structural diversity of several natural and synthetic compounds and multiple biological activities. In this review, we have summarized approximately 178 α-pyrone containing metabolites derivatives identified/reported from terrestrial, marine, endophytic, and filamentous Aspergillus species, including their sources, biological properties, and biosynthetic pathways until mid-2023, for the first time. This review is the first to compile and analyze the available data on α-pyrone metabolites from Aspergillus, which could facilitate further research and innovation in this field. Additionally, it offers a valuable source of scaffolds for future bioactive drug development, as some of these metabolites have shown potent antimicrobial, anti-inflammatory, and anticancer effects. Therefore, this review has significant implications for the advancement of natural product chemistry, pharmacology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Mostafa A Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
4
|
Kurisawa N, Iwasaki A, Teranuma K, Dan S, Toyoshima C, Hashimoto M, Suenaga K. Structural Determination, Total Synthesis, and Biological Activity of Iezoside, a Highly Potent Ca 2+-ATPase Inhibitor from the Marine Cyanobacterium Leptochromothrix valpauliae. J Am Chem Soc 2022; 144:11019-11032. [DOI: 10.1021/jacs.2c04459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuya Teranuma
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
5
|
Chen Y, Liu C, Kumaravel K, Nan L, Tian Y. Two New Sulfate-Modified Dibenzopyrones With Anti-foodborne Bacteria Activity From Sponge-Derived Fungus Alternaria sp. SCSIOS02F49. Front Microbiol 2022; 13:879674. [PMID: 35620099 PMCID: PMC9128073 DOI: 10.3389/fmicb.2022.879674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
At present, foodborne diseases (FBDs) caused by bacteria are gradually increasing every year, and the development of new antibiotics is an urgent necessity for human beings. To find novel antibacterial compounds, three sponge-derived fungal strains (SCSIOS02F40, F46, and F49) were investigated. As a result, Alternaria sp. SCSIOS02F49 was selected for investigation on its secondary metabolites because its ethyl acetate (EtOAc) extract of potato dextrose broth (PDB) culture showed rich metabolites and strong antibacterial activity. Two new dibenzopyrones with rare sulfate group (1–2), together with 10 known compounds (3–12), were isolated from the Alternaria sp. SCSIOS02F49. Their structures were confirmed by nuclear magnetic resonance (NMR), mass spectrometry (MS) data, and comparison with data from the relevant literature. Almost all compounds showed moderate inhibitory activity against eight foodborne bacteria (FBB) with minimum inhibitory concentration (MIC) values in the range of 15.6–250 μg/ml, and minimum bactericidal concentration (MBC) values in the range of 31.3–250 μg/ml. The antibacterial mechanism of compound 1 was preliminarily investigated using growth curves, scanning electron microscopy (SEM), and flow cytometry (FCM), which revealed that compound 1 altered the external structure of Staphylococcus aureus and caused the rupture or deformation of the cell membranes. This research provides lead compounds for the development of new antibiotics or microbial preservatives.
Collapse
Affiliation(s)
- Yaping Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chuanna Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | | | - Lihong Nan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
6
|
Mitani F, Lin J, Sakamoto T, Uehara R, Hikita T, Yoshida T, Setiawan A, Arai M, Oneyama C. Asteltoxin inhibits extracellular vesicle production through AMPK/mTOR-mediated activation of lysosome function. Sci Rep 2022; 12:6674. [PMID: 35461323 PMCID: PMC9035176 DOI: 10.1038/s41598-022-10692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer cells secrete aberrantly large amounts of extracellular vesicles (EVs) including exosomes, which originate from multivesicular bodies (MVBs). Because EVs potentially contribute to tumor progression, EV inhibitors are of interest as novel therapeutics. We screened a fungal natural product library. Using cancer cells engineered to secrete luciferase-labeled EVs, we identified asteltoxin, which inhibits mitochondrial ATP synthase, as an EV inhibitor. Low concentrations of asteltoxin inhibited EV secretion without inducing mitochondrial damage. Asteltoxin attenuated cellular ATP levels and induced AMPK-mediated mTORC1 inactivation. Consequently, MiT/TFE transcription factors are translocated into the nucleus, promoting transcription of lysosomal genes and lysosome activation. Electron microscopy analysis revealed that the number of lysosomes increased relative to that of MVBs and the level of EVs decreased after treatment with asteltoxin or rapamycin, an mTORC1 inhibitor. These findings suggest that asteltoxin represents a new type of EV inhibitor that controls MVB fate.
Collapse
Affiliation(s)
- Fumie Mitani
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan.,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Jianyu Lin
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tatsuya Sakamoto
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan.,Department of Target and Drug Discovery, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan
| | - Ryo Uehara
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Andi Setiawan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lampung University, Bandar Lampung, Indonesia
| | - Masayoshi Arai
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan. .,Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan. .,Department of Target and Drug Discovery, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Japan. .,JST, PRESTO, Nagoya, Japan.
| |
Collapse
|
7
|
Optimization and Characterization of Antimicrobial Agents Produced by Marine Aspergillus terreus She05 against Aeromonas hydrophila and other Applications. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven morphologically distinct marine fungi were isolated from sediment and Seawater samples at different sites along Alexandria seashore. Antagonism effect against Aeromonas hydrophila on purpose and other pathogen was estimated. The most promising isolate giving the highest antibacterial activity (14 mm) against A. hydrophila was morphologically and genetically identified as Aspergillus terreus SHE05 and the corresponding sequence was recorded in the GenBank database with accession no. MW772239. Time course production of the antibacterial agents by A. terreus SHE05 against A. hydrophila was studied showing the highest productivity after 5 days incubation. Multi-factorial design in terms of Placket Burman design was implemented to predict the critical factors influencing the production of the antibacterial agents by A. terreus SHE05 against A. hydrophila. The obtained results showed that malt extract, pH and temperature were the key factors affecting the antimicrobial activity. Consequently, Box-Behnken design was applied to estimate the optimized levels of each independent variable showing that the optimized conditions were malt extract, 3 (g/l); peptone, 0.75 (g/l); salinity, 50%; pH, 4; culture age, 4 days; inoculum size, 0.5 ml; temperature 30°C and incubation time 5 days, which caused an increase in the antimicrobial activity to 25 mm, which denotes an approximately 1.8 fold increase comparing with the pre-optimized conditions. The potentiality of chloroform, hexane, petroleum ether and ethyl acetate for extraction of the active compounds was tested showing that ethyl acetate was the best. The extracted bioactive metabolites using ethyl acetate were tested as antimicrobial, anticancer, antiviral and antioxidant agents. Results showed reasonable activities. GC-MS was used to recognize the active components in the ethyl acetate extract, showing that the major compound was the Dodecanamine, N,N-Dimethyl with RT 11.95, molecular weight 213, area % (55.46) and molecular formula C14H31N.
Collapse
|
8
|
Artasasta MA, Yanwirasti Y, Taher M, Djamaan A, Ariantari NP, Edrada-Ebel RA, Handayani D. Apoptotic Activity of New Oxisterigmatocystin Derivatives from the Marine-Derived Fungus Aspergillus nomius NC06. Mar Drugs 2021; 19:631. [PMID: 34822502 PMCID: PMC8621937 DOI: 10.3390/md19110631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Sponge-derived fungi have recently attracted attention as an important source of interesting bioactive compounds. Aspergillus nomius NC06 was isolated from the marine sponge Neopetrosia chaliniformis. This fungus was cultured on rice medium and yielded four compounds including three new oxisterigmatocystins, namely, J, K, and L (1, 2, and 3), and one known compound, aspergillicin A (4). Structures of the compounds were elucidated by 1D and 2D NMR spectroscopy and by high-resolution mass spectrometry. The isolated compounds were tested for cytotoxic activity against HT 29 colon cancer cells, where compounds 1, 2, and 4 exhibited IC50 values of 6.28, 15.14, and 1.63 µM, respectively. Under the fluorescence microscope by using a double staining method, HT 29 cells were observed to be viable, apoptotic, and necrotic after treatment with the cytotoxic compounds 1, 2, and 4. The result shows that compounds 1 and 2 were able to induce apoptosis and cell death in HT 29 cells.
Collapse
Affiliation(s)
- Muh. Ade Artasasta
- Laboratory of Sumatran Biota, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia; (M.A.A.); (A.D.)
- Biotechnology Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang (UM), Malang 65145, Indonesia
| | - Yanwirasti Yanwirasti
- Departement of Biomedical, Faculty of Medicine, Andalas University, Padang 25163, Indonesia;
| | - Muhammad Taher
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Akmal Djamaan
- Laboratory of Sumatran Biota, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia; (M.A.A.); (A.D.)
| | - Ni Putu Ariantari
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Bali 80361, Indonesia;
| | - Ru Angelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Dian Handayani
- Laboratory of Sumatran Biota, Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia; (M.A.A.); (A.D.)
| |
Collapse
|
9
|
Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg Med Chem 2021; 46:116366. [PMID: 34438338 PMCID: PMC8363177 DOI: 10.1016/j.bmc.2021.116366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Bianca Vianna Rodrigues Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Matheus Thomaz Nogueira Silva Lima
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Patrícia Gomes Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, CEP 37200-900 Lavras, MG, Brazil.
| | - Christiane Contigli
- Cell Biology Service, Research and Development Department, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, CEP 30510-010 Belo Horizonte, MG, Brazil
| | - Lúcia Pinheiro Santos Pimenta
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Raihan T, Rabbee MF, Roy P, Choudhury S, Baek KH, Azad AK. Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Front Mol Biosci 2021; 8:732256. [PMID: 34557521 PMCID: PMC8452873 DOI: 10.3389/fmolb.2021.732256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The present global COVID-19 pandemic caused by the noble pleomorphic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a vulnerable situation in the global healthcare and economy. In this pandemic situation, researchers all around the world are trying their level best to find suitable therapeutics from various sources to combat against the SARS-CoV-2. To date, numerous bioactive compounds from different sources have been tested to control many viral diseases. However, microbial metabolites are advantageous for drug development over metabolites from other sources. We herein retrieved and reviewed literatures from PubMed, Scopus and Google relevant to antiviral microbial metabolites by searching with the keywords "antiviral microbial metabolites," "microbial metabolite against virus," "microorganism with antiviral activity," "antiviral medicine from microbial metabolite," "antiviral bacterial metabolites," "antiviral fungal metabolites," "antiviral metabolites from microscopic algae' and so on. For the same purpose, the keywords "microbial metabolites against COVID-19 and SARS-CoV-2" and "plant metabolites against COVID-19 and SARS-CoV-2" were used. Only the full text literatures available in English and pertinent to the topic have been included and those which are not available as full text in English and pertinent to antiviral or anti-SARS-CoV-2 activity were excluded. In this review, we have accumulated microbial metabolites that can be used as antiviral agents against a broad range of viruses including SARS-CoV-2. Based on this concept, we have included 330 antiviral microbial metabolites so far available to date in the data bases and were previously isolated from fungi, bacteria and microalgae. The microbial source, chemical nature, targeted viruses, mechanism of actions and IC50/EC50 values of these metabolites are discussed although mechanisms of actions of many of them are not yet elucidated. Among these antiviral microbial metabolites, some compounds might be very potential against many other viruses including coronaviruses. However, these potential microbial metabolites need further research to be developed as effective antiviral drugs. This paper may provide the scientific community with the possible secret of microbial metabolites that could be an effective source of novel antiviral drugs to fight against many viruses including SARS-CoV-2 as well as the future viral pandemics.
Collapse
Affiliation(s)
- Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Puja Roy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Swapnila Choudhury
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
11
|
Anh CV, Kang JS, Choi BK, Lee HS, Heo CS, Shin HJ. Polyketides and Meroterpenes from the Marine-Derived Fungi Aspergillus unguis 158SC-067 and A. flocculosus 01NT-1.1.5 and Their Cytotoxic and Antioxidant Activities. Mar Drugs 2021; 19:md19080415. [PMID: 34436253 PMCID: PMC8402063 DOI: 10.3390/md19080415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/01/2022] Open
Abstract
Ten secondary metabolites, including a new grifolin analog, grifolin B (1); a new homovalencic acid derivative, 12-hydroxyhomovalencic acid (7); and a compound isolated from a natural source for the first time (9), along with seven known compounds, grifolin (2), averantin (3), 7-chloroaverantin (4), 1′-O-methylaverantin (5), 7-hydroxy-2-(2-hydroxypropyl)-5-pentylchromone (6), homovalencic acid (8), and bekeleylactone E (10), were isolated from two fungal strains. The structures of 1–10 were identified by detailed analysis and comparison of their spectroscopic data with literature values. Compounds 9 and 10 showed moderate cytotoxic activity against a panel of cancer cell lines (PC-3, HCT-15, MDA-MB-231, ACHN, NCI-H23, NUGC-3), with the GI50 values ranging from 1.1 µM to 3.6 µM, whereas 1 displayed a weak 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity without cytotoxicity against all tested cell lines.
Collapse
Affiliation(s)
- Cao Van Anh
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (B.-K.C.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Korea;
| | - Byeoung-Kyu Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (B.-K.C.); (H.-S.L.); (C.-S.H.)
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (B.-K.C.); (H.-S.L.); (C.-S.H.)
| | - Chang-Su Heo
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (B.-K.C.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (B.-K.C.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-51-664-3341; Fax: +82-51-664-3340
| |
Collapse
|
12
|
Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar Drugs 2021; 19:md19080403. [PMID: 34436242 PMCID: PMC8398661 DOI: 10.3390/md19080403] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Diketopiperazines are potential structures with extensive biological functions, which have attracted much attention of natural product researchers for a long time. These compounds possess a stable six-membered ring, which is an important pharmacophore. The marine organisms have especially been proven to be a wide source for discovering diketopiperazine derivatives. In recent years, more and more interesting bioactive diketopiperazines had been found from various marine habitats. This review article is focused on the new 2,5-diketopiperazines derived from marine organisms (sponges and microorganisms) reported from the secondary half-year of 2014 to the first half of the year of 2021. We will comment their chemical structures, biological activities and sources. The objective is to assess the merit of these compounds for further study in the field of drug discovery.
Collapse
|
13
|
Sun TT, Zhu HJ, Cao F. Marine Natural Products as a Source of Drug Leads against Respiratory Viruses: Structural and Bioactive Diversity. Curr Med Chem 2021; 28:3568-3594. [PMID: 33106135 DOI: 10.2174/0929867327666201026150105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Respiratory viruses, including influenza virus, respiratory syncytial virus, coronavirus, etc., have seriously threatened the human health. For example, the outbreak of severe acute respiratory syndrome coronavirus, SARS, affected a large number of countries around the world. Marine organisms, which could produce secondary metabolites with novel structures and abundant biological activities, are an important source for seeking effective drugs against respiratory viruses. This report reviews marine natural products with activities against respiratory viruses, the emphasis of which was put on structures and antiviral activities of these natural products. This review has described 167 marinederived secondary metabolites with activities against respiratory viruses published from 1981 to 2019. Altogether 102 references are cited in this review article.
Collapse
Affiliation(s)
- Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
14
|
Zhang B, Zhang T, Xu J, Lu J, Qiu P, Wang T, Ding L. Marine Sponge-Associated Fungi as Potential Novel Bioactive Natural Product Sources for Drug Discovery: A Review. Mini Rev Med Chem 2021; 20:1966-2010. [PMID: 32851959 DOI: 10.2174/1389557520666200826123248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Marine sponge-associated fungi are promising sources of structurally interesting and bioactive secondary metabolites. Great plenty of natural products have been discovered from spongeassociated fungi in recent years. Here reviewed are 571 new compounds isolated from marine fungi associated with sponges in 2010-2018. These molecules comprised eight different structural classes, including alkaloids, polyketides, terpenoids, meroterpenoids, etc. Moreover, most of these compounds demonstrated profoundly biological activities, such as antimicrobial, antiviral, cytotoxic, etc. This review systematically summarized the structural diversity, biological function, and future potential of these novel bioactive natural products for drug discovery.
Collapse
Affiliation(s)
- Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Ting Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jianzhou Xu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jian Lu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| |
Collapse
|
15
|
Orfali R, Aboseada MA, Abdel-Wahab NM, Hassan HM, Perveen S, Ameen F, Alturki E, Abdelmohsen UR. Recent updates on the bioactive compounds of the marine-derived genus Aspergillus. RSC Adv 2021; 11:17116-17150. [PMID: 35479707 PMCID: PMC9033173 DOI: 10.1039/d1ra01359a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
The genus Aspergillus is widely distributed in terrestrial and marine environments. In the marine environment, several Aspergillus species have proved their potential to produce a plethora of secondary metabolites including polyketides, sterols, fatty acids, peptides, alkaloids, terpenoids and miscellaneous compounds, displaying a variety of pharmacological activities such as antimicrobial, cytotoxicity, anti-inflammatory and antioxidant activity. From the beginning of 2015 until December 2020, about 361 secondary metabolites were identified from different marine Aspergillus species. In our review, we highlight secondary metabolites from various marine-derived Aspergillus species reported between January 2015 and December 2020 along with their biological potential and structural aspects whenever applicable.
Collapse
Affiliation(s)
- Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University P. O. Box 22452 Riyadh 11495 Kingdom of Saudi Arabia
| | - Mahmoud A Aboseada
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Nada M Abdel-Wahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2347759
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62513 Egypt
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University P. O. Box 22452 Riyadh 11495 Kingdom of Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University Riyadh Saudi Arabia
| | - Eman Alturki
- Department of Pharmacognosy, College of Pharmacy, King Saud University P. O. Box 22452 Riyadh 11495 Kingdom of Saudi Arabia
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20-86-2369075 +20-86-2347759
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
| |
Collapse
|
16
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
17
|
Manganyi MC, Ateba CN. Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications. Microorganisms 2020; 8:microorganisms8121934. [PMID: 33291214 PMCID: PMC7762190 DOI: 10.3390/microorganisms8121934] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Over the last century, endophytic fungi have gained tremendous attention due to their ability to produce novel bioactive compounds exhibiting varied biological properties and are, therefore, utilized for medicinal, pharmaceutical, and agricultural applications. Endophytic fungi reside within the plant tissues without showing any disease symptoms, thus supporting the physiological and ecological attributes of the host plant. Ground breaking lead compounds, such as paclitaxel and penicillin, produced by endophytic fungi have paved the way for exploring novel bioactive compounds for commercial usage. Despite this, limited research has been conducted in this valuable and unique niche area. These bioactive compounds belong to various structural groups, including alkaloids, peptides, steroids, terpenoids, phenols, quinones, phenols, and flavonoids. The current review focuses on the significance of endophytic fungi in producing novel bioactive compounds possessing a variety of biological properties that include antibacterial, antiviral, antifungal, antiprotozoal, antiparasitic, antioxidant, immunosuppressant, and anticancer functions. Taking into consideration the portal of this publication, special emphasis is placed on the antimicrobial and antiviral activities of metabolites produced by endophytes against human pathogens. It also highlights the importance of utilization of these compounds as potential treatment agents for serious life-threatening infectious diseases. This is supported by the fact that several findings have indicated that these bioactive compounds may significantly contribute towards the fight against resistant human and plant pathogens, thus motivating the need enhance the search for new, more efficacious and cost-effective antimicrobial drugs.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Microbiology, North West University Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2134
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, Mmabatho, Mafikeng 2735, South Africa;
| |
Collapse
|
18
|
Yi M, Lin S, Zhang B, Jin H, Ding L. Antiviral potential of natural products from marine microbes. Eur J Med Chem 2020; 207:112790. [PMID: 32937282 PMCID: PMC7457942 DOI: 10.1016/j.ejmech.2020.112790] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Humans have been suffered from viral infections over the centuries, such as influenza, HSV, and HIV, which have killed millions of people worldwide. However, the availability of effective treatments for infectious diseases remains limited until now, as most of the viral pathogens resisted to many medical treatments. Marine microbes are currently one of the most copious sources of pharmacologically active natural products, which have constantly provided promising antivirus agents. To date, a large number of marine microbial secondary metabolites with antiviral activities have been widely reported. In this review, we have summarized the potential antivirus compounds from marine microorganisms over the last decade. In addition, the structures, bioactivities, and origins of these compounds were discussed as well.
Collapse
Affiliation(s)
- Mengqi Yi
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Sixiao Lin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Haixiao Jin
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
19
|
Teng YF, Xu L, Wei MY, Wang CY, Gu YC, Shao CL. Recent progresses in marine microbial-derived antiviral natural products. Arch Pharm Res 2020; 43:1215-1229. [PMID: 33222073 PMCID: PMC7680217 DOI: 10.1007/s12272-020-01286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Viruses have always been a class of pathogenic microorganisms that threaten the health and safety of human life worldwide. However, for a long time, the treatment of viral infections has been slow to develop, and only a few antiviral drugs have been using clinically. Compared with these from terrestrial environments, marine-derived microorganisms can produce active substances with more novel structures and unique functions. From 2015 to 2019, 89 antiviral compounds of 8 structural classes have been isolated from marine microorganisms, of which 35 exhibit anti-H1N1 activity. This review surveys systematically marine microbial-derived natural products with antiviral activity and illustrates the impact of these compounds on antiviral drug discovery research.
Collapse
Affiliation(s)
- Yun-Fei Teng
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Li Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell , Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
20
|
Luo XW, Lu HM, Chen XQ, Zhou XF, Gao CH, Liu YH. Secondary Metabolites and their Biological Activities from the Sponge Derived Fungus Aspergillus versicolor. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03128-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides. Metabolites 2020; 10:metabo10060246. [PMID: 32549308 PMCID: PMC7344746 DOI: 10.3390/metabo10060246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed.
Collapse
|
22
|
Suminto S, Takatsuji E, Iguchi A, Kanzaki H, Okuda T, Nitoda T. A new asteltoxin analog with insecticidal activity from Pochonia suchlasporia TAMA 87. JOURNAL OF PESTICIDE SCIENCE 2020; 45:81-85. [PMID: 32508514 PMCID: PMC7251201 DOI: 10.1584/jpestics.d19-081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A new asteltoxin analog, named asteltoxin H (1), was isolated by the solid-state fermentation of the fungus Pochonia suchlasporia var. suchlasporia TAMA 87. The chemical structure of 1 was deduced by spectroscopic methods, including 1D and 2D NMR, HRESIMS, and UV-Vis analyses. Compound 1 showed insecticidal activity against prepupae of the blowfly, Lucilia sericata, with an LD50 value of 0.94 µg/mg prepupal body weight.
Collapse
Affiliation(s)
- Syaefudin Suminto
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700–8530, Japan
| | - Eri Takatsuji
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700–8530, Japan
| | - Ayako Iguchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700–8530, Japan
| | - Hiroshi Kanzaki
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700–8530, Japan
| | - Toru Okuda
- HyphaGenesis Inc., Tokyo 194–0041, Japan
| | - Teruhiko Nitoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700–8530, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Cheng MM, Tang XL, Sun YT, Song DY, Cheng YJ, Liu H, Li PL, Li GQ. Biological and Chemical Diversity of Marine Sponge-Derived Microorganisms over the Last Two Decades from 1998 to 2017. Molecules 2020; 25:E853. [PMID: 32075151 PMCID: PMC7070270 DOI: 10.3390/molecules25040853] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are well known as rich sources of biologically natural products. Growing evidence indicates that sponges harbor a wealth of microorganisms in their bodies, which are likely to be the true producers of bioactive secondary metabolites. In order to promote the study of natural product chemistry and explore the relationship between microorganisms and their sponge hosts, in this review, we give a comprehensive overview of the structures, sources, and activities of the 774 new marine natural products from sponge-derived microorganisms described over the last two decades from 1998 to 2017.
Collapse
Affiliation(s)
- Mei-Mei Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xu-Li Tang
- College of Chemistry and Chemical Engineering, Ocean University of China, Songling Road 238, Qingdao 266100, China;
| | - Yan-Ting Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Dong-Yang Song
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yu-Jing Cheng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Hui Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Ping-Lin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Guo-Qiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road 5, Qingdao 266003, China; (M.-M.C.); (Y.-T.S.); (D.-Y.S.); (Y.-J.C.); (H.L.)
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
24
|
Liu Z, Frank M, Yu X, Yu H, Tran-Cong NM, Gao Y, Proksch P. Secondary Metabolites from Marine-Derived Fungi from China. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2020; 111:81-153. [PMID: 32114663 DOI: 10.1007/978-3-030-37865-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Marine-derived fungi play an important role in the search for structurally unique secondary metabolites, some of which show promising pharmacological activities that make them useful leads for drug discovery. Marine natural product research in China in general has made enormous progress in the last two decades as described in this chapter on fungal metabolites. This contribution covers 613 new natural products reported from 2001 to 2017 from marine-derived fungi obtained from algae, sponges, corals, and other marine organisms from Chinese waters. The genera Aspergillus (170 new natural products, 28%) and Penicillium (70 new natural products, 11%) were the main fungal producers of new natural products during the time period covered, whereas sponges (184 new natural products, 30%) were the most abundant source of new natural products, followed by corals (154 new natural products, 25%) and algae (130 new natural products, 21%). Close to 40% of all natural products covered in this contribution displayed various bioactivities. The major bioactivities reported were cytotoxicity against different cancer cell lines, antimicrobial (mainly antibacterial) activity, and antiviral activity, which accounted for 13%, 9%, and 3% of all natural products reported. In terms of structural classes, polyketides (188 new natural products, 31%) play a dominant role, and if prenylated polyketides and nitrogen-containing polyketides (included in meroterpenes and alkaloids in this contribution) are taken into account, their total number even exceeds 50%. Nitrogen-containing compounds including peptides (65 new natural products, 10%) and alkaloids (103 new natural products, 17%) are the second largest group.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Xiaoqin Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Haiqian Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nam M Tran-Cong
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
25
|
Hashimoto M, Ichijo H, Fujiwara K, Sugasawa H, Abo S, Matsudo K, Uchiyama N, Goda Y, Fujii I. Functional expression of a highly-reducing polyketide synthase of Emericella variecolor IFM42010, an asteltoxin-producing strain, resulted in production of two polyenoic β-ketolactones with opposite stereochemistry. Bioorg Med Chem Lett 2019; 29:126686. [PMID: 31678008 DOI: 10.1016/j.bmcl.2019.126686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The asteltoxin-producing fungus Emericella variecolor IFM42010 possesses 22 highly-reducing polyketide synthase (HR-PKS) genes. Of these, an HR-PKS with a methyltransferase domain but lacking an enoylreductase domain could be involved in the biosynthesis of asteltoxin and related compounds. From six such candidate HR-PKS genes, Ev460pks was analyzed by gene disruption in E. variecolor and heterologous expression in Aspergillus oryzae. The Ev460pks-disrupted strain retained asteltoxin production ability, indicating that Ev460pks is not involved in asteltoxin biosynthesis. The A. oryzae transformant harboring the Ev460pks gene produced compounds 1 and 2, along with several unidentified products possibly decomposed from 2. Spectroscopic analyses revealed that 1 was a 4-methyl-β-ketolactone with a methylheptatriene side-chain at the C-5 position, and 2 was also a 4-methyl-β-ketolactone, bearing a dimethyltetradecahexaene side-chain at the same position. The relative configuration at C-4 in compounds 1 and 2 was opposite.
Collapse
Affiliation(s)
- Makoto Hashimoto
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan; Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Hitomi Ichijo
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Kotaro Fujiwara
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hitoshi Sugasawa
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Seika Abo
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Kimihito Matsudo
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Nahoko Uchiyama
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan.
| |
Collapse
|
26
|
Al-Fakih AA, Almaqtri WQA. Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycology 2019; 10:191-209. [PMID: 31632829 PMCID: PMC6781474 DOI: 10.1080/21501203.2019.1604576] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Medicines developed from natural sources are a frequent target for the research and discovery of antimicrobial compounds. Discovering of penicillin in 1928 was a motive to explore of nature as a source of new antimicrobial agents. Fungi produce a diverse range of bioactive metabolites, making them rich source of different types of medicines. The purpose of this paper was to review studies on antibacterials from terrestrial Aspergillus published exclusively during 1942-2018, with emphasis on their antibacterial activities, structures, and mechanisms of action if present. According to the results from different studies in the world, large number of compounds and extracts showed different activities against different bacterial species, including Gram-positive and Gram-negative bacteria. The most prominent result was that of the compound CJ-17,665, isolated from A. ochraceus, showing good activity against multi-drug resistant Staphylococcus aureus, which is well-recognised to be one of the most important current public health problem. These findings may motivate scientists to undertake a project that may result in the development of novel antibacterial drugs from terrestrial-derived Aspergillus spp., although further toxicity assays (in vivo) must be performed before their application.
Collapse
|
27
|
Tian Y, Lin X, Zhou X, Liu Y. Phenol Derivatives From the Sponge-Derived Fungus Didymellaceae sp. SCSIO F46. Front Chem 2018; 6:536. [PMID: 30443544 PMCID: PMC6221957 DOI: 10.3389/fchem.2018.00536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Seven new phenol derivatives named coleophomones E and F (1, 2), diorcinols L and M (3, 4), 1-hydroxy-6-methyl-11-methoxy-8-hydroxymethylxanthone (5), porric acid E (6), and 7-(2-hydroxyphenyl) butane-7,8,9-triol (7), were isolated from the EtOAc extract of the marine sponge-derived fungus Didymellaceae sp. SCSIO F46, together with 10 known compounds. Their structures were determined by spectroscopic analyses, including NMR, MS, X-ray diffraction, and theoretical calculations. Each of 1 and 2 contains an unusual spiro [cyclohexane-1,2′-inden] moiety, which is relatively seldom in nature products. Cytotoxic and COX-2 inhibitory activities of all purified compounds were tested and evaluated. Compound 3 displayed obvious cytotoxicities against Huh-7, HeLa, DU145 and HL60 cells (IC50 values 5.7–9.6 μM) and weak activities against other five cell lines, while 8 showed weak cytotoxicities against HeLa and HL7702 cells. Compound 6 displayed COX-2 inhibitory activity with IC50 value of 3.3 μM.
Collapse
Affiliation(s)
- Yongqi Tian
- College of Biological Science and Technology, Fuzhou University, Fuzhou, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Özkaya FC, Ebrahim W, El-Neketi M, Tansel Tanrıkul T, Kalscheuer R, Müller WE, Guo Z, Zou K, Liu Z, Proksch P. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoterapia 2018; 131:9-14. [DOI: 10.1016/j.fitote.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
29
|
Pang X, Lin X, Yang J, Zhou X, Yang B, Wang J, Liu Y. Spiro-Phthalides and Isocoumarins Isolated from the Marine-Sponge-Derived Fungus Setosphaeria sp. SCSIO41009. JOURNAL OF NATURAL PRODUCTS 2018; 81:1860-1868. [PMID: 30091601 DOI: 10.1021/acs.jnatprod.8b00345] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fourteen new polyketides classified as four phthalides, setosphalides A and B, 5- O-desmethylcolletotrialide, and ( S)-colletotrialide (1-4), three isocoumarin derivatives, exserolides I-K (5-7), four pyrones, setosphapyrones A-D (8-11), one furanone (12), and two depsidones (13 and 14), along with 17 known polyketides were isolated from cultures of the sponge-derived fungus Setosphaeria sp. SCSIO41009. The structures and absolute configurations of these new compounds (1-14) were determined by spectroscopic analyses, X-ray diffraction, chiral-phase HPLC analysis, modified Mosher's method, and comparison of ECD spectra to calculations. Setosphalides A (1) and B (2) are the first examples possessing a 5,5 spiroketal skeleton in phthalide derivatives. Botryorhodines I (13) and J (14) showed moderate antifungal activities against the phytopathogenic fungi Colletotrichum asianum and Colletotrichum acutatum. Compound 18 (7- O-demethylmonocerin) exhibited potent radical scavenging activity against DPPH.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510220 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
30
|
Perylenequione Derivatives with Anticancer Activities Isolated from the Marine Sponge-Derived Fungus, Alternaria sp. SCSIO41014. Mar Drugs 2018; 16:md16080280. [PMID: 30110969 PMCID: PMC6117713 DOI: 10.3390/md16080280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Seven new secondary metabolites classified as two perylenequinone derivatives (1 and 2), an altenusin derivative (3), two phthalide racemates (4 and 5), and two phenol derivatives (6 and 7), along with twenty-one known compounds (8–28) were isolated from cultures of the sponge-derived fungus, Alternaria sp. SCSIO41014. The structures and absolute configurations of these new compounds (1–7) were determined by spectroscopic analysis, X-ray single crystal diffraction, chiral-phase HPLC separation, and comparison of ECD spectra to calculations. Altertoxin VII (1) is the first example possessing a novel 4,8-dihydroxy-substituted perylenequinone derivative, while the phenolic hydroxy groups have commonly always substituted at C-4 and C-9. Compound 1 exhibited cytotoxic activities against human erythroleukemia (K562), human gastric carcinoma cells (SGC-7901), and hepatocellular carcinoma cells (BEL-7402) with IC50 values of 26.58 ± 0.80, 8.75 ± 0.13, and 13.11 ± 0.95 μg/mL, respectively. Compound 11 showed selectively cytotoxic activity against K562, with an IC50 value of 19.67 ± 0.19 μg/mL. Compound 25 displayed moderate inhibitory activity against Staphylococcus aureus with an MIC value of 31.25 μg/mL.
Collapse
|
31
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
33
|
Tian YQ, Lin SN, Zhou H, Lin ST, Wang SY, Liu YH. Protuboxepin C and protuboxepin D from the sponge-derived fungus Aspergillus sp SCSIO XWS02F40. Nat Prod Res 2018; 32:2510-2515. [PMID: 29313378 DOI: 10.1080/14786419.2017.1423303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two new diketopiperazine alkaloids, named protuboxepin C (1) and protuboxepin D (2), which contain D-Phe residue and oxepin ring, were isolated from EtOAc extract of sponge-derived fungus Aspergillus sp SCSIO XWS02F40. Their structures were elucidated by 1D, 2D NMR and HRESIMS dates, and their absolute configurations were confirmed by single crystal X-ray diffraction experiments and CD analyses. The in vitro cytotoxicity of these two new compounds was further evaluated using A549 and Hela cell lines.
Collapse
Affiliation(s)
- Yong-Qi Tian
- a College of Biological Science and Technology , Fuzhou University , Fuzhou , China.,b CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China
| | - Sheng-Nan Lin
- a College of Biological Science and Technology , Fuzhou University , Fuzhou , China
| | - Hong Zhou
- a College of Biological Science and Technology , Fuzhou University , Fuzhou , China
| | - Shu-Ting Lin
- a College of Biological Science and Technology , Fuzhou University , Fuzhou , China
| | - Shao-Yun Wang
- a College of Biological Science and Technology , Fuzhou University , Fuzhou , China
| | - Yong-Hong Liu
- b CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China.,c South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Guangzhou , China
| |
Collapse
|
34
|
Pang X, Lin X, Wang J, Liang R, Tian Y, Salendra L, Luo X, Zhou X, Yang B, Tu Z, Liu Y. Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium sp. SCSIO41007. Steroids 2018; 129:41-46. [PMID: 29223616 DOI: 10.1016/j.steroids.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/21/2017] [Accepted: 12/02/2017] [Indexed: 11/25/2022]
Abstract
Three new highly oxygenated sterols (1-3) and a new dihydroisocoumarin (7) together with six known compounds were isolated from the extracts of the culture of a sponge-derived fungus Cladosporium sp. SCSIO41007. The structures of all new compounds (1-3, 7) were determined by the extensive spectroscopic analysis including NMR, MS, IR, and UV. Their absolute configurations were determined by X-ray single-crystal and CD data analysis. Compound 2 exhibited weak inhibitory activity against H3N2 with the IC50 value of 16.2 μM.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Rui Liang
- Laboratory of Molecular Engineering and Laboratory of Natural Product Synthesis, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongqi Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Limbadri Salendra
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- Laboratory of Molecular Engineering and Laboratory of Natural Product Synthesis, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| |
Collapse
|
35
|
Liu JT, Wu W, Cao MJ, Yang F, Lin HW. Trienic α-pyrone and ochratoxin derivatives from a sponge-derived fungus Aspergillus ochraceopetaliformis. Nat Prod Res 2017; 32:1791-1797. [PMID: 29130337 DOI: 10.1080/14786419.2017.1402325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new trienic α-pyrone derivative asteltoxin G (1) bearing a tetrahydrofuran ring and a new ochratoxin derivative named ochratoxin A1 (5), along with seven known compounds, were isolated from a sponge-derived fungus Aspergillus ochraceopetaliformis. The compounds (1-9) were evaluated on the basis of spectroscopic analyses and comparison with those of the reported data. The new compound ochratoxin A1 (5) exhibited anti-inflammatory activity against IL-6 and TNF-α expression of the LPS-induced THP-1 cells with inhibitory rates of 74.4 and 67.7% at concentration of 10 μM, respectively.
Collapse
Affiliation(s)
- Jing-Tang Liu
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Wei Wu
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Min-Jia Cao
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Fan Yang
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| | - Hou-Wen Lin
- a Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
36
|
Isobenzofuranones and Isochromenones from the Deep-Sea Derived Fungus Leptosphaeria sp. SCSIO 41005. Mar Drugs 2017. [DOI: 10.3390/md15070204 pmid: 28661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Luo X, Lin X, Salendra L, Pang X, Dai Y, Yang B, Liu J, Wang J, Zhou X, Liu Y. Isobenzofuranones and Isochromenones from the Deep-Sea Derived Fungus Leptosphaeria sp. SCSIO 41005. Mar Drugs 2017; 15:md15070204. [PMID: 28661451 PMCID: PMC5532646 DOI: 10.3390/md15070204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Abstract
Four new isobenzofuranones, leptosphaerins J–M (1–4), including an unusual naturally-occurring centrosymmetric dimer skeleton (1), and two new isochromenones, clearanols I–J (9–10), were obtained from a culture of a deep-sea sediment-derived fungus Leptosphaeria sp. SCSIO 41005, together with four known isobenzofuranones (5–8) and six known isochromenones (11–16). These structures were elucidated by extensive spectroscopic analyses, and absolute configurations were assigned on the basis of electronic circular dichroism and optical rotations data comparison. Additionally, the absolute configurations of the new compounds 1 and 9, together with the known one 7 with stereochemistry undetermined, were further confirmed by single crystal X-ray diffraction experiments. A plausible biosynthetic pathway of these isobenzofuranones and isochromenones was also proposed.
Collapse
Affiliation(s)
- Xiaowei Luo
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiuping Lin
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Limbadri Salendra
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyan Pang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Dai
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Juan Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Junfeng Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Xuefeng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| | - Yonghong Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
| |
Collapse
|
38
|
Pang X, Lin X, Tian Y, Liang R, Wang J, Yang B, Zhou X, Kaliyaperumal K, Luo X, Tu Z, Liu Y. Three new polyketides from the marine sponge-derived fungus Trichoderma sp. SCSIO41004. Nat Prod Res 2017; 32:105-111. [PMID: 28592143 DOI: 10.1080/14786419.2017.1338286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Three new polyketides named trichbenzoisochromen A (1), 5,7-dihydroxy-3-methyl -2-(2-oxopropyl)naphthalene-1,4-dione (2) and 7-acetyl-1,3,6-trihydroxyanthracene-9,10- dione (3) together with six known compounds (4-9) were isolated from a sponge-derived fungus Trichoderma sp. SCSIO41004. The structures of three new polyketides (1-3) were determined by the extensive spectroscopic analysis, including 1D, 2D NMR and HRESIMS data. The absolute configuration of compound 1 was confirmed by the specific optical rotation value and CD spectra analyses. Compound 4 exhibited significant inhibitory activity against EV71 with the IC50 value of 25.7 μM.
Collapse
Affiliation(s)
- Xiaoyan Pang
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xiuping Lin
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China
| | - Yongqi Tian
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Rui Liang
- c Drug Discovery Pipeline/Guangdong Provincial Key Laboratory of Biocomputing , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Junfeng Wang
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China
| | - Bin Yang
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China
| | - Xuefeng Zhou
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China
| | - Kumaravel Kaliyaperumal
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China
| | - Xiaowei Luo
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Zhengchao Tu
- c Drug Discovery Pipeline/Guangdong Provincial Key Laboratory of Biocomputing , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Yonghong Liu
- a CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China.,b University of Chinese Academy of Sciences , Beijing , China.,d South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Guangzhou , China
| |
Collapse
|
39
|
Chen SR, Wang AQ, Lin LG, Qiu HC, Wang YT, Wang Y. In Vitro Study on Anti-Hepatitis C Virus Activity of Spatholobus suberectus Dunn. Molecules 2016; 21:E1367. [PMID: 27754461 PMCID: PMC6274077 DOI: 10.3390/molecules21101367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) infects 200 million people worldwide, and 75% of HCV cases progress into chronic infections, which consequently cause cirrhosis and hepatocellular carcinoma. HCV infection is treated with currently considered standard drugs, including direct anti-viral agents (DAAs), alone or in combination with peginterferon-α plus ribavirin. However, sustained viral responses vary in different cohorts, and high costs limit the broad use of DAAs. In this study, the ethanol and water extracts of 12 herbs from Lingnan in China were examined in terms of their inhibitory effect on HCV replication. Among the examined extracts, Spatholobus suberectus ethanol extracts suppressed HCV replication. By comparison, Extracts from Fructus lycii, Radix astragali (root), Rubus chingii Hu (fruit), Flos chrysanthemi Indici (flower), Cassia obtusifolia (seed), Lonicera japonica Thunb (flower), Forsythia suspense Thunb (fruit), Poria cocos (sclerotia), Carthamus tinctorius L. (flower), Crataegus pinnatifida Bge. (fruit), and Leonurus japonicas Houtt. (leaf) extracts failed to show a similar activity. Active S. suberectus fractions containing tannins as the major component also inhibited the in vitro translation of HCV RNA. The combination treatments of single compounds, such as epigallocatechin gallate and epicatechin gallate, were not as potent as crude S. suberectus fractions; therefore, crude S. suberectus extract may be a potential alternative treatment against HCV either alone or in combination with other agents.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China.
| | - An-Qi Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China.
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China.
| | - Hong-Cong Qiu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning 530022, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China.
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China.
| |
Collapse
|