1
|
Guo Z, Zhang L, Liu J, Yang Z. Lychee Peel Extract Ameliorates Hyperuricemia by Regulating Uric Acid Production and Excretion in Mice. Curr Issues Mol Biol 2025; 47:76. [PMID: 39996797 PMCID: PMC11854076 DOI: 10.3390/cimb47020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Lychee peel generated during the industrial processing of lychee fruit are currently disposed of as agricultural waste. This study investigates the primary components of lychee peel extract (LPE) and the regulatory mechanisms of LPE on reducing uric acid (UA). Mice were injected with hypoxanthine and potassium oxonate to induce hyperuricemia and concurrently orally administered LPE. The analysis of the LPE composition reveals a predominance of polyphenolic compounds, including (-)-epicatechin, (-)-epigallocatechin, and procyanidin A2. In vitro tests have demonstrated that the LPE significantly inhibits the activity of xanthine oxidase (XOD). In vivo studies showed that LPE can reduce UA levels in hyperuricemia mice. Further mechanistic insights indicate that LPE inhibits hepatic XOD activity, thereby reducing UA synthesis within the organism. It also decreases the protein expression of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9), which leads to diminished UA reabsorption and increased excretion of UA. Additionally, LPE enhances the activity of superoxide dismutase (SOD) while simultaneously reducing malondialdehyde (MDA) contents, thereby improving antioxidant capacity in mice. Our findings indicate that LPE not only inhibits the production of UA but also promotes its elimination, positioning it as a promising candidate for UA-lowering agents.
Collapse
Affiliation(s)
- Zhenwang Guo
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (Z.G.); (L.Z.); (J.L.)
- Guangxi School of Chinese Medicine, Nanning 530001, China
| | - Li Zhang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (Z.G.); (L.Z.); (J.L.)
| | - Jinlei Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (Z.G.); (L.Z.); (J.L.)
| | - Ziming Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (Z.G.); (L.Z.); (J.L.)
| |
Collapse
|
2
|
Cano-Gómez CI, Alonso-Castro AJ, Carranza-Alvarez C, Wong-Paz JE. Advancements in Litchi chinensis Peel Processing: A Scientific Review of Drying, Extraction, and Isolation of Its Bioactive Compounds. Foods 2024; 13:1461. [PMID: 38790761 PMCID: PMC11119950 DOI: 10.3390/foods13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This article systematically reviews the advancements in processing litchi peel (Litchi chinensis), emphasizing drying, extraction, purification methods, and the potential of bioactive compounds obtained from litchi peel. This work also highlights the impact of various drying techniques on phytochemical profiles, focusing on how methods such as hot air and freeze-drying affect the preservation of bioactive compounds. The study delves into extraction methods, detailing how different solvents and techniques influence the efficiency of extracting bioactive compounds from litchi peel. Furthermore, the purification and characterization of active compounds, showcasing the role of chromatographic techniques in isolating specific bioactive molecules, is discussed. Biological properties and mechanisms of action, such as antioxidant, antihyperglycemic, cardioprotective, hepatoprotective, anti-atherosclerotic, and anticancer activities, are reviewed, providing insight into the potential health benefits of litchi peel compounds. This review highlights the importance of optimizing and selecting accurate drying and extraction methods to maximize the therapeutic effects of litchi peel and its bioactive compounds. This review also reveals the broad pharmacological potential of the isolated compounds, underscoring the need for further research to discover their specific actions and health benefits.
Collapse
Affiliation(s)
- Christian Iván Cano-Gómez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36250, Mexico;
| | - Candy Carranza-Alvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| | - Jorge E. Wong-Paz
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Cd. Valles, San Luis Potosi 79080, Mexico; (C.I.C.-G.); (C.C.-A.)
| |
Collapse
|
3
|
Zeng Y, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr Rev Food Sci Food Saf 2024; 23:e13352. [PMID: 38634188 DOI: 10.1111/1541-4337.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
4
|
Yang Z, Zhang L, Liu J, Li D. Litchi Pericarp Extract Treats Type 2 Diabetes Mellitus by Regulating Oxidative Stress, Inflammatory Response, and Energy Metabolism. Antioxidants (Basel) 2024; 13:495. [PMID: 38671942 PMCID: PMC11047702 DOI: 10.3390/antiox13040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Litchi pericarp is rich in polyphenols, and demonstrates significant biological activity. This study assessed the therapeutic effects of litchi pericarp extract (LPE) on type 2 diabetes mellitus in db/db mice. The results showed that LPE ameliorated symptoms of glucose metabolism disorder, oxidative stress, inflammatory response, and insulin resistance in db/db mice. The mechanistic studies indicated that LPE activates adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and suppresses the protein expression of phosphoenolpyruvate carboxykinase (PEPCK), thereby reducing hepatic gluconeogenesis. Additionally, LPE facilitates the translocation of nuclear factor erythroid2-related factor 2 (Nrf2) into the cell nucleus, initiating the transcription of antioxidant factors superoxide dismutase (SOD) and NAD(P)H: quinone oxidoreductase 1 (NQO1), which alleviate oxidative stress and reduce oxidative damage. Furthermore, LPE blocks nuclear factor kappa-B (NF-κB) nuclear translocation and subsequent inflammatory response initiation, thereby reducing inflammation. These findings indicate that LPE addresses type 2 diabetes mellitus by activating the AMPK energy metabolic pathway and regulating the Nrf2 oxidative stress and NF-κB inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ziming Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Li Zhang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Jinlei Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Dianpeng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
5
|
Kaur J, Borah A, Chutia H, Gupta P. Extraction, modification, and characterization of native litchi seed (Litchi chinesis Sonn.) starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:215-224. [PMID: 37553317 DOI: 10.1002/jsfa.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Litchi seeds, because of their high starch content, have the potential to serve as a valuable non-conventional source of starch with various applications. This study aimed to optimize the extraction of native litchi seed and its modification using citric acid. Response surface methodology was used to determine the optimal combination of the independent variables extraction temperature (30-60 °C), and extraction time (4-20 h), to obtain the maximum starch yield (%). Starch was then modified chemically with citric acid concentrations of 20% and 40% to investigate its effect on physicochemical, morphological, and functional properties. RESULTS The second-order polynomial model effectively described the experimental data, demonstrating a satisfactory fit for the observed results. The optimized condition with the highest starch recovery (212.4 g kg-1 ) was found to have an extraction temperature of 30 °C and an extraction time of 11 h. It was observed that an increase in concentration of citric acid resulted in a decrease in amylose content, swelling power, and solubility, and the water absorption capacity of modified starch increased. The scanning electron microscopy (SEM) micrographs showed that citric acid modification resulted in surface irregularities, whereas the shape and size of granules remained unaffected. Not much difference was observed in the X-ray diffraction (XRD) pattern of modified starch except for the decrease in the intensities of peaks. An effect on the thermal properties of modified starch was also observed. CONCLUSION The results of the study reveal that extraction temperature and extraction time are critical factors, exerting a significant effect on the extraction yield of starch. Furthermore, modified starches with improved functional properties can serve as novel and versatile sources of starch in various food and non-food sectors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jashanveer Kaur
- Department of Food Technology & Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Anjan Borah
- Department of Food Technology & Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Hemanta Chutia
- Department of Food Engineering & Technology, Tezpur University, Tezpur, India
| | - Prerna Gupta
- Department of Food Technology & Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Wu W, Li G, Zhou W, Wang E, Zhao X, Song X, Zhao Y. Comparison of Composition, Free-Radical-Scavenging Capacity, and Antibiosis of Fresh and Dry Leave Aqueous Extract from Michelia shiluensis. Molecules 2023; 28:5935. [PMID: 37630187 PMCID: PMC10457956 DOI: 10.3390/molecules28165935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous plants of medicinal value grow on Hainan Island (China). Given the lack of knowledge on the phytochemical and pharmacological properties of Michelia shiluensis Chun and Y. F. Wu (M. shiluensis), the application of natural antioxidants and antimicrobials in the food industry has attracted increasing interest. This study aimed to compare the chemical composition, free-radical-scavenging capacity, and antibiosis of aqueous extracts of the fresh and dried leaves of M. shiluensis. The aqueous extract of the leaves of M. shiluensis was obtained using steam distillation, and its chemical components were separated and identified via gas chromatography-mass spectrometry (GC-MS). The free-radical-scavenging capacity and antibiosis were determined. Further, 28 and 20 compounds were isolated from the fresh leaf aqueous extract of M. shiluensis (MSFLAE) and dried leaf aqueous extract of M. shiluensis (MSDLAE), respectively. The free-radical-scavenging capacity of MSFLAE and MSDLAE was determined by the 2,2-diphenyl-1 picrylhydrazyl (DPPH) method, which was 43.43% and 38.74%, respectively. The scavenging capacity of MSFLAE and MSDLAE determined by the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate (ABTS)) method was 46.90% and 25.99%, respectively. The iron ion reduction capacity of MSFLAE and MSDLAE was determined by the ferric-reducing antioxidant power (FRAP) method as 94.7 and 62.9 μmol Fe2⁺/L, respectively. This indicated that the two leaf aqueous extracts had a certain free-radical-scavenging capacity, and the capacity of MSFLAE was higher than that of MSDLAE. The antibiosis of the two leaf aqueous extracts on the three foodborne pathogenic bacteria was low, but the antimicrobial effects on Gram-positive bacteria were better than those on Gram-negative bacteria. The antibiosis of MSFLAE on Escherichia coli and Staphylococcus aureus was greater than that of MSDLAE. Finally, MSFLAE and MSDLAE both had certain free-radical-scavenging capacities and antibiosis, confirming that the use of this plant in the research and development of natural antioxidants and antibacterial agents was reasonable. Plant aqueous extracts are an essential source of related phytochemistry and have immense pharmacological potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhao
- Hainan Key Laboratory of Biology of Tropical Flowers and Trees Resources, Forestry Institute, Hainan University, Haikou 570228, China; (W.W.); (G.L.); (W.Z.); (E.W.); (X.Z.); (X.S.)
| |
Collapse
|
7
|
Stephenus FN, Benjamin MAZ, Anuar A, Awang MA. Effect of Temperatures on Drying Kinetics, Extraction Yield, Phenolics, Flavonoids, and Antioxidant Activity of Phaleria macrocarpa (Scheff.) Boerl. (Mahkota Dewa) Fruits. Foods 2023; 12:2859. [PMID: 37569127 PMCID: PMC10417056 DOI: 10.3390/foods12152859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 08/13/2023] Open
Abstract
Phaleria macrocarpa (Scheff.) Boerl. or 'Mahkota Dewa' is a popular plant found in Malaysia as it is a valuable source of phytochemicals and therapeutic properties. Drying is an essential step in the storage of P. macrocarpa fruits at an industrial level to ensure their availability for a prolonged shelf life as well as preserving their bioactive compounds. Hence, this study evaluates the effect of different temperatures on the drying kinetics, extraction yield, phenolics, flavonoids, and antioxidant activity of P. macrocarpa fruits. The oven-drying process was carried out in this study at temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. Six thin-layer drying models (i.e., Lewis, Page, Henderson and Pabis, two-term exponential, Logarithmic, and Midilli and Kucuk models) were evaluated to study the behaviour of oven-dried P. macrocarpa fruits based on the coefficient of determination (R2), root mean square error (RMSE), and chi-square (χ2). The quality of the oven-dried P. macrocarpa fruits was determined based on their extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl) using ultrasound-assisted extraction. The results showed that the time for moisture removal correspondingly increased in the oven-dried P. macrocarpa fruits. Apparently, the Midilli and Kucuk model is the most appropriate model to describe the drying process. The range of effective moisture diffusivity was 1.22 × 10-8 to 4.86 × 10-8 m2/s, and the activation energy was 32.33 kJ/mol. The oven-dried P. macrocarpa fruits resulted in the highest extraction yield (33.99 ± 0.05%), TPC (55.39 ± 0.03 mg GAE/g), TFC (15.47 ± 0.00 mg RE/g), and DPPH inhibition activity (84.49 ± 0.02%) at 60 °C based on the significant difference (p < 0.05). A strong correlation was seen between the antioxidant activity, TPC, and TFC in the oven-dried P. macrocarpa fruits. The current study suggests that the oven-drying method improved the TPC, TFC, and antioxidant activity of the P. macrocarpa fruits, which can be used to produce functional ingredients in foods and nutraceuticals.
Collapse
Affiliation(s)
- Fatin Nurain Stephenus
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Mohammad Amil Zulhilmi Benjamin
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Adilah Anuar
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kampus UniCITI Alam, Sungai Chuchuh, Padang Besar 02100, Perlis, Malaysia
| | - Mohd Azrie Awang
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Innovative Food Processing and Ingredients Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
8
|
Wang L, Wen H, Yang N, Li H. Effect of vacuum freeze drying and hot air drying on dried mulberry fruit quality. PLoS One 2023; 18:e0283303. [PMID: 37352305 PMCID: PMC10289396 DOI: 10.1371/journal.pone.0283303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/05/2023] [Indexed: 06/25/2023] Open
Abstract
Two different drying methods (vacuum freeze-drying and hot-air drying) were used to dry mulberry of three varieties 'Baiyuwang'(D1), 'Longsang'(D2) and 'Zhongshen.1'(D3), and the fresh fruit of each variety was used as the control. The effects of different processing conditions on the physical characteristics, nutrients, functional components and antioxidant activity of mulberry fruit were analyzed. The results show that after different drying methods, after vacuum freeze-drying, the physical properties of dried mulberry fruit such as wettability, hygroscopic property and water retention, soluble protein, ascorbic acid and other nutrients, functional components such as polyphenols, resveratrol, chlorogenic acid and anthocyanin, and antioxidant activities such as DPPH free radical scavenging ability and ABTS free radical scavenging ability were superior to hot air drying (P < 0.01). It was concluded that vacuum freeze drying was more beneficial for retaining the original quality of mulberry than hot air drying. This study can provide a retaining theoretical basis for mulberry deep processing and comprehensive development and utilization.
Collapse
Affiliation(s)
- Li Wang
- College of Forestry, Agricultural University of Hebei, Hebei, P.R. China
- Key Laboratory of Germplasm Resources of Forest Tree and Forest Protection of Hebei Province, Baoding, China
| | - Haichao Wen
- College of Forestry, Agricultural University of Hebei, Hebei, P.R. China
- Key Laboratory of Germplasm Resources of Forest Tree and Forest Protection of Hebei Province, Baoding, China
| | - Ningwei Yang
- College of Forestry, Agricultural University of Hebei, Hebei, P.R. China
- Key Laboratory of Germplasm Resources of Forest Tree and Forest Protection of Hebei Province, Baoding, China
| | - Hongjiao Li
- College of Forestry, Agricultural University of Hebei, Hebei, P.R. China
- Key Laboratory of Germplasm Resources of Forest Tree and Forest Protection of Hebei Province, Baoding, China
| |
Collapse
|
9
|
Oulkar D, Singh K, Narayan B. Characterization of different parts of litchi fruit using UHPLC-QExactive Orbitrap. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4889-4906. [PMID: 36276521 PMCID: PMC9579223 DOI: 10.1007/s13197-022-05577-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Litchi fruit is consumed across the globe for its high nutritional value and taste. The qualitative profiling of litchi fruit has been carried out by using ultra-high-performance liquid chromatography with QExactive high-resolution accurate mass spectrometry. Acidified water: methanol: acetonitrile (1:1:1) extracts from individual parts (skin, pulp, and seed) of matured litchi, were subjected to LC-MS analysis with electrospray ionization in full MS-ddMS2 mode as a non-target approach. The data was processed through compound discoverer software by the use of mzCloud and ChemSpider databases, for compound identification. We identified 77 compounds with protonated or deprotonated forms based on the polarity and their characteristic fragments are within ± 4 ppm mass error and retention time ± 0.1 min for parent and fragments. Hypoglycin B is the first time reported in litchi fruit along with hypoglycin A. Further, we verified the distribution of the identified components and differentiation of three different parts of litchi through principal component analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05577-z.
Collapse
Affiliation(s)
- Dasharath Oulkar
- FSSAI-Thermo Fisher Scientific Food Safety Solution Center, National Food Laboratory-Delhi NCR, Indirapuram, Ghaziabad, India
| | - Kirti Singh
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, India
| | - Bhaskar Narayan
- Food Safety and Standards Authority of India (FSSAI), Kotla Road, New Delhi, India
- Present Address: FSSAI On Deputation From CSIR-CFTRI, Mysore, India
| |
Collapse
|
10
|
Magiera A, Czerwińska ME, Owczarek A, Marchelak A, Granica S, Olszewska MA. Polyphenols and Maillard Reaction Products in Dried Prunus spinosa Fruits: Quality Aspects and Contribution to Anti-Inflammatory and Antioxidant Activity in Human Immune Cells Ex Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103302. [PMID: 35630778 PMCID: PMC9143125 DOI: 10.3390/molecules27103302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/30/2022]
Abstract
Dried Prunus spinosa fruits (sloes) are folk phytotherapeutics applied to treat chronic inflammatory disorders. However, their pharmacological potential, activity vectors, and drying-related changes in bioactive components remain unexplored. Therefore, the present research aimed to evaluate the anti-inflammatory and antioxidant effects of dried sloes in ex vivo models of human neutrophils and peripheral blood mononuclear cells (PMBCs) and establish their main active components. It was revealed that the fruit extracts significantly and dose-dependently inhibited the respiratory burst, downregulated the production of elastase (ELA-2) and TNF-α, and upregulated the IL-10 secretion by immune cells under pro-inflammatory and pro-oxidant stimulation. The slightly reduced IL-6 and IL-8 secretion was also observed. The structural identification of active compounds, including 45 phenolics and three Maillard reaction products (MRPs) which were formed during drying, was performed by an integrated approach combining LC-MS/MS, preparative HPLC isolation, and NMR studies. The cellular tests of four isolated model compounds (chlorogenic acid, quercetin, procyanidin B2, and 5-hydroxymethylfurfural), supported by statistical correlation studies, revealed a significant polyphenolic contribution and a slight impact of MRPs on the extracts’ effects. Moreover, a substantial synergy was observed for phenolic acids, flavonoids, condensed proanthocyanidins, and MPRs. These results might support the phytotherapeutic use of dried P. spinosa fruits to relieve inflammation and establish the quality control procedure for the extracts prepared thereof.
Collapse
Affiliation(s)
- Anna Magiera
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland; (A.O.); (A.M.); (M.A.O.)
- Correspondence: ; Tel.: +48-503-316-997
| | - Monika Ewa Czerwińska
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha St., 02-097 Warsaw, Poland
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland; (A.O.); (A.M.); (M.A.O.)
| | - Anna Marchelak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland; (A.O.); (A.M.); (M.A.O.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland; (A.O.); (A.M.); (M.A.O.)
| |
Collapse
|
11
|
Characterization of physico-chemical, textural, phytochemical and sensory proprieties of Italia raisins subjected to different drying conditions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Punia S, Kumar M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Zhang W, Liang L, Pan X, Lao F, Liao X, Wu J. Alterations of phenolic compounds in red raspberry juice induced by high-hydrostatic-pressure and high-temperature short-time processing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Effect of steam blanching and high temperature drying on the physicochemical properties, antioxidant activities and consumer acceptability of Hibiscus cannabinus leaves tea. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4588-4598. [PMID: 33087971 DOI: 10.1007/s13197-020-04497-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Kenaf (Hibiscus cannabinus) leaves are produced as the by product when kenaf stems were harvested. The kenaf leaves was examed for the applicable possibility as herbal tea due to their rich phenolic content. In this study, the effect of steam blanching and high temperature drying on physicochemical properties, antioxidant activity and consumer acceptability of the kenaf tea leaves were studied. Results showed that steam blanching prior oven-drying improved the extractability of phenolic compounds, leading to the increase in total flavonoid content, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and ferric reducing antioxidant power. Drying at 120 °C was able to preserve more phenolic compounds, at the same time developing better taste, mouthfeel, and overall acceptability of kenaf leaves tea. Caffeic acid, tannic acid, catechin, and chlorogenic acid in kenaf tea leaves infusion were analyzed by ultra high performances liquid chromatography. In conclusion, steam blanching prior to 120 °C oven-drying was the best process method for the production of kenaf leaves into acceptable tea type.
Collapse
|
15
|
Zhao L, Wang K, Wang K, Zhu J, Hu Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr Rev Food Sci Food Saf 2020; 19:2139-2163. [PMID: 33337091 DOI: 10.1111/1541-4337.12590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical to subtropical fruit that is widely cultivated in more than 20 countries worldwide. It is normally consumed as fresh or processed and has become one of the most popular fruits because it has a delicious flavor, attractive color, and high nutritive value. Whole litchi fruits have been used not only as a food source but also for medicinal purposes. As a traditional Chinese medicine, litchi has been used for centuries to treat stomach ulcers, diabetes, cough, diarrhea, and dyspepsia, as well as to kill intestinal worms. Both in vitro and in vivo studies have indicated that whole litchi fruits exhibit antioxidant, hypoglycemic, hepatoprotective, hypolipidemic, and antiobesity activities and show anticancer, antiatherosclerotic, hypotensive, neuroprotective, and immunomodulatory activities. The health benefits of litchi have been attributed to its wide range of nutritional components, among which polysaccharides and polyphenols have been proven to possess various beneficial properties. The diversity and composition of litchi polysaccharides and polyphenols have vital influences on their biological activities. In addition, consuming fresh litchi and its products could lead to some adverse reactions for some people such as pruritus, urticaria, swelling of the lips, swelling of the throat, dyspnea, or diarrhea. These safety problems are probably caused by the soluble protein in litchi that could cause anaphylactic and inflammatory reactions. To achieve reasonable applications of litchi in the food, medical and cosmetics industries, this review focuses on recent findings related to the nutrient components, health benefits, and safety of litchi.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| |
Collapse
|
16
|
Guo X, Luo T, Han D, Wu Z. Analysis of metabolomics associated with quality differences between room-temperature- and low-temperature-stored litchi pulps. Food Sci Nutr 2019; 7:3560-3569. [PMID: 31763006 PMCID: PMC6848819 DOI: 10.1002/fsn3.1208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 11/12/2022] Open
Abstract
Studies on how temperature affects the postharvest quality of litchi have focused mainly on pericarp browning but rarely on the metabolites in postharvest litchi pulp. In this study, the differences in respiration rates, total soluble solid content, and titratable acid content demonstrated that room and low temperatures have different effects on the quality of "Feizixiao" litchi pulp. UHPLC-ESI-QTOF-MS/MS analysis was performed to compare the differentially expressed metabolites (DEMs) in litchi pulp after 8 days of storage at room temperature (RT-8 d) with those in litchi pulp after 28 days of storage at low temperature (LT-28 d). Nineteen carbohydrates (phosphohexoses, sorbitol, and mannose), fifteen acids, seven amino acids, nine energy metabolites and nucleotides, and six aliphatic and secondary metabolites were identified as common DEMs in RT-8 d and LT-28 d pulps. These findings indicated active fructose and mannose metabolism and increased catabolism of nicotinate, nicotinamide, alanine, aspartate, and glutamate. Four carbohydrates (mainly phosphohexoses), five acids, ten amino acids, three aliphatic and secondary metabolites, and one hormone were identified as unique DEMs in RT-8 d pulp, the consumption of key metabolites in glycolysis and the tricarboxylic acid cycle, and accumulation of phenylalanine, tyrosine, and tryptophan. Active consumption of nucleotide metabolites and biosynthesis of aliphatics in LT-28 d pulp were indicated by unique DEMs (eleven carbohydrates, four acids, seven amino acids, seven energy metabolites and nucleotides, and six aliphatic and secondary metabolites). These results provided an unambiguous metabolic fingerprint, thereby revealing how room and low temperatures differentially influenced the quality of litchi pulp.
Collapse
Affiliation(s)
- Xiaomeng Guo
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaMinistry of EducationGuangzhouChina
| | - Tao Luo
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaMinistry of EducationGuangzhouChina
| | - Dongmei Han
- Institute of Fruit Tree ResearchGuangdong Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China) of Ministry of AgricultureGuangzhouChina
| | - Zhenxian Wu
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaMinistry of EducationGuangzhouChina
- Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops‐South ChinaMinistry of AgricultureGuangzhouChina
| |
Collapse
|
17
|
Liu J, Wang R, Wang X, Yang L, Zhang Q, Shan Y, Ding S. Effect of blanching and drying temperatures on the browning‐related enzymes and physicochemical properties of lily bulb flours. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Liu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Rongrong Wang
- College of Food Science and Technology Hunan Agricultural University Changsha China
| | - Xinyu Wang
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Lvzhu Yang
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Qun Zhang
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Yang Shan
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Shenghua Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| |
Collapse
|
18
|
Montalvo-González E, Aguilar-Hernández G, Hernández-Cázares AS, Ruiz-López II, Pérez-Silva A, Hernández-Torres J, Vivar-Vera MDLÁ. Production, chemical, physical and technological properties of antioxidant dietary fiber from pineapple pomace and effect as ingredient in sausages. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1465125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Efigenia Montalvo-González
- Tecnológico Nacional de México/I.T. Tepic, Laboratorio Integral de Investigación en Alimentos, , Tepic, México
| | - Gabriela Aguilar-Hernández
- Tecnológico Nacional de México/I.T. Tuxtepec, Departamento de Química y Bioquímica-Programa de Maestría en Ciencias en Alimentos, Tuxtepec, Oaxaca, México
| | | | | | - Araceli Pérez-Silva
- Tecnológico Nacional de México/I.T. Tepic, Laboratorio Integral de Investigación en Alimentos, , Tepic, México
| | - Julián Hernández-Torres
- Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Veracruz, México
| | - María de los Ángeles Vivar-Vera
- Tecnológico Nacional de México/I.T. Tuxtepec, Departamento de Química y Bioquímica-Programa de Maestría en Ciencias en Alimentos, Tuxtepec, Oaxaca, México
| |
Collapse
|
19
|
B Type and Complex A/B Type Epicatechin Trimers Isolated from Litchi pericarp Aqueous Extract Show High Antioxidant and Anticancer Activity. Int J Mol Sci 2018; 19:ijms19010301. [PMID: 29351247 PMCID: PMC5796246 DOI: 10.3390/ijms19010301] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 12/04/2022] Open
Abstract
Litchi (Litchi chinensis Sonn.) fruit is known for its rich source of phenolics. Litchi pericarp contains high levels of epicatechin that may form oligomers of various lengths. Except for several A or B type epicatechin dimers, other soluble oligomers have rarely been identified in the pericarp. Here, bioassay-guided column fractionation was applied to isolate bioactive phenolics from aqueous pericarp extract. A fraction (S3) was obtained by two rounds of Sephadex LH-20 column chromatography, and showed higher antioxidant activity and inhibition on the proliferation of human lung cancer cells (A549) than Litchi anthocyanins. S3 was further separated to isolate fractions P1–P4, which all showed higher antioxidant activity than vitamin C. P3 showed 32.9% inhibition on A549 cells at 30 μg/mL, higher than other fractions and cis-Dichlorodiamineplatinum (DDP, 0.5 μg/mL), but not as high as the combination of the four fractions. Using HPLC-Q-TOF-MS/MS, one B-type and complex A/B type epicatechin trimers were identified in P3; another B-type and two A/B-type trimers were identified in P4. P1 and P2, containing epicatechin and proanthocyanidin B2, respectively, showed no cell inhibition at 30 μg/mL. It is the first time that the two B type trimers of epicatechins (Litchitannin B1 and B2), have been found in Litchi species. The identified proanthocyanidins were detected in the pericarp of the young fruit, and the levels of the compounds decreased as the fruit developed, correlating to the decreasing patterns of the expression of LcLAR and LcANR, two key genes in the catechin biosynthesis pathway.
Collapse
|
20
|
Ahmed M, Eun JB. Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review. Crit Rev Food Sci Nutr 2017; 58:3159-3188. [DOI: 10.1080/10408398.2017.1353480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Maruf Ahmed
- Chonnam National University, Food Science and Technology, Gwangju, South Korea
| | - Jong-Bang Eun
- Chonnam National University, Food Science and Technology, Gwangju, South Korea
| |
Collapse
|
21
|
Operation Optimization of Steam Accumulators as Thermal Energy Storage and Buffer Units. ENERGIES 2016. [DOI: 10.3390/en10010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|