1
|
Kim SY, Jeong JW, Kim AJ, Lee YR, Lee HS, Lee K, Kim SJ. Effect of hydrophilic polymers on the formation of size-controllable aqueous droplets in water-in-oil emulsion and the fabrication of porous micro-silica particles therefrom. J Colloid Interface Sci 2025; 690:137304. [PMID: 40088820 DOI: 10.1016/j.jcis.2025.137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Size-controllable droplets were formed in a water in oil (W/O) emulsion using only hydrophilic polymers without a surfactant to fabricate porous micro-silica particles larger than 20 μm. Droplets of various size ranging from 1 to 30 μm were prepared by emulsifying aqueous solutions containing four types of polymers, namely polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and polypropylene glycol (PPG), in a pentanol oil phase. Following the addition of tetraethyl orthosilicate (TEOS) as a silica precursor, silica particles were grown via hydrolysis and condensation reactions. The silica particle size depends on the degree of hydrophilicity of the polymers, which determines the interfacial tension between the water droplets and oil. Micro-silica particles >20 μm were obtained from PEG-based emulsion droplets. Notably, the distribution and stability of silica particles can be optimized by controlling the molecular weight and concentration of the hydrophilic polymer. A porous silica structure was successfully obtained by decomposing the residual polymer via an appropriate calcination process. The most uniform and stable porous micro-silica particles with an average size of 20 μm were obtained from an emulsion containing 5 wt% PEG (molecular weight: 4000) after calcination at 500 °C. This novel process enables the eco-friendly synthesis of porous micro-silica particles using only hydrophilic polymer without a surfactant and control of pore size and particle size of >20 μm.
Collapse
Affiliation(s)
- Seung-Yeon Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Department of Applied Bioengineering, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jin-Woo Jeong
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - A-Jin Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Department of Chemical Engineering, Chung Buk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hye Sun Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| | - Seong-Joong Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
2
|
Fayazi M, Rostami M, Amiri Moghaddam M, Nasiri K, Tadayonfard A, Roudsari MB, Ahmad HM, Parhizgar Z, Majbouri Yazdi A. A state-of-the-art review of the recent advances in drug delivery systems for different therapeutic agents in periodontitis. J Drug Target 2025; 33:612-647. [PMID: 39698877 DOI: 10.1080/1061186x.2024.2445051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Periodontitis (PD) is a chronic gum illness that may be hard to cure for a number of reasons, including the fact that no one knows what causes it, the side effects of anti-microbial treatment, and how various kinds of bacteria interact with one another. As a result, novel therapeutic approaches for PD treatment must be developed. Additionally, supplementary antibacterial regimens, including local and systemic medication administration of chemical agents, are necessary for deep pockets to assist with mechanical debridement of tooth surfaces. As our knowledge of periodontal disease and drug delivery systems (DDSs) grows, new targeted delivery systems like extracellular vesicles, lipid-based nanoparticles (NPs), metallic NPs, and polymer NPs have been developed. These systems aim to improve the targeting and precision of PD treatments while reducing the systemic side effects of antibiotics. Nanozymes, photodermal therapy, antibacterial metallic NPs, and traditional PD therapies have all been reviewed in this research. Medicinal herbs, antibiotics, photothermal therapy, nanozymes, antibacterial metallic NPs, and conventional therapies for PD have all been examined in this research. After that, we reviewed the key features of many innovative DDSs and how they worked for PD therapy. Finally, we have discussed the advantages and disadvantages of these DDSs.
Collapse
Affiliation(s)
- Mehrnaz Fayazi
- School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Azadeh Tadayonfard
- Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Behnam Roudsari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
3
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
4
|
Garrido MD, Hamawandi B, Serrano-Claumarchirant JF, Saladino GM, Ergül AB, Marcos MD, Ros-Lis JV, Amorós P, Toprak MS. A rapid synthesis of magnetic-core mesoporous silica-shell nanostructures - as potential theranostic agents - by means of microwave irradiation and the atrane method. NANOSCALE 2025; 17:6539-6549. [PMID: 39957369 DOI: 10.1039/d4nr04572f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Nowadays, the interest in the design of particles that combine therapy and diagnosis simultaneously to obtain a theranostic material has increased. One of the most used materials for MRI diagnosis is iron oxide, where clusters of superparamagnetic iron oxide (SPIONs) are noteworthy candidates. These particles are of high interest due to their broad range of applications, such as contrast agents, use in magnetic separation processes, and in hyperthermia therapy, among others. One of the major problems with their use is maintaining superparamagnetism while having the highest magnetization-to-particle ratio. In this work, microwave-assisted synthesis of clusters formed by SPIONs has been investigated. This synthesis strategy allows for significant reduction in the time and energy required to obtain SPION clusters. Also, the magnetization-to-particle ratio has been increased in comparison with single SPIONs. Subsequently, the clusters are coated with amorphous silica using the Stöber method, followed by mesoporous (MS) silica using the atrane method, which offers high and conformal coating homogeneity over the clusters. Surfactant extraction was done using a simple mixture of water, ethanol, and sodium chloride - avoiding the use of other organic solvents. Finally, as a proof of concept, the loading and release of a model molecule were studied to confirm that the SPION-NCs@MS presented in this work have great potential as theranostic agents.
Collapse
Affiliation(s)
- M Dolores Garrido
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
- KTH Royal Institute of Technology, Department of Applied Physics, SE106 91 Stockholm, Sweden.
| | - Bejan Hamawandi
- KTH Royal Institute of Technology, Department of Applied Physics, SE106 91 Stockholm, Sweden.
| | | | - Giovanni Marco Saladino
- KTH Royal Institute of Technology, Department of Applied Physics, SE106 91 Stockholm, Sweden.
| | - Adem B Ergül
- KTH Royal Institute of Technology, Department of Applied Physics, SE106 91 Stockholm, Sweden.
| | - M Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain
| | - José Vicente Ros-Lis
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| | - Muhammet S Toprak
- KTH Royal Institute of Technology, Department of Applied Physics, SE106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
6
|
Yousefiasl S, Ghovvati M, Alibakhshi A, Azizi M, Samadi P, Kumar A, Shojaeian A, Sharifi E, Zare EN, Dey AD, Chehelgerdi M, Makvandi P. Smart Mesoporous Silica Nanoparticles in Cancer: Diagnosis, Treatment, Immunogenicity, and Clinical Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408898. [PMID: 39840493 DOI: 10.1002/smll.202408898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells. The review thoroughly investigates the role of MSNs as potent drug carriers, noted for their high drug-loading capacity and controlled release, which significantly improves drug permeability and retention. Additionally, it discusses surface modification techniques that enable MSNs to target cancer cells precisely. The manuscript provides comprehensive insights into various MSN applications, including their role in cancer diagnosis, the design of advanced biosensors, and the development of both conventional and stimuli-responsive drug delivery platforms. Special focus is given to stimuli-triggered MSN systems, responsive to internal stimuli (e.g., pH, redox, enzyme) and external stimuli (e.g., temperature, magnetic field, light, ultrasound), highlighting the cutting-edge progress in MSN technology. Additionally, the review delves into the immunogenicity and biosafety aspects of MSNs, underscoring their potential for clinical translation. Besides summarizing the current state of MSN research in oncology, this review also illuminates the path for future advancements and clinical applications.
Collapse
Affiliation(s)
- Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Abbas Alibakhshi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
| | - Mehdi Azizi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Pouria Samadi
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8198314271, Iran
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824209, India
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
| | - Esmaeel Sharifi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, 6517838636, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| |
Collapse
|
7
|
Aparna TN, Kumar R, Ali SR, Patel DJ, Julekha K, Begum T, Bala J, Kumar P. Silica Nanoparticles: A Promising Vehicle for Anti-Cancer Drugs Delivery. AAPS PharmSciTech 2025; 26:33. [PMID: 39806209 DOI: 10.1208/s12249-024-02982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges. Using SiNPs as vehicles for anti-cancer drug delivery has emerged as a promising strategy due to their unique structural properties, biocompatibility, and versatility. This review explores the various aspects of SiNPs in cancer therapy, highlighting their synthesis, functionalization, and application in delivering chemotherapeutic agents, photosensitizers, and nucleic acids. SiNPs offer advantages such as high drug loading capacity, controlled release, and targeted delivery, enhancing therapeutic efficacy and reducing systemic toxicity. Moreover, this review aims to provide an in-depth understanding of the current state and prospects of SiNPs in revolutionizing cancer treatment and improving patient outcomes.
Collapse
Affiliation(s)
- T Naga Aparna
- Department of Pharmaceutics, G. Pullareddy College of Pharmacy, Mehdipatnam, Hyderabad, India
| | - Rohit Kumar
- Department of Pharmaceutics, RKSD College of Pharmacy, Ambala Road, Kaithal, 136027, Haryana, India
| | - Shah Raj Ali
- Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, 263002, Uttarakhand, India
| | - Dhaval J Patel
- Department of Pharmaceutics, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, 382354, Gujarat, India
| | - Kazi Julekha
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Touseef Begum
- Department of Pharmaceutical Sciences, Ibn Sina National College for Medical Studies, Jeddah, 31906, Kingdom of Saudi Arabia
| | - Jyoti Bala
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India
| | - Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
| |
Collapse
|
8
|
Sajeevan D, Are RP, Hota P, Babu AR. Nanoparticles as Drug Delivery Carrier-synthesis, Functionalization and Application. Curr Pharm Des 2025; 31:244-260. [PMID: 38685791 DOI: 10.2174/0113816128304018240415095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
In recent years, advancements in chemistry have allowed the tailoring of materials at the nanoscopic level as needed. There are mainly four main types of nanomaterials used as drug carriers:metal-based nanomaterials, organic nanomaterials, inorganic nanomaterials, and polymer nanomaterials. The nanomaterials as a drug carrier showed advantages for decreased side effects with a higher therapeutic index. The stability of the drug compounds are increased by encapsulation of the drug within the nano-drug carriers, leading to decreased systemic toxicity. Nano-drug carriers are also used for controlled drug release by tailoring system-made solubility characteristics of nanoparticles by surface coating with surfactants. The review focuses on the different types of nanoparticles used as drug carriers, the nanoparticle synthesis process, techniques of nanoparticle surface coating for drug carrier purposes, applications of nano-drug carriers, and prospects of nanomaterials as drug carriers for biomedical applications.
Collapse
Affiliation(s)
- Drishya Sajeevan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Ramakrishna Prasad Are
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Prabhudutta Hota
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Anju R Babu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
9
|
Zhang B, Zhou Z, Zhang Y, Miu Y, Jin C, Ding W, Zhao G, Xu Y. A sugary solution: Harnessing polysaccharide-based materials for osteoporosis treatment. Carbohydr Polym 2024; 345:122549. [PMID: 39227093 DOI: 10.1016/j.carbpol.2024.122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024]
Abstract
Osteoporosis, a prevalent skeletal disorder characterized by diminished bone density, compromised microstructure, and heightened fracture susceptibility, poses a growing public health concern exacerbated by aging demographics. Polysaccharides-based materials, derived from a diverse range of sources, exhibit exceptional biocompatibility. They possess a structure similar to the extracellular matrix, which can enhance cell adhesion in vivo, and demonstrate superior biological activity compared to artificial materials. This study delved into an in-depth examination of the various biomaterials and polysaccharide families associated with the treatment of osteoporosis. This article elucidates the benefits and attributes of polysaccharide-based materials in contrast to current clinical treatment modalities, delineating how these materials address prevalent challenges in the clinical management of osteoporosis. An overview of the prospective applications of polysaccharide-based materials in the future is also provided, as well as outlines the challenges that should be addressed prior to the clinical implementation of such materials.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Zhiyi Zhou
- Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214061, China
| | - Yige Zhang
- Department of Orthopaedics, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yan Miu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chenyang Jin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wenge Ding
- Department of Orthopaedics, Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Gang Zhao
- Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214061, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
10
|
Mercan DA, Niculescu AG, Bîrcă AC, Cristea DE, Moroșan A, Tudorache DI, Purcăreanu B, Vasile BȘ, Radu D, Grigoroscuta MA, Hadibarata T, Mihaiescu DE, Grumezescu AM. Vortex-Mixing Microfluidic Fabrication of Micafungin-Loaded Magnetite-Salicylic Acid-Silica Nanocomposite with Sustained-Release Capacity. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5816. [PMID: 39685251 DOI: 10.3390/ma17235816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO). The resulting nanocomposite system was characterized using various techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), Brunauer-Emmett-Teller (BET) analysis, UV-Vis spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The synthesis method produced nanoparticles with dimensions of 5-7 nm, highlighting the advantages of the chosen approach. A desorption profile was established using a continuous-flow, UV-Vis analysis system, indicating that the bioactive compound was released slowly; after two hours, approximately 50% of the loaded micafungin was detected in the release medium. Furthermore, the results obtained from the FT-ICR MS analysis provided molecular-level confirmation, thereby supporting the release mechanism of micafungin from the nanosystem.
Collapse
Affiliation(s)
- Doina-Antonia Mercan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Diana-Elena Cristea
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Alina Moroșan
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Dana-Ionela Tudorache
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan Purcăreanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- BIOTEHNOS SA, Gorunului Rue, No. 3-5, 075100 Otopeni, Romania
| | - Bogdan Ștefan Vasile
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Dana Radu
- National Institute of Materials Physics, Street Atomistilor 405 A, 077125 Magurele, Romania
| | | | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
11
|
Braz WR, de Souza MGM, da Silva LM, de Azevedo CB, Ribeiro AB, Barbosa DCT, Molina EF, de Faria EH, Ciuffi KJ, Rocha LA, Martins CHG, Santiago MB, Santos ALO, Nassar EJ. Antitumoral action of carvedilol-a repositioning study of the drug incorporated into mesoporous silica MCM-41. NANOTECHNOLOGY 2024; 36:055703. [PMID: 39545770 DOI: 10.1088/1361-6528/ad902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
We have studied repositioning of carvedilol (an antihypertensive drug) incorporated into MCM-41 mesoporous silica. The repositioning proposes a reduction in the slow pace of discovery of new drugs, as well as toxicological safety and a significant reduction in high research costs, making it an attractive strategy for researchers and large pharmaceutical companies. We obtained MCM-41 bytemplatesynthesis and functionalized it by post-synthesis grafting with aminopropyltriethoxysilane (APTES) only or with folic acid (FA), which gave MCM-41-APTES and MCM-41-APTES-FA, respectively. We characterized the materials by scanning and transmission electron microscopy, zeta potential (ZP) measurements, Fourier transform infrared absorption spectroscopy, x-ray diffractometry, nitrogen gas adsorption, and CHNS elemental analysis. We quantified the percentage of drug that was incorporated into the MCM-41 materials by thermogravimetric analysis and evaluated their cytotoxic activity in non-tumor human lung fibroblasts and the tumor human melanoma and human cervical adenocarcinoma cell lines by XTT salt reduction (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-arboxanilide). The x-ray diffractograms of the MCM-41 materials displayed low-angle peaks in the 2θrange between 2° and 3°, and the materials presented type IV nitrogen adsorption isotherms and H2 hysteresis typical of the MCM-41hexagonal network. The infrared spectra, the charge changes revealed by ZP measurements, and the CHN ratios obtained from elemental analysis showed that MCM-41 was amino-functionalized, and that carvedilol was incorporated into it. MCM-41-APTES incorporated 23.80% carvedilol, whereas MCM-41 and MCM-41-APTES-FA incorporated 18.69% and 12.71% carvedilol, respectively. Incorporated carvedilol was less cytotoxic to tumor and non-tumor cells than the pure drug. Carvedilol repositioning proved favorable and encourages further studies aimed at reducing its cytotoxicity to non-tumor cells. Such studies may allow for larger carvedilol incorporation into drug carriers or motivate the search for a new drug nanocarrier to optimize the carvedilol antitumoral activity.
Collapse
Affiliation(s)
- Wilson Rodrigues Braz
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | | | - Liziane Marçal da Silva
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Caroline Borges de Azevedo
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Arthur Barcelos Ribeiro
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | | | - Eduardo Ferreira Molina
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Emerson Henrique de Faria
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Katia Jorge Ciuffi
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | - Lucas Alonso Rocha
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| | | | | | | | - Eduardo José Nassar
- University of Franca; Av. Dr. Armando Salles Oliveira, 201, Pq. Universitário CEP 14404-600, Franca, SP, Brazil
| |
Collapse
|
12
|
Liu Q, Liu A, Liu Y, Li J, Bai J, Hai G, Wang J, Liu W, Wan P, Fu X. Hydroxyapatite nanoparticle improves ovine oocyte developmental capacity by alleviating oxidative stress in response to vitrification stimuli. Theriogenology 2024; 229:88-99. [PMID: 39167837 DOI: 10.1016/j.theriogenology.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
The wide application of ovine oocyte vitrification is limited by its relatively low efficiency. Nanoparticle is potentially to be used in cryopreservation technology for its unique characteristics with high biocompatibility, potent antioxidant property as well as superiority in membrane permeation and heat transduction. However, the effect of nanoparticle on ovine oocyte cryopreservation as well as the underlying mechanism has not been systematically evaluated. The objective of this study was to investigate the impact of nanoparticles on ovine oocytes cryopreservation and further identify the underlying mechanism. Firstly, the effects of Hydroxyapatite (HA) and Fe3O4 nanoparticles on the developmental potential of vitrified ovine oocytes were determined, and the results showed that neither HA (VC = 85.95 ± 6.23 % vs. VH = 92.47 ± 8.11 %, P > 0.05) nor Fe3O4 (VC = 85.95 ± 6.23 % vs. VF = 89.39 ± 6.32 %, P > 0.05) had adverse effect on the survival rate of vitrified-thawed oocytes. Notably, both HA (VC = 77.78 ± 0.09 % vs. VH = 44.00 ± 0.09 %, P<0.01) and Fe3O4 (VC = 77.78 ± 0.09 % vs. VF = 51.67 ± 0.15 %, P<0.01) nanoparticles effectively reduced the level of oocyte apoptosis after freezing and thawing. What's more, HA could significantly improve the cleavage rate of frozen oocytes (VC = 33.79 ± 2.83 % vs. VH = 59.54 ± 4.13 %, P<0.05). Moreover, reduced reactive oxygen species (ROS) level (VC = 13.66 ± 0.47 vs. VH = 12.61 ± 0.53, P < 0.05), increased glutathione (GSH) content (VC = 60.69 ± 7.89 vs. VH = 87.92 ± 1.05, P < 0.05) and elevated mitochondrial membrane potential (MMP) level (VC = 1.43 ± 0.04 vs. VH = 1.63 ± 0.01,P<0.01) were observed in oocytes treated with HA nanoparticles when compared with that of the control group. Furthermore, Smart-RNA sequence technology was utilized to identify differentially expressed mRNAs (DEMs) induced by nanoparticles during cryopreservation. When compared with the control counterparts, a total of 721 DEMs (309 up-regulated and 412 down-regulated mRNAs) were identified in oocytes treated with HA, while 702 DEMs (480 up-regulated and 222 down-regulated mRNAs) were identified in oocytes treated with Fe3O4. A comparison of DEMs showed that total 692 mRNAs were expressed in oocytes treated with HA and Fe3O4. Notably, we discovered that 15 mRNAs were specially highly expressed in oocytes treated with HA, and Focal adhesion signaling pathway mainly contributed to the improved ovine oocyte quality after vitrification by alleviating oxidative stress.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiachen Bai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guiping Hai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Weijun Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
13
|
Trayford C, van Rijt S. In situ modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications. Biomater Sci 2024; 12:5450-5467. [PMID: 39371000 PMCID: PMC11457002 DOI: 10.1039/d4bm00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. In situ MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, in situ modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how in situ modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of in situ modified MSNs.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
14
|
Tu B, Jonnalagadda S. Amorphous stabilization of BCS II drugs using mesoporous silica. Int J Pharm 2024; 663:124555. [PMID: 39111354 DOI: 10.1016/j.ijpharm.2024.124555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
This study aimed to investigate the amorphous stabilization of BCS Class II drugs using mesoporous silica as a carrier to produce amorphous solid dispersions. Ibuprofen, fenofibrate, and budesonide were selected as model drugs to evaluate the impact of molecular weight and partition coefficient on the solid state of drug-loaded mesoporous silica (MS) particles. The model drugs were loaded into three grades of MS, SYLYSIA SY730, SYLYSIA SY430, and SYLYSIA SY350, with pore diameters of 2.5 nm, 17 nm, and 21 nm, respectively, at 1:1, 2:1, and 3:1, carrier to drug ratios, and three different loading concentrations using solvent immersion and spray drying techniques. Differential scanning calorimetry (DSC) thermograms of SY430 and SY350 samples exhibited melting point depressions indicating constricted crystallization inside the pores, whereas SY730 samples with melting points matching the pure API may be a result of surface crystallization. Powder x-ray diffraction (PXRD) diffractograms showed all crystalline samples matched the diffraction patterns of the pure API indicating no polymorphic transitions and all 3:1 ratio samples exhibited amorphous halo profiles. Response surface regression analysis and Classification and Regression Tree (CART) analysis suggest carrier to drug ratios, followed by molecular weight, have the most significant impact on the crystallinity of a drug loaded into MS particles.
Collapse
Affiliation(s)
- Buu Tu
- Saint Joseph's University, 600 S 43rd Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
15
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
16
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
17
|
Mohanan S, Sathish CI, Ramadass K, Liang M, Vinu A. Design and Synthesis of Cabazitaxel Loaded Core-Shell Mesoporous Silica Nanoparticles with Different Morphologies for Prostate Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303269. [PMID: 37386787 DOI: 10.1002/smll.202303269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Indexed: 07/01/2023]
Abstract
In this work, the synthesis of core-shell ordered mesoporous silica nanoparticles (CSMS) with tunable particle size and shape through a dual surfactant-assisted approach is demonstrated. By varying the synthesis conditions, including the type of the solvent and the concentration of the surfactant, monodispersed and ordered mesoporous silica nanoparticles with tunable particle size (140-600 nm) and morphologies (hexagonal prism (HP), oblong, spherical, and hollow-core) can be realized. Comparative studies of the Cabazitaxel (CBZ)-loaded HP and spherical-shaped CSMS are conducted to evaluate their drug delivery efficiency to PC3 (prostate cancer) cell lines. These nanoparticles showed good biocompatibility and displayed a faster drug release at acidic pH than at basic pH. The cellular uptake of CSMS measured using confocal microscopy, flow cytometry, microplate reader, and ICP-MS (inductively coupled plasma mass spectrometry) techniques in PC3 cell lines revealed a better uptake of CSMS with HP morphology than its spherical counterparts. Cytotoxicity study showed that the anticancer activity of CBZ is improved with a higher free radical production when loaded onto CSMS. These unique materials with tunable morphology can serve as an excellent drug delivery system and will have potential applications for treating various cancers.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
18
|
Budiman A, Rusdin A, Wardhana YW, Puluhulawa LE, Cindana Mo’o FR, Thomas N, Gazzali AM, Aulifa DL. Exploring the Transformative Potential of Functionalized Mesoporous Silica in Enhancing Antioxidant Activity: A Comprehensive Review. Antioxidants (Basel) 2024; 13:936. [PMID: 39199182 PMCID: PMC11352074 DOI: 10.3390/antiox13080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Antioxidants are essential for reducing oxidative stress, protecting cells from damage, and supporting overall well-being. Functionalized mesoporous silica materials have garnered interest due to their flexible uses in diverse domains, such as drug delivery systems. This review aims to thoroughly examine and evaluate the progress made in utilizing functionalized mesoporous silica materials as a possible approach to enhancing antioxidant activity. The authors performed a thorough search of reliable databases, including Scopus, PubMed, Google Scholar, and Clarivate Web of Science, using precise keywords linked to functionalized mesoporous silica nanoparticles and antioxidants. The identified journals serve as the major framework for the main discussion in this study. Functionalized mesoporous silica nanoparticles have been reported to greatly enhance antioxidant activity by allowing for an increased loading capacity, controlled release behavior, the targeting of specific drugs, improved biocompatibility and safety, and enhanced penetration. The results emphasize the significant capacity of functionalized mesoporous silica (FSM) to bring about profound changes in a wide range of applications. FSM materials can be designed as versatile nanocarriers, integrating intrinsic antioxidant capabilities and augmenting the efficacy of current drugs, offering substantial progress in antioxidant therapies and drug delivery systems, as well as enhanced substance properties in the pharmaceutical field. Functionalized mesoporous silica materials are a highly effective method for enhancing antioxidant activity. They provide new opportunities for the advancement of cutting-edge treatments and materials in the field of antioxidant research. The significant potential of FSM materials to change drug delivery methods and improve substance properties highlights their crucial role in future breakthroughs in the pharmaceutical field and antioxidant applications.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.R.); (Y.W.W.)
| | - Lisa Efriani Puluhulawa
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Faradila Ratu Cindana Mo’o
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Nurain Thomas
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (L.E.P.); (F.R.C.M.); (N.T.)
| | - Amirah Mohd Gazzali
- Department Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, P. Penang, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| |
Collapse
|
19
|
Talaat S, Hashem AA, Abu-Seida A, Abdel Wahed A, Abdel Aziz TM. Regenerative potential of mesoporous silica nanoparticles scaffold on dental pulp and root maturation in immature dog's teeth: a histologic and radiographic study. BMC Oral Health 2024; 24:817. [PMID: 39026199 PMCID: PMC11264670 DOI: 10.1186/s12903-024-04368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE To evaluate histologically and radiographically the potential of dog's immature roots with apical periodontitis to regenerate after regenerative endodontic treatment using mesoporous silica nanoparticles (MSNs) with/without bone morphogenic protein (BMP-2) as scaffolds. METHODS In 4 mongrel dogs, 56 immature teeth with 96 roots were infected, resulting in necrotic pulps and periapical pathosis. According to the evaluation time (Group I = 30 days and Group II = 90 days), 90 roots were divided into two equal groups (45 roots each) and 6 roots used to replace any lost root during the procedure. The two main groups were further divided according to treatment protocol into 5 subgroups (9 roots each): blood clot (BC subgroup), mesoporous silica nanoparticles scaffold only (MSNs subgroup), mesoporous silica nanoparticles impregnated with BMP2 (MSNs + BMP2 subgroup), infected teeth without treatment (+ ve control subgroup) and normal untouched teeth (-ve control subgroup). All teeth surfaces were coated with Tincture iodine and calcium hydroxide was applied prior to treatment protocols. Then, teeth were restored with glass ionomer filling to seal the remaining part of the access cavity. Radiography evaluation of the increase in root length, root thickness and occurrence of apical closure were performed. Following the sacrifice of the two dogs at each time of evaluation, histopathological analysis was performed and included the inflammatory cells count, bone resorption, tissue ingrowth, deposition of hard tissue, and closure of the apical part. All data were statistically analyzed. RESULTS Compared to BC subgroup, MSNs and MSNs + BMP-2 subgroups exhibited significant higher increase in root length and thickness as well as higher vital tissue in-growth and new hard tissue formation in group II (P < 0.05). MSNs + BMP-2 subgroup had significant higher increase in root length and thickness as well as significant lower inflammatory cell count than MSNs subgroup in both groups (P < 0.05). There were no significant differences between MSNs and MSNs + BMP-2 subgroups regarding new hard tissue formation in both groups and apical closure in group I (P > 0.05). CONCLUSION MSNs with/without BMP-2 scaffolds enabled the continuing growth of roots in immature teeth with necrotic pulps and periapical pathosis. Addition of BMP-2 to MSNs scaffold improved its outcome in regenerative endodontics. CLINICAL RELEVANCE MSNs with/without BMP-2 scaffolds may alternate blood clot for regenerative endodontic treatment of immature teeth with necrotic pulps.
Collapse
Affiliation(s)
- Samar Talaat
- Endodontic Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Ahmed A Hashem
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
| | - Ashraf Abu-Seida
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Faculty of Dentistry, Galala University, New Galala City, Suez, Egypt
| | - Adel Abdel Wahed
- Endodontic Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Tarek M Abdel Aziz
- Department of Endodontic, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Stocki J, Kuśmierz M, Sofińska-Chmiel W, Stankevič M, Puchała M, Kojdecki MA, Gąska R, Grajek H. Parametric Modelling of the Crystalline Microstructure of the MCM41-Type Mesoporous Silica Modified with Derivatives of Alkyls. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3065. [PMID: 38998149 PMCID: PMC11242262 DOI: 10.3390/ma17133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
A siliceous material in which a framework order was established with a surfactant with sixteen carbon atoms in alkyl chains, MCM-41-C16, was synthesised, surface-modified, and tested regarding the selected physical properties. The pristine material was extracted in an acidic aqueous alcohol and then lined with different surface groups. The properties of four adsorbents were investigated using XRD, X-ray photoelectron spectroscopy, and N2 physisorption techniques. The unit-cell constant was determined from X-ray diffractograms, being in fixed relation to the edge length of the hexagonal frame. The specific surface areas of mesopores and whole crystallites were determined from low-temperature N2-physisorption isotherms. The novelty of this work is a mathematical model of a crystalline microstructure explaining the sizes and shapes of crystalline grains in relation to adsorption features, proposed and successfully tested with the aforementioned experimental data. The roughness of the surface is different from one that is necessary to explain the experimental characteristics quantitatively.
Collapse
Affiliation(s)
- Jarosław Stocki
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 00-908 Warsaw, Poland
| | - Marcin Kuśmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Weronika Sofińska-Chmiel
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Marek Stankevič
- Department of Organic Chemistry and Crystallochemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-614 Lublin, Poland
| | - Marcin Puchała
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 00-908 Warsaw, Poland
| | - Marek A Kojdecki
- Institute of Mathematics and Cryptology, Military University of Technology, 00-908 Warsaw, Poland
| | - Robert Gąska
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 00-908 Warsaw, Poland
| | - Henryk Grajek
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 00-908 Warsaw, Poland
| |
Collapse
|
21
|
Dhingra S, Goyal S, Thirumal D, Sharma P, Kaur G, Mittal N. Mesoporous silica nanoparticles: a versatile carrier platform in lung cancer management. Nanomedicine (Lond) 2024; 19:1331-1346. [PMID: 39105754 PMCID: PMC11318747 DOI: 10.1080/17435889.2024.2348438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 08/07/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNPs) are inorganic nanoparticles that have been comprehensively investigated and are intended to deliver therapeutic agents. MSNPs have revolutionized the therapy for various conditions, especially cancer and infectious diseases. In this article, the viability of MSNPs' administration for lung cancer therapy has been reviewed. However, certain challenges lay ahead in the successful translation such as toxicology, immunology, large-scale production, and regulatory matters have made it extremely difficult to translate such discoveries from the bench to the bedside. This review highlights recent developments, characteristics, mechanism of action and customization for targeted delivery. This review also covers the most recent data that sheds light on MSNPs' extraordinary therapeutic potential in fighting lung cancer as well as future hurdles.
Collapse
Affiliation(s)
- Smriti Dhingra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Shuchi Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Divya Thirumal
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104,India
| | - Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| |
Collapse
|
22
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
23
|
Matadamas-Ortiz A, Pérez-Robles JF, Reynoso-Camacho R, Amaya-Llano SL, Amaro-Reyes A, Di Pierro P, Regalado-González C. Effect of Amine, Carboxyl, or Thiol Functionalization of Mesoporous Silica Particles on Their Efficiency as a Quercetin Delivery System in Simulated Gastrointestinal Conditions. Foods 2024; 13:1208. [PMID: 38672881 PMCID: PMC11048906 DOI: 10.3390/foods13081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Quercetin (Q) dietary supplements exhibit poor oral bioavailability because of degradation throughout gastrointestinal digestion (GD), which may be overcome using mesoporous silica particles (MSPs) as an oral delivery system (ODS). This study aimed to elucidate the effect of the functionalization of MSPs with amine-(A-MSP), carboxyl-(C-MSP), or thiol-(T-MSP) groups on their efficiency as a quercetin ODS (QODS). The type and degree of functionalization (DF) were used as factors in an experimental design. The Q-loaded F-MSP (F-MSP/Q) was characterized by gas physisorption analysis, loading capacity (LC), and dynamic light scattering and kinetics of Q release at gastric and intestinal pHs. Antioxidant capacity and Q concentration of media containing F-MSP/Q were evaluated after simulated GD. A-MSP showed the highest LC (19.79 ± 2.42%). C-MSP showed the lowest particle size at pH 1.5 or 7.4 (≈200 nm). T-MSP exhibited the maximum Q release at pH 7.4 (11.43%). High DF of A-MSP increased Q retention, regardless of pH. A-MSP preserved antioxidant capacity of Q-released gastric media (58.95 ± 3.34%). Nonetheless, MSP and F-MSP did not protect antioxidant properties of Q released in intestinal conditions. C-MSP and T-MSP showed essential features for cellular uptake and Q release within cells that need to be assessed.
Collapse
Affiliation(s)
- Alexis Matadamas-Ortiz
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Juan F. Pérez-Robles
- Unidad Querétaro, Centro de Investigación y Estudios Avanzados del IPN, CINVESTAV, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, Querétaro 76230, Qro., Mexico;
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Silvia L. Amaya-Llano
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Aldo Amaro-Reyes
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| | - Prospero Di Pierro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
| | - Carlos Regalado-González
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas s/n, Col., Las Campanas, Querétaro 76010, Qro., Mexico; (A.M.-O.); (R.R.-C.); (S.L.A.-L.); (A.A.-R.)
| |
Collapse
|
24
|
Jain U, Johari S, Srivastava P. Current Insights of Nanocarrier-Mediated Gene Therapeutics to Treat Potential Impairment of Amyloid Beta Protein and Tau Protein in Alzheimer's Disease. Mol Neurobiol 2024; 61:1969-1989. [PMID: 37831361 DOI: 10.1007/s12035-023-03671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Alzheimer's disease (AD), is the major type of dementia and most progressive, irreversible widespread neurodegenerative disorder affecting the elderly worldwide. The prime hallmarks of Alzheimer's disease (AD) are beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT). In spite of recent advances and developments in targeting the hallmarks of AD, symptomatic medications that promise neuroprotective activity against AD are currently unable to treat degenerating brain clinically or therapeutically and show little efficacy. The extensive progress of AD therapies over time has resulted in the advent of disease-modifying medications with the potential to alleviate AD. However, due to the presence of a defensive connection between the vascular system and the neural tissues known as the blood-brain barrier (BBB), directing these medications to the site of action in the degenerating brain is the key problem. BBB acts as a highly selective semipermeable membrane that prevents any type of foreign substance from entering the microenvironment of neurons. To overcome this limitation, the revolutionary approach of nanoparticle(NP)/nanocarrier-mediated drug delivery system has marked the era with its unique property to cross, avoid, or disrupt the defensive BBB efficiently and release the modified drug at the target site of action. After comprehensive data mining, this review focuses on the detailed understanding of different types of nanoparticle(NP)/nanocarrier-mediated drug delivery system like liposomes, micelles, gold nanoparticles(NP), polymeric NPs, etc. which have promising potential in carrying the desired drug(cargo) to the location in the degenerated brain thus mitigating the Alzheimer's disease.
Collapse
Affiliation(s)
- Unnati Jain
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
25
|
Jangra N, Kawatra A, Datten B, Gupta S, Gulati P. Recent trends in targeted delivery of smart nanocarrier-based microbial enzymes for therapeutic applications. Drug Discov Today 2024; 29:103915. [PMID: 38340953 DOI: 10.1016/j.drudis.2024.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Smart carrier-based immobilization has widened the use of enzymes for the treatment of several disorders. Large surface areas, tunable morphology, and surface modification ability aid the targeted and controlled release of therapeutic enzymes from such formulations. Smart nanocarriers, such as polymeric carriers, liposomes, and silica have also increased the stability, half-life, and permeability of these enzymes. In this review, summarize recent advances in the smart immobilization of microbial enzymes and their development as precision nanomedicine for the treatment of cancer, thrombosis, phenylketonuria (PKU), and wound healing. We also discuss the challenges and measures to be adopted for the successful clinical translation of these formulations.
Collapse
Affiliation(s)
- Nikita Jangra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Bharti Datten
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shefali Gupta
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
26
|
Albashari AA, He Y, Luo Y, Duan X, Ali J, Li M, Fu D, Xiang Y, Peng Y, Li S, Luo L, Zan X, Kumeria T, Ye Q. Local Spinal Cord Injury Treatment Using a Dental Pulp Stem Cell Encapsulated H 2S Releasing Multifunctional Injectable Hydrogel. Adv Healthc Mater 2024; 13:e2302286. [PMID: 38056013 PMCID: PMC11469045 DOI: 10.1002/adhm.202302286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.
Collapse
Affiliation(s)
- Abdullkhaleg Ali Albashari
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yan He
- Laboratory for Regenerative MedicineTianyou HospitalWuhan University of Science and TechnologyWuhanHubei430064China
- Oral Maxillofacial DepartmentMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Yu Luo
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xingxiang Duan
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Jihea Ali
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiang325035China
| | - Mingchang Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Dehao Fu
- Department of OrthopaedicsShanghai Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233China
| | - Yangfan Xiang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Youjian Peng
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Song Li
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Lihua Luo
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xingjie Zan
- Wenzhou InstituteUniversity of China Academy of ScienceWenzhouZhejiang325024China
| | - Tushar Kumeria
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNew South Wales2052Australia
- Australian Center for NanoMedicineUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PharmacyUniversity of QueenslandBrisbaneQueensland4102Australia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of StomatologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325035China
- Oral Maxillofacial DepartmentMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| |
Collapse
|
27
|
Wang M, Xue W, Yuan H, Wang Z, Yu L. Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. Int J Nanomedicine 2024; 19:2823-2849. [PMID: 38525013 PMCID: PMC10959015 DOI: 10.2147/ijn.s451151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.
Collapse
Affiliation(s)
- Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Wenxiang Xue
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
28
|
Svensson E, von Mentzer U, Stubelius A. Achieving Precision Healthcare through Nanomedicine and Enhanced Model Systems. ACS MATERIALS AU 2024; 4:162-173. [PMID: 38496040 PMCID: PMC10941278 DOI: 10.1021/acsmaterialsau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 03/19/2024]
Abstract
The ability to customize medical choices according to an individual's genetic makeup and biomarker patterns marks a significant advancement toward overall improved healthcare for both individuals and society at large. By transitioning from the conventional one-size-fits-all approach to tailored treatments that can account for predispositions of different patient populations, nanomedicines can be customized to target the specific molecular underpinnings of a patient's disease, thus mitigating the risk of collateral damage. However, for these systems to reach their full potential, our understanding of how nano-based therapeutics behave within the intricate human body is necessary. Effective drug administration to the targeted organ or pathological niche is dictated by properties such as nanocarrier (NC) size, shape, and targeting abilities, where understanding how NCs change their properties when they encounter biomolecules and phenomena such as shear stress in flow remains a major challenge. This Review specifically focuses on vessel-on-a-chip technology that can provide increased understanding of NC behavior in blood and summarizes the specialized environment of the joint to showcase advanced tissue models as approaches to address translational challenges. Compared to conventional cell studies or animal models, these advanced models can integrate patient material for full customization. Combining such models with nanomedicine can contribute to making personalized medicine achievable.
Collapse
Affiliation(s)
| | | | - Alexandra Stubelius
- Division of Chemical Biology,
Department of Life Sciences, Chalmers University
of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
29
|
Morais RP, de Oliveira CC, Riegel-Vidotti IC, Marino CEB. pH stimulus-responsive hybrid nanoparticles: A system designed for follicular delivery of brazilian plant-derived 5-alpha-reductase enzyme inhibitors. Int J Pharm 2024; 650:123689. [PMID: 38072149 DOI: 10.1016/j.ijpharm.2023.123689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
The 5-alpha-reductase enzyme, present in pilosebaceous units, plays a crucial role in the appearance of cutaneous hyperandrogenism manifestations (hirsutism, acne, and androgenetic alopecia). Its inhibition is an excellent strategy to reverse these conditions. Given the limitations of existing treatments, with transient effects and delayed therapeutic response, as well as the possibility of causing undesirable side effects, this study sought to develop new drug delivery systems to overcome these limitations. In other words, innovative stimuli-responsive hybrid nanoparticles were synthesized using silica/natural polysaccharides, encapsulating 5-alpha-reductase enzyme inhibitors derived from the plant Stryphnodendron adstringens (Mart.) Coville (commonly known as 'Barbatimão'). Silica core was synthesized by the modified Stöber method. The pH responsive polysaccharides used to coat the porous silica cores were chitosan, and sodium alginate, this coating was carried out using the Layer-by-Layer technique. The hybrid nanoparticles were characterized at molecular and physical-chemical levels. Furthermore, encapsulation efficiency, pH-dependent release behavior, and cytotoxicity were evaluated. Amorphous mesoporous structure with adequate size for follicular delivery (between 300 and 600 nm) in addition to effective phytocompound loading capacity, above 80 % was obtained. Based on the release studies, it was possible to observe pH responsiveness. The ethyl acetate fraction (EAF) obtained from "Barbatimão" bark extract was released in a controlled and more efficient manner by the alginate-coated nanoparticle (SNP_EAF_SA) at pH 7.4, which corresponds to the pH at the deepest area of hair follicles. Furthermore, SNP_EAF_SA proved to be less cytotoxic compared to EAF and chitosan-coated hybrid nanoparticles (SNP_EAF_CH). Characterization, release, and cytotoxicity results indicate that SNP_EAF_SA is a promising system for on-demand follicular delivery of antiandrogenic actives contained in EAF.
Collapse
Affiliation(s)
- Renata Pinho Morais
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| | | | | | - Cláudia E B Marino
- Department of Mechanical Engineering, Universidade Federal do Paraná, Curitiba, Brazil.
| |
Collapse
|
30
|
Darko WK, Mangal D, Conrad JC, Palmer JC. Particle dispersion through porous media with heterogeneous attractions. SOFT MATTER 2024; 20:837-847. [PMID: 38170621 DOI: 10.1039/d3sm01166f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Porous media used in many practical applications contain natural spatial variations in composition and surface charge that lead to heterogeneous physicochemical attractions between the media and transported particles. We performed Stokesian dynamics (SD) simulations to examine the effects of heterogeneous attractions on quiescent diffusion and hydrodynamic dispersion of particles within geometrically ordered arrays of nanoposts. We find that transport under quiescent conditions occurs by two mechanisms, diffusion through the void space and intermittent hopping between the attractive wells of different nanoposts. As the attraction heterogeneity increases, the latter mechanism becomes dominant, resulting in an increase in the particle trajectory tortuosity, deviations from Gaussian behavior in the particle displacement distributions, and a decrease in the long-time particle diffusivity. Similarly, under flow conditions corresponding to low Péclet number (Pe), increased attraction heterogeneity leads to transient localization near the nanoposts, resulting in a broadening of the particle distribution and enhanced longitudinal dispersion in the direction of flow. At high Pe where advection strongly dominates, however, the longitudinal dispersion coefficient is insensitive to attraction heterogeneity and exhibits Taylor-Aris dispersion behavior. Our findings provide insight into how heterogeneous interactions may influence particle transport in complex 3-D porous media.
Collapse
Affiliation(s)
- Wilfred Kwabena Darko
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, 77204, USA.
| | - Deepak Mangal
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, 02115, USA
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, 77204, USA.
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, 77204, USA.
| |
Collapse
|
31
|
Adnane F, Soliman SMA, ElZayat E, Abdelsalam EM, Fahmy HM. Evaluation of chlorophyll-loaded mesoporous silica nanoparticles for photodynamic therapy on cancer cell lines. Lasers Med Sci 2024; 39:45. [PMID: 38253944 PMCID: PMC10803611 DOI: 10.1007/s10103-024-03988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Chlorophyll (Chl) is a promising natural photosensitizer (PS) in photodynamic treatment (PDT). Mesoporous silica nanoparticles (MSNs) were chosen to increase the effectiveness of PDT. This study aimed to evaluate the synergistic efficacy of chlorophyll-loaded mesoporous silica nanoparticles (Chl-MSNs) with photodynamic therapy (PDT) and to investigate their potential toxicity in HepG2, MDA-MB-231, and HSF cell lines. Chl-MSNs were prepared via the physical adsorption method. TEM, DLS, and zeta potential examined morphology, size, and surface characteristics. MSNs and Chl-MSNs were characterized using the same techniques. HPLC was used to assess the encapsulation efficiency. At pH 7.4, an in vitro release experiment of Chl-MSNs was performed. Chl, MSNs, and Chl-MSNs were applied to the three cell lines at different concentrations and subjected to red (650 nm) and blue (450-500 nm) lasers. MSNs and Chl-MSNs' sizes were 90.338 ± 38.49 nm and 123.84 ± 15.67 nm, respectively, as obtained by TEM; the hydrodynamic diameter for MSNs (93.69 ± 20.53 nm) and Chl-MSNs (212.95 ± 19.76 nm); and their zeta potential values are - 16.7 ± 2.19 mV and - 18.84 ± 1.40 mV. The encapsulation efficiency of Chl-MSNs was 70%. Chl-MSNs displayed no toxicity in dark conditions but showed excellent photostability under blue and red light exposure. Furthermore, using Chl over Chl-MSNs has a higher PDT efficiency than the tested cell lines. Chl-MSNs have the potential to be an effective delivery system. PDT proved to be an essential technique for cancer treatment. Blue laser is recommended over red laser with Chl and MSNs for destroying cancer cells.
Collapse
Affiliation(s)
- Fadya Adnane
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | | | - Emad ElZayat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Essam M Abdelsalam
- Laser Applications in Metrology, Photochemistry, and Agriculture (LAMPA) Department, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Morris G, Goodman S, Sorzabal Bellido I, Milanese C, Girella A, Pallavicini P, Taglietti A, Gaboardi M, Jäckel F, Diaz Fernandez YA, Raval R. Temperature and pH Stimuli-Responsive System Delivers Location-Specific Antimicrobial Activity with Natural Products. ACS APPLIED BIO MATERIALS 2024; 7:131-143. [PMID: 38079569 PMCID: PMC10792665 DOI: 10.1021/acsabm.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Smart materials with controlled stimuli-responsive functions are at the forefront of technological development. In this work, we present a generic strategy that combines simple components, physicochemical responses, and easy fabrication methods to achieve a dual stimuli-responsive system capable of location-specific antimicrobial cargo delivery. The encapsulated system is fabricated by combining a biocompatible inert polymeric matrix of poly(dimethylsiloxane) (PDMS) and a bioactive cargo of saturated fatty acids. We demonstrate the effectiveness of our approach to deliver antimicrobial activity for the model bacteria Escherichia coli. The system responds to two control variables, temperature and pH, delivering two levels of antimicrobial response under distinct combinations of stimuli: one response toward the planktonic media and another response directly at the surface for sessile bacteria. Spatially resolved Raman spectroscopy alongside thermal and structural material analysis reveals that the system not only exhibits ON/OFF states but can also control relocation and targeting of the active cargo toward either the surface or the liquid media, leading to different ON/OFF states for the planktonic and sessile bacteria. The approach proposed herein is technologically simple and scalable, facing low regulatory barriers within the food and healthcare sectors by using approved components and relying on fundamental chemical processes. Our results also provide a proof-of-concept platform for the design and easy fabrication of delivery systems capable of operating as Boolean logic gates, delivering different responses under different environmental conditions.
Collapse
Affiliation(s)
- Gareth Morris
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
- Department
of Physics and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Sean Goodman
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Ioritz Sorzabal Bellido
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
| | - Chiara Milanese
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Alessandro Girella
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | | | - Angelo Taglietti
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Mattia Gaboardi
- Materials
Physics Center, CSIC-UPV/EHU, Donostia - San Sebastian 20018, Spain
| | - Frank Jäckel
- Department
of Physics and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Yuri A. Diaz Fernandez
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Rasmita Raval
- Open
Innovation Hub for Antimicrobial Surfaces, Surface Science Research
Centre, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
33
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
34
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
35
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
36
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
37
|
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers. Adv Drug Deliv Rev 2023; 203:115115. [PMID: 37844843 DOI: 10.1016/j.addr.2023.115115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Silica nanoparticles (SNP) have gained tremendous attention in the recent decades. They have been used in many different biomedical fields including diagnosis, biosensing and drug delivery. Medical uses of SNP for anti-cancer, anti-microbial and theranostic applications are especially prominent due to their exceptional performance to deliver many different small molecules and recently biologics (mRNA, siRNA, antigens, antibodies, proteins, and peptides) at targeted sites. The physical and chemical properties of SNP such as large specific surface area, tuneable particle size and porosity, excellent biodegradability and biocompatibility make them an ideal drug delivery and diagnostic platform. Based on the available data and the pre-clinical performance of SNP, recent interest has driven these innovative materials towards clinical application with many of the formulations already in Phase I and Phase II trials. Herein, the progress of SNP in biomedical field is reviewed, and their safety aspects are analysed. Importantly, we critically evaluate the key structural characteristics of SNP to overcome different biological barriers including the blood-brain barrier (BBB), skin, tumour barrier and mucosal barrier. Future directions, potential pathways, and target areas towards rapid clinical translation of SNP are also recommended.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Freddy Kleitz
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mika Linden
- Institute of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
38
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
39
|
Sivamaruthi BS, Kapoor DU, Kukkar RR, Gaur M, Elossaily GM, Prajapati BG, Chaiyasut C. Mesoporous Silica Nanoparticles: Types, Synthesis, Role in the Treatment of Alzheimer's Disease, and Other Applications. Pharmaceutics 2023; 15:2666. [PMID: 38140007 PMCID: PMC10747102 DOI: 10.3390/pharmaceutics15122666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, many individuals struggle with Alzheimer's disease (AD), an unrelenting and incapacitating neurodegenerative condition. Despite notable research endeavors, effective remedies for AD remain constrained, prompting the exploration of innovative therapeutic avenues. Within this context, silica-based nanoplatforms have emerged with pronounced potential due to their unique attributes like expansive surface area, customizable pore dimensions, and compatibility with living systems. These nanoplatforms hold promise as prospective interventions for AD. This assessment provides a comprehensive overview encompassing various forms of mesoporous silica nanoparticles (MSNs), techniques for formulation, and their applications in biomedicine. A significant feature lies in their ability to precisely guide and control the transport of therapeutic agents to the brain, facilitated by the adaptability of these nanoplatforms as drug carriers. Their utility as tools for early detection and monitoring of AD is investigated. Challenges and prospects associated with harnessing MSNs are studied, underscoring the imperative of stringent safety evaluations and optimization of how they interact with the body. Additionally, the incorporation of multifunctional attributes like imaging and targeting components is emphasized to enhance their efficacy within the intricate milieu of AD. As the battle against the profound repercussions of AD persists, MSNs emerge as a promising avenue with the potential to propel the development of viable therapeutic interventions.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Devesh U. Kapoor
- Department of Pharmacy, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India;
| | - Rajiv R. Kukkar
- School of Pharmacy, Raffles University, Neemrana 301705, Rajasthan, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302033, Rajasthan, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
40
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Araújo JL, Vieira JA, dos Santos Silva M, Lima AKO, da Silva Luz GV, Carneiro MLB, Azevedo RB. Benefits of using polymeric nanoparticles in breast cancer treatment: a systematic review. 3 Biotech 2023; 13:357. [PMID: 37818119 PMCID: PMC10560654 DOI: 10.1007/s13205-023-03779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 07/31/2023] [Indexed: 10/12/2023] Open
Abstract
Breast cancer comprises approximately 20% of all malignant neoplasm cases globally. Due to the limitations associated with conventional therapeutic approaches, extensive investigations have been undertaken to develop novel treatments that exhibit enhanced specificity and minimized adverse effects. Consequently, the application of polymeric nanoformulations for targeted drug delivery has gained significant attention within the biomedical field. Therefore, the primary objective of this study was to explore the inherent advantages and efficacy of employing polymeric nanoformulations for drug delivery in breast cancer treatment, as compared to traditional therapies. A comprehensive literature search was conducted across prominent databases including PubMed/MEDLINE, Embase, and Scopus, utilizing specific search strings. This meticulous approach yielded a total of 12 relevant articles for in-depth analysis and discussion. The findings from the selected studies underscore the effectiveness of employing polymeric nanoparticles as a drug delivery strategy, showcasing noteworthy improvements in cellular uptake and sustained intracellular retention of encapsulated therapeutic agents. Additionally, these nanoformulations exhibited superior efficacy, safety, and drug delivery capabilities. The utilization of polymeric nanoparticles in drug delivery has demonstrated a substantial enhancement in treatment efficacy, with the ability to achieve higher concentrations of active ingredients within tumor tissues, augment cellular uptake and drug concentrations, and sustain intracellular retention. Consequently, this innovative approach prolongs drug release in lower quantities, ultimately contributing to improved treatment outcomes.
Collapse
Affiliation(s)
- Joabe Lima Araújo
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| | - Julia Augusto Vieira
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| | - Mayla dos Santos Silva
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasília, 72444-240 Brazil
| | - Alan Kelbis Oliveira Lima
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| | - Glecia Virgolino da Silva Luz
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasília, 72444-240 Brazil
| | - Marcella Lemos Brettas Carneiro
- Post-Graduate Program in Biomedical Engineering (PPGEB), Faculty of Gama, University of Brasilia, Special Area of Industry Projection A, Brasília, 72444-240 Brazil
| | - Ricardo Bentes Azevedo
- Department of Genetics and Morphology, Institute of Biological Sciences, Darcy Ribeiro University Campus, University of Brasília, Brasília-DF, 70910-900 Brazil
| |
Collapse
|
42
|
Sadžak A, Eraković M, Šegota S. Kinetics of Flavonoid Degradation and Controlled Release from Functionalized Magnetic Nanoparticles. Mol Pharm 2023; 20:5148-5159. [PMID: 37651612 DOI: 10.1021/acs.molpharmaceut.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are naturally occurring antioxidants that have been shown to protect cell membranes from oxidative stress and have a potential use in photodynamic cancer treatment. However, they degrade at physiological pH values, which is often neglected in drug release studies. Kinetic study of flavonoid oxidation can help to understand the mechanism of degradation and to correctly analyze flavonoid release data. Additionally, the incorporation of flavonoids into magnetic nanocarriers can be utilized to mitigate degradation and overcome their low solubility, while the release can be controlled using magnetic fields (MFs). An approach that combines alternating least squares (ALS) and multilinear regression to consider flavonoid autoxidation in release studies is presented. This approach can be used in general cases to account for the degradation of unstable drugs released from nanoparticles. The oxidation of quercetin, myricetin (MCE), and myricitrin (MCI) was studied in PBS buffer (pH = 7.4) using UV-vis spectrophotometry. ALS was used to determine the kinetic profiles and characteristic spectra, which were used to analyze UV-vis data of release from functionalized magnetic nanoparticles (MNPs). MNPs were selected for their unique magnetic properties, which can be exploited for both targeted drug delivery and control over the drug release. MNPs were prepared and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, superconducting quantum interference device magnetometer, and electrophoretic mobility measurements. Autoxidation of all three flavonoids follows a two-step first-order kinetic model. MCE showed the fastest degradation, while the oxidation of MCI was the slowest. The flavonoids were successfully loaded into the prepared MNPs, and the drug release was described by the first-order and Korsmeyer-Peppas models. External MFs were utilized to control the release mechanism and the cumulative mass of the flavonoids released.
Collapse
Affiliation(s)
- Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Mihael Eraković
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| |
Collapse
|
43
|
Budiman A, Rusdin A, Subra L, Aulifa DL. How Key Alterations of Mesoporous Silica Nanoparticles Affect Anti-Lung Cancer Therapy? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5473-5493. [PMID: 37791322 PMCID: PMC10542112 DOI: 10.2147/ijn.s426120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Laila Subra
- Department of Pharmacy, faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, Kuala Lumpur, Malaysia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
44
|
Scharffetter-Kochanek K, Wang Y, Makrantonaki E, Crisan D, Wlaschek M, Geiger H, Maity P. [Skin aging-cellular senescence : What is the future?]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:645-656. [PMID: 37638987 DOI: 10.1007/s00105-023-05201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cellular senescence is the main cause of skin and organ aging and is associated with a wide range of aging-related diseases. OBJECTIVES To understand which senolytics, senomorphics, and cell-based therapies have been developed to alleviate and even rejuvenate skin aging and reduce cellular senescence. METHODS Basic literature for the mode of action of senolytics and senomorphics and their clinical perspectives in daily routine are discussed. RESULTS Various causes lead to mitochondrial dysfunction and the activation of pro-aging signaling pathways, which eventually lead to cellular senescence with degradation of structural proteins of the dermal connective tissue and severe suppression of regenerative stem cell niches of the skin. CONCLUSIONS Depletion of senescent cells suppress skin aging and enforce rejuvenation of skin and other organs and their function. The removal of senescent cells by cells of the native immune system is severely disturbed during aging. Selected senolytics and senomorphics are approved and are already on the market.
Collapse
Affiliation(s)
- Karin Scharffetter-Kochanek
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland.
- Labor für experimentelle Dermatologie der Klinik für Dermatologie und Allergologie, Universität Ulm, Ulm, Deutschland.
- Arc-Aging Research Center, Universität Ulm, Ulm, Deutschland.
| | - Yongfang Wang
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
- Labor für experimentelle Dermatologie der Klinik für Dermatologie und Allergologie, Universität Ulm, Ulm, Deutschland
| | - Evgenia Makrantonaki
- Labor für experimentelle Dermatologie der Klinik für Dermatologie und Allergologie, Universität Ulm, Ulm, Deutschland
- Derma Zentrum Wildeshausen, Wildeshausen, Deutschland
| | - Diana Crisan
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
- Labor für experimentelle Dermatologie der Klinik für Dermatologie und Allergologie, Universität Ulm, Ulm, Deutschland
| | - Meinhard Wlaschek
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
- Labor für experimentelle Dermatologie der Klinik für Dermatologie und Allergologie, Universität Ulm, Ulm, Deutschland
- Arc-Aging Research Center, Universität Ulm, Ulm, Deutschland
| | - Hartmut Geiger
- Arc-Aging Research Center, Universität Ulm, Ulm, Deutschland
- Institut für Molekulare Medizin, Universität Ulm, Ulm, Deutschland
| | - Pallab Maity
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
- Labor für experimentelle Dermatologie der Klinik für Dermatologie und Allergologie, Universität Ulm, Ulm, Deutschland
- Arc-Aging Research Center, Universität Ulm, Ulm, Deutschland
| |
Collapse
|
45
|
Alkhamis K, Aljohani MM, Ibarhiam SF, Hameed YAS, Abumelha HM, Habeebullah TM, El-Metwaly NM. Application of Metal-Organic Frameworks for Efficient Removal of Doxorubicin Hydrochloride: Removal Process Optimization and Biological Activity. ACS OMEGA 2023; 8:30374-30388. [PMID: 37636940 PMCID: PMC10448695 DOI: 10.1021/acsomega.3c03523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
This study looked at the doxorubicin hydrochloride (DOX) anticancer drug's adsorption characteristics on a silver-based metal-organic framework (Ag-MOF). X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used for the characterization of Ag-MOF. The pore volume and surface area of Ag-MOF were determined through Brunauer-Emmett-Teller (BET) testing at 77 K to be 0.509 cm3/g and 676.059 m2/g, respectively. Adsorption at pH 6 was established to be the best for DOX compared to alkaline solution. Ag-MOF has a good capacity for eliminating DOX (1.85 mmol/g), according to adsorption experiments. From the adsorption results, we can find that Langmuir is the most fitted adsorption isotherm model and the pseudo-second order model best fitted the adsorption kinetics. The energy of activation for adsorption, which was determined to be 15.23 kJ/mol, also supported a chemisorption process. The mechanism of adsorption was evaluated, and details of all possible interactions between DOX and Ag-MOF were illustrated. On the other hand, while examining the impact of temperature, we identified the thermodynamic constraints as ΔG°, ΔH°, and ΔS° and confirmed that the reaction was an endothermic one and spontaneous. Even after numerous reuse cycles, the efficiency remained constant. The synthetic adsorbent was remarkably recyclable at a rate of more than 91.6%. By using the MTT assay, the cytotoxicity of the tested Ag-MOF and DOX@Ag-MOF against human breast cancer cells (MCF-7) was evaluated in vitro. The in vitro antimicrobial activity of Ag-MOF and DOX@Ag-MOF was also tested.
Collapse
Affiliation(s)
- Kholood
M. Alkhamis
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Meshari M. Aljohani
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Saham F. Ibarhiam
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Yasmeen A. S. Hameed
- Department
of Chemistry, Faculty of Science, Northern
Border University, Arar 73222, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Turki M. Habeebullah
- Department
of Environment and Health Research, The Custodian of Two Holy Mosques
Institute for Hajj and Umrah Research, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
46
|
Garrido-Cano I, Adam-Artigues A, Lameirinhas A, Blandez JF, Candela-Noguera V, Lluch A, Bermejo B, Sancenón F, Cejalvo JM, Martínez-Máñez R, Eroles P. Delivery of miR-200c-3p Using Tumor-Targeted Mesoporous Silica Nanoparticles for Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38323-38334. [PMID: 37549382 PMCID: PMC10436244 DOI: 10.1021/acsami.3c07541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Despite advances in breast cancer treatment, it remains the leading cause of cancer-related death in women worldwide. In this context, microRNAs have emerged as potential therapeutic targets but still present some limitations for in vivo applications. Particularly, miR-200c-3p is a well-known tumor suppressor microRNA that inhibits tumor progression and metastasis in breast cancer through downregulating ZEB1 and ZEB2. Based on the above, we describe the design and validation of a nanodevice using mesoporous silica nanoparticles for miR-200c-3p delivery for breast cancer treatment. We demonstrate the biocompatibility of the synthesized nanodevices as well as their ability to escape from endosomes/lysosomes and inhibit tumorigenesis, invasion, migration, and proliferation of tumor cells in vitro. Moreover, tumor targeting and effective delivery of miR-200c-3p from the nanoparticles in vivo are confirmed in an orthotopic breast cancer mouse model, and the therapeutic efficacy is also evidenced by a decrease in tumor size and lung metastasis, while showing no signs of toxicity. Overall, our results provide evidence that miR-200c-3p-loaded nanoparticles are a potential strategy for breast cancer therapy and a safe and effective system for tumor-targeted delivery of microRNAs.
Collapse
Affiliation(s)
- Iris Garrido-Cano
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
| | | | - Ana Lameirinhas
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
| | - Juan F. Blandez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
IIS La Fe, Valencia 46026, Spain
| | - Vicente Candela-Noguera
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
| | - Ana Lluch
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Universitat
de València, Valencia 46010, Spain
- Clinical
Oncology Department, Hospital Clínico
Universitario de Valencia, Valencia 46010, Spain
| | - Begoña Bermejo
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Clinical
Oncology Department, Hospital Clínico
Universitario de Valencia, Valencia 46010, Spain
| | - Felix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
IIS La Fe, Valencia 46026, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina. Universitat Politècnica de Valencia, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Juan Miguel Cejalvo
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Clinical
Oncology Department, Hospital Clínico
Universitario de Valencia, Valencia 46010, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat Politècnica
de València, Universitat de València, Valencia 46010, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Unidad
Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València,
IIS La Fe, Valencia 46026, Spain
- Unidad
Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades
y Nanomedicina. Universitat Politècnica de Valencia, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Pilar Eroles
- Biomedical
Research Institute INCLIVA, Valencia 46010, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid 28029, Spain
- Universitat
de València, Valencia 46010, Spain
| |
Collapse
|
47
|
Qasim almajidi Y, Althomali RH, Gandla K, Uinarni H, Sharma N, Hussien BM, Alhassan MS, Mireya Romero-Parra R, Singh Bisht Y. Multifunctional immunosensors based on mesoporous silica nanomaterials as efficient sensing platforms in biomedical and food safety analysis: A review of current status and emerging applications. Microchem J 2023; 191:108901. [DOI: 10.1016/j.microc.2023.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
49
|
Tyagi P, Harper G, McGeehan P, Davis SP. Current status and prospect for future advancements of long-acting antibody formulations. Expert Opin Drug Deliv 2023; 20:895-903. [PMID: 37249542 DOI: 10.1080/17425247.2023.2219445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Biologics, especially monoclonal antibodies (mAbs), have become a major class of therapeutics in recent years addressing the needs of millions of patients and becoming one of the best-selling treatments in the pharmaceutical market. A wide range of multifaceted chronic diseases have benefitted from antibody therapeutics. Long-term treatment for chronic diseases with mAb therapies can mean a lifetime of frequent injections. Technologies that can minimize the total number of injections present meaningful value to patients and the companies that develop them. AREAS COVERED This review summarizes the challenges encountered during the development of long-acting versions of mAbs. The focus will be on questions addressed during drug product development, delivery device selection, business implications, and understanding the market potential of long-acting presentations. EXPERT OPINION Long-acting drug delivery systems have reached the market for small molecules and peptides. However, these drug delivery systems, and their development lessons, cannot be extrapolated directly to antibodies. We must develop new delivery technologies suitable for biologics, identify critical attributes to capture dynamic changes in proteins during the encapsulation process, and develop analytical processes to evaluate long-term stability.
Collapse
Affiliation(s)
- Puneet Tyagi
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Garrett Harper
- Insights & Analytics, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Shawn P Davis
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
50
|
Yang X, Zhang S, Lin N. Application of Metal-Based Nanomaterials in In Vitro Diagnosis of Tumor Markers: Summary and Prospect. Molecules 2023; 28:4370. [PMID: 37298846 PMCID: PMC10254239 DOI: 10.3390/molecules28114370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer, which presents with high incidence and mortality rates, has become a significant health threat worldwide. However, there is currently no effective solution for rapid screening and high-quality treatment of early-stage cancer patients. Metal-based nanoparticles (MNPs), as a new type of compound with stable properties, convenient synthesis, high efficiency, and few adverse reactions, have become highly competitive tools for early cancer diagnosis. Nevertheless, challenges such as the difference between the microenvironment of detected markers and the real-life body fluids remain in achieving widespread clinical application of MNPs. This review provides a comprehensive review of the research progress made in the field of in vitro cancer diagnosis using metal-based nanoparticles. By delving into the characteristics and advantages of these materials, this paper aims to inspire and guide researchers towards fully exploiting the potential of metal-based nanoparticles in the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| | - Shaodian Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China; (X.Y.); (S.Z.)
- Orthopedics Research Institute of Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|