1
|
Asunis F, Dessì P, Gioannis GD, Muntoni A. VFA extraction through silicone membrane fosters PHA production from nutrient-rich biowaste. BIORESOURCE TECHNOLOGY 2025; 426:132314. [PMID: 40023336 DOI: 10.1016/j.biortech.2025.132314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
This study presents a novel four-stage process for polyhydroxyalkanoates (PHA) production from nutrient-rich sheep cheese whey (CW). The key advancement was the integration of a volatile fatty acid (VFA) extraction stage into the conventional three-stage PHA production process. Application of membrane separation to fermented cheese whey resulted in the generation of a "retentate" stream containing both organic acids and nutrients, suitable for microbial culture selection, and a VFA-rich but nutrient deprived "permeate" stream, ideal for PHA accumulation. Thus, the carbon-to-nitrogen (C/N) ratio was optimized for both the selection and accumulation stages, which is crucial for efficient PHA production and for eliminating the need for exogenous nitrogen addition. The integrated process resulted in significantly higher yields (0.55 vs 0.26 gC-PHA gC-OA-1) and PHA content (37% vs 28%) than the control, where fermented cheese whey was directly used as feedstock for the accumulation stage. The results highlight the potential of this approach for optimizing PHA production from sub-optimal, nutrient-rich substrates.
Collapse
Affiliation(s)
- Fabiano Asunis
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza d'Armi 1, 09123 Cagliari, Italy.
| | - Paolo Dessì
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy
| | - Giorgia De Gioannis
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza d'Armi 1, 09123 Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| | - Aldo Muntoni
- Department of Civil, Environmental Engineering and Architecture (DICAAR), University of Cagliari, Piazza d'Armi 1, 09123 Cagliari, Italy; National Research Council of Italy (CNR), Institute of Environmental Geology and Geoengineering (IGAG), Piazza d'Armi 1, 09123 Cagliari, Italy
| |
Collapse
|
2
|
Xu T, Li H, Zhang S, Xue Q, Hewage R, Wang J, Guo F, Zhao D, Ai G, Kahramon D, Xiang H, Han J. Production of polyhydroxybutyrate from wheat straw hydrolysate using a low-salt requiring and alkaliphilic Halomonas nigrificans X339 under non-sterile open condition. BIORESOURCE TECHNOLOGY 2025; 424:132276. [PMID: 39986623 DOI: 10.1016/j.biortech.2025.132276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Utilizing agricultural waste is a sustainable approach to reduce the production cost of bio-based products. Here, we report a novel haloalkaliphilic strain, Halomonas nigrificans X339, which exhibits an exceptional ability to utilize various low-cost carbon sources. Compared to other halophiles, X339 could be cultivated at an optimal salinity as low as 2 % (w/v). X339 accumulated extraordinarily large granules of polyhydroxybutyrate (PHB). In open batch fermentation, X339 produced 5.11 g/L of PHB from wheat straw hydrolysate (WSH) at 3 % salinity and pH 9, with a PHB/carbon source conversion rate of 0.30 g/g. This represents the highest PHB yield reported from straw hydrolysates in shake-flask fermentation by halophiles. Additionally, whole genome of X339 was sequenced to identify candidate genes related to carbon source utilization. Our findings will benefit researchers in developing a suitable chassis for Next Generation Industrial Biotechnology, and offer a sustainable and eco-friendly solution for bio-based products.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Hao Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Shengjie Zhang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Qiong Xue
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Richard Hewage
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jinhong Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Feng Guo
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, Yunnan University, Kunming 650504, People's Republic of China.
| | - Dahe Zhao
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Guomin Ai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Davranov Kahramon
- Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100128, Republic of Uzbekistan.
| | - Hua Xiang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jing Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
3
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Ibrahim R, Aranjani JM, Prasanna N, Biswas A, Gayam PKR. Production, isolation, optimization, and characterization of microbial PHA from Bacillus australimaris. Sci Rep 2025; 15:8395. [PMID: 40069246 PMCID: PMC11897369 DOI: 10.1038/s41598-025-92146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Population explosion in recent years has driven the environment to overuse nondegradable substances. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are generated and retained as cytoplasmic granules in microorganisms with restricted nutritional availability and can be used to manufacture bioplastics. The current study attempts to screen soil isolates for PHA production and optimize their media parameters. Among all the isolates, 17 were identified and confirmed by Sudan black staining, as they are screening for PHA production and are identified by their colony characteristics. The isolation of the most promising strain, GS-14, was achieved through the sodium hypochlorite method, and subsequent quantification involved establishing a standard curve of crotonic acid. Notably, isolate GS-14 presented the highest yield, which was determined by extrapolating its data onto the standard curve. Characterization of the PHA polymer was subsequently performed, and the results were used to discern its properties. FTIR confirmed characteristic PHA absorption bands, with a prominent C = O stretching peak at 1732 cm⁻¹. LC-MS detected a molecular mass of 641.6 g/mol, indicative of an oligomeric species, while the actual polymer molecular weight is estimated between 5,000 and 20,000 Da. DSC revealed an exothermic peak at 174 °C, allowing the calculation of crystallinity, a key determinant of mechanical properties. Furthermore, the PHA-producing organism was identified as Bacillus australimaris through the sequencing of 16 S ribosomal RNA. The media optimization was performed via Minitab software, with statistical analyses employed to interpret the resulting data comprehensively.
Collapse
Affiliation(s)
- Rafwana Ibrahim
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576140, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576140, India.
| | - Navya Prasanna
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576140, India
| | - Avirup Biswas
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576140, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576140, India
| |
Collapse
|
5
|
Rossi TS, Francescato L, Gupte AP, Favaro L, Treu L, Campanaro S. Harnessing the potential of Cupriavidus necator for CO 2 capture from alcoholic fermentation and its bioconversion into poly(3-hydroxybutyrate). BIORESOURCE TECHNOLOGY 2025; 419:132060. [PMID: 39805476 DOI: 10.1016/j.biortech.2025.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The fermentation process in alcoholic beverage production converts sugars into ethanol and CO2, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO2-rich waste gas into PHB. Grape marc, another by-product of wine production, was evaluated as a low-cost carbon source for the heterotrophic growth of C. necator, which was subsequently used as an inoculum for autotrophic cultures. The effect of agitation, CO2 headspace composition, and nitrogen concentration was tested, obtaining a maximum PHB concentration of 0.69 g/L, with an average CO2 uptake rate of 1.14 ± 0.41 mmol CO2 L-1h-1 and 65 % efficiency of CO2 consumption. These findings lay the groundwork for developing carbon mitigation strategies in alcoholic fermentation processes coupled with sustainable biopolymer production.
Collapse
Affiliation(s)
| | - Luca Francescato
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Laura Treu
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | |
Collapse
|
6
|
Lalonde JN, Pilania G, Marrone BL. Materials designed to degrade: structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym Chem 2025; 16:235-265. [PMID: 39464417 PMCID: PMC11498330 DOI: 10.1039/d4py00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Conventional plastics pose significant environmental and health risks across their life cycle, driving intense interest in sustainable alternatives. Among these, polyhydroxyalkanoates (PHAs) stand out for their biocompatibility, degradation characteristics, and diverse applications. Yet, challenges like production cost, scalability, and limited chemical variety hinder their widespread adoption, impacting material selection and design. This review examines PHA research through the lens of the classical materials tetrahedron, exploring property-structure-processing-performance (PSPP) relationships. By analyzing recent literature and addressing current limitations, we gain valuable insights into PHA development. Despite challenges, we remain optimistic about the role of PHAs in transitioning towards a circular plastic economy, emphasizing the need for further research to unlock their full potential.
Collapse
Affiliation(s)
- Jessica N Lalonde
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | | | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
7
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
8
|
Heidarian P, Aziz S, Halley PJ, McNally T, Peijs T, Vandi LJ, Varley RJ. Poly(3-Hydroxybutyrate- co-3-Hydroxyvalerate) Self-Reinforced Composites via Solvent-Induced Interfiber Welding of Nanofibers. Biomacromolecules 2024; 25:5039-5047. [PMID: 39041249 DOI: 10.1021/acs.biomac.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In this study, we explore an approach to enhance the mechanical performance of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by utilizing the self-reinforcing effect of β-phase-induced PHBV electrospun nanofiber mats. This involves electrospinning combined with low-temperature postspun vapor solvent interfiber welding. Scanning electron microscopy imaging confirmed fiber alignment, while XRD diffraction revealed the presence of both α and β crystalline phases under optimized electrospinning conditions. The resulting composite exhibited significant improvements in mechanical properties attributed to the formation of more perfectly structured α and β polymorphs and enhanced interfacial adhesion of electrospun nanofibers after vapor solvent treatment. This approach offers entirely recyclable and biodegradable materials, presenting the potential for a new family of sustainable bioplastics.
Collapse
Affiliation(s)
- Pejman Heidarian
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Shazed Aziz
- School of Chemical Engineering, University of Queensland, St Lucia 4072, Australia
| | - Peter J Halley
- School of Chemical Engineering, University of Queensland, St Lucia 4072, Australia
- Centre for Advanced Materials Processing and Manufacturing AMPAM, The University of Queensland, St Lucia 4072, Australia
| | - Tony McNally
- International Institute for Nanocomposite Manufacturing (IINM), University of Warwick, Coventry CV4 74L, U.K
| | - Ton Peijs
- Materials Engineering Centre, WMG, University of Warwick, Coventry CV4 74L, U.K
| | - Luigi-Jules Vandi
- School of Mechanical and Mining Engineering, University of Queensland, St Lucia 4072, Australia
| | - Russell J Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
9
|
Morgan MF, Diab J, Gilliham M, Mortimer JC. Green horizons: how plant synthetic biology can enable space exploration and drive on Earth sustainability. Curr Opin Biotechnol 2024; 86:103069. [PMID: 38341984 DOI: 10.1016/j.copbio.2024.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
As humanity looks towards expanding activity from low Earth orbit to the Moon and beyond, resource use efficiency and self-sustainability will be critical to ensuring success in the long term. Furthermore, solutions developed for the stringent requirements of space will be equally valuable in meeting sustainability goals here on Earth. Advances in synthetic biology allow us to harness the complex metabolism of life to produce the materials we need in situ. Translating those lessons learned from microbial systems to more carbon-efficient photosynthetic organisms is an area of growing interest. Plants can be engineered to sustainably meet a range of needs, from fuels to materials and medicines.
Collapse
Affiliation(s)
- Matthew Fox Morgan
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia
| | - Jonathan Diab
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia.
| | - Jenny C Mortimer
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia; Joint BioEnergy Institute, CA, USA.
| |
Collapse
|
10
|
Fan X, Fu S, Jiang J, Liu D, Li X, Li W, Zhang H. Application of PHA surface binding proteins of alkali-tolerant Bacillus as surfactants. Braz J Microbiol 2024; 55:169-177. [PMID: 38019411 PMCID: PMC10920527 DOI: 10.1007/s42770-023-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Amphiphilic protein has lipophilic and hydrophilic domains, displaying the potential for development as a biosurfactant. The polyhydroxyalkanoate (PHA) surface binding protein derived from Bacillus is a type of protein that has not been studied for its emulsifying properties. In this study, PHA granule-associated protein (PhaP), PHA regulatory protein (PhaQ), and PHA synthase subunit (PhaR) derived from an alkali-tolerant PHA-producing Bacillus cereus HBL-AI were found and heterologously expressed in E. coli and purified to investigate their application as biosurfactants. It showed that the emulsification ability and stability of three amphiphilic proteins were higher than those of widely used chemical surfactants in diesel oil, vegetable oil, and lubricating oil. In particular, the PhaQ protein studied for the first time can form a stable emulsion layer in vegetable oil at a lower concentration (50 µg/mL), which greatly reduced the amount of protein used in emulsification. This clearly demonstrated that the PHA-binding protein of HBL-AI can be well applied as an environmentally friendly biosurfactants.
Collapse
Affiliation(s)
- Xueyu Fan
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shuangqing Fu
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Junpo Jiang
- College of Life Science, Microbial Technology Innovation Center for Feed of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Dexu Liu
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xinyue Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Hasan SF, Abo Elsoud MM, Sidkey NM, Elhateir MM. Production and characterization of polyhydroxybutyrate bioplastic precursor from Parageobacillus toebii using low-cost substrates and its potential antiviral activity. Int J Biol Macromol 2024; 262:129915. [PMID: 38325682 DOI: 10.1016/j.ijbiomac.2024.129915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
There is an increasing desire for bioplastics produced from renewable resources as an alternative to their petrochemical counterparts. These biopolymers have long-unnoticed antiviral properties. This study aimed to produce and characterize bioplastics by Parageobacillus toebii using low-cost substrates and determine their antiviral activity against coxsackievirus B4. Seven low-cost substrates (bagasse, water hyacinth, rice straw, rice water, sesame husks, molasses, and corn syrup) were compared with glucose for bioplastic precursor production. The highest bioplastic produced was from water hyacinth and glucose, followed by molasses, rice straw, rice water, sesame husks, and bagasse. Water hyacinth and glucose media were further optimized to increase the bioplastic precursor yield. The optimization of the media leads to increases in bioplastic precursor yields of 1.8-fold (3.456 g/L) and 1.496-fold (2.768 g/L), respectively. These bioplastics were further characterized by thermogravimetric analysis (TGA), Fourier-transformed infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR), and gas chromatography-mass spectrometry (GC-MS). They are thermostable, and their characterizations confirm the presence of polyhydroxybutyrate. The antiviral assay showed reasonable antiviral effects for bioplastics from water hyacinth (80.33 %) and glucose (55.47 %) media at 250 μg/mL maximum non-toxic concentrations (MNTC). The present investigation demonstrates a low-cost model for producing polyhydroxybutyrate bioplastic precursor for antiviral applications.
Collapse
Affiliation(s)
- Seham F Hasan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt.
| | - Mostafa M Abo Elsoud
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| | - Mai M Elhateir
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| |
Collapse
|
12
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
13
|
Cao S, Yihao W, Qi T, Xiong A, Liu P, Chen Y, Zeng H, Yu F, Weng J. Combination of stem cells and nerve guide conduit for the treatment of peripheral nerve injury: A meta-analysis. Muscle Nerve 2024; 69:227-238. [PMID: 38063327 DOI: 10.1002/mus.28018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION/AIMS Many small-sized, single-center preclinical studies have investigated the benefits of introducing stem cells into the interior of nerve conduit. The aims of this meta-analysis are to review and contrast the effects of various types of stem cells in in vivo models used to reconstruct peripheral nerve injuries (PNIs) and to assess the reliability and stability of the available evidence. METHODS A systematic search was conducted using Cochrane Library, Embase, PubMed, and Web of Science to identify studies conducted from January 1, 2000, to September 21, 2022, and investigate stem cell therapy in peripheral nerve reconstruction animal models. Studies that met the relevant criteria were deemed eligible for this meta-analysis. RESULTS Fifty-five preclinical studies with a total of 1234 animals were incorporated. Stem cells demonstrated a positive impact on peripheral nerve regeneration at different follow-up times in the forest plots of five outcome indicators: compound muscle action potential (CMAP) amplitude, latency, muscle mass ratio, nerve conduction velocity, and sciatic functional index (SFI). In most comparisons, stem cell groups showed substantial differences compared with the control groups. The superior performance of adipose-derived stem cells (ADSCs) in terms of SFI, CMAP amplitude, and latency (p < .001) was identified. DISCUSSION The findings consistently demonstrated a favorable outcome in the reconstruction process when utilizing different groups of stem cells, as opposed to control groups where stem cells were not employed.
Collapse
Affiliation(s)
- Siyang Cao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Wei Yihao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Yingqi Chen
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
14
|
Huang J, Yu X, Li L, Wang W, Zhang H, Zhang Y, Zhu J, Ma J. Design of Light-Driven Biocompatible and Biodegradable Microrobots Containing Mg-Based Metallic Glass Nanowires. ACS NANO 2024; 18:2006-2016. [PMID: 38205954 DOI: 10.1021/acsnano.3c08277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Light-driven microrobots capable of moving rapidly on water surfaces in response to external stimuli are widely used in a variety of fields, such as drug delivery, remote sampling, and biosensors. However, most light-driven microrobots use graphene and carbon nanotubes as photothermal materials, resulting in poor biocompatibility and degradability, which greatly limits their practical bioapplications. To address this challenge, a composition and microstructure design strategy with excellent photothermal properties suitable for the fabrication of light-driven microrobots was proposed in this work. The Mg-based metallic glass nanowires (Mg-MGNWs) were embedded with polyhydroxyalkanoates (PHA) to fabricate biocompatible and degradable microrobots with excellent photothermal effect and complex shapes. Consequently, the microrobot can be precisely driven by a near-infrared laser to achieve high efficiency and remote manipulation on the water surface for a long period of time, with a velocity of 9.91 mm/s at a power density of 2.0 W/cm2. Due to the Marangoni effect, programmable and complex motions of the microrobot such as linear, clockwise, counterclockwise, and obstacle avoidance motions can be achieved. The biocompatible and degradable microrobot fabrication strategy could have great potential in the fields of environmental detection, targeted drug delivery, disease diagnosis, and detection.
Collapse
Affiliation(s)
- Jinbiao Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiangyang Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Luyao Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenxue Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Heting Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiang Ma
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
15
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
16
|
Guzmán-Lagunes F, Martínez-dlCruz L, Wongsirichot P, Winterburn J, Montiel C. Production of polyhydroxybutyrate by coupled saccharification-fermentation of inulin. Bioprocess Biosyst Eng 2024; 47:119-129. [PMID: 38006410 PMCID: PMC10776465 DOI: 10.1007/s00449-023-02953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Inulin is a fructose-based polysaccharide that can be found in several plant species, from grass and onions to chicory roots; thus, it has the potential to be an excellent renewable source of fructose for several industrial applications. Among them, inulin hydrolysis can be coupled to a fermentation operation to produce polyhydroxybutyrate (PHB) using Cupriavidus necator H16. This work reports the PHB production process involving chicory root inulin hydrolysis using inulinase Novozym 960 followed by a C. necator fermentation. It was found that the maximum saccharification (95% wt.) was reached at 269 U/ginulin after 90 min. The hydrolysates obtained were then inoculated with C. necator, leading to a biomass concentration of 4 g/L with 30% (w/w) polymer accumulation. Although PHB production was low, during the first hours, the cell growth and polymer accumulation detected did not coincide with a fructose concentration decrease, suggesting a simultaneous saccharification and fermentation process, potentially alleviating the product inhibition inherent to the inulinase-fructose system. The characterization of the obtained PHB showed a polymer with more homogeneous values of Mw, and better thermal stability than PHB produced using pure fructose as a fermentation substrate. The results obtained demonstrate a viable alternative carbon substrate for PHB production, opening the possibility for inulin-rich renewable feedstock valorization.
Collapse
Affiliation(s)
- Fernando Guzmán-Lagunes
- Food Sciences and Biotechnology Department, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Martínez-dlCruz
- Department of Physical Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Phavit Wongsirichot
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - James Winterburn
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Carmina Montiel
- Food Sciences and Biotechnology Department, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
17
|
Latif MJ, Ali S, Jamil S, Bibi S, Jafar T, Rasheed A, Noreen S, Bashir A, Rauf Khan S. Comparative catalytic reduction and degradation with biodegradable sodium alginate based nanocomposite: Zinc oxide/N-doped carbon nitride/sodium alginate. Int J Biol Macromol 2024; 254:127954. [PMID: 37951425 DOI: 10.1016/j.ijbiomac.2023.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Sodium alginate (SA) is a biodegradable macromolecule which is used to synthesize nanocomposites and their further use as catalysis. Zinc oxide (ZnO) and nitrogen doped carbon nitride (ND-C3N4) nanoparticles are prepared using solvothermal and hydrothermal methods, respectively. ZnO/ND-C3N4/SA nanocomposites are successfully synthesized by employing in-situ polymerization. The presence of essential functional groups is confirmed by Fourier transform infrared (FTIR) spectroscopic analysis. Controlled spherical morphology for ZnO nanoparticles, with an average diameter of ∼52 nm, is shown by Scanning electron microscopic (SEM) analysis, while rice-like grain structure with an average grain size ∼62 nm is exhibited by ND-C3N4 nanoparticles. The presence of required elements is confirmed by Energy dispersive X-ray spectroscopic (EDX) analysis. The crystalline nature of nanocomposites is verified by X-ray diffraction spectroscopic (XRD) analysis. The investigation of the catalytic efficiency for degradation and reduction of various organic dyes is carried out on nanoparticles and nanocomposites. Thorough examination and comparison of parameters, such as apparent rate constant (kapp), reduction time, percentage reduction, reduced concentration and half-life, are conducted for all substrates. The nanocomposites show greater efficiency than nanoparticles in both reactions: catalytic reduction and catalytic degradation.
Collapse
Affiliation(s)
| | - Sarmed Ali
- Faculty of Engineering, Østfold University College, Halden, Norway
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Touseef Jafar
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammara Rasheed
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Arslan Bashir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
18
|
Mi CH, Qi XY, Ding YW, Zhou J, Dao JW, Wei DX. Recent advances of medical polyhydroxyalkanoates in musculoskeletal system. BIOMATERIALS TRANSLATIONAL 2023; 4:234-247. [PMID: 38282701 PMCID: PMC10817797 DOI: 10.12336/biomatertransl.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Infection and rejection in musculoskeletal trauma often pose challenges for natural healing, prompting the exploration of biomimetic organ and tissue transplantation as a common alternative solution. Polyhydroxyalkanoates (PHAs) are a large family of biopolyesters synthesised in microorganism, demonstrating excellent biocompatibility and controllable biodegradability for tissue remodelling and drug delivery. With different monomer-combination and polymer-types, multi-mechanical properties of PHAs making them have great application prospects in medical devices with stretching, compression, twist in long time, especially in musculoskeletal tissue engineering. This review systematically summarises the applications of PHAs in multiple tissues repair and drug release, encompassing areas such as bone, cartilage, joint, skin, tendons, ligament, cardiovascular tissue, and nervous tissue. It also discusses challenges encountered in their application, including high production costs, potential cytotoxicity, and uncontrollable particle size distribution. In conclusion, PHAs offer a compelling avenue for musculoskeletal system applications, striking a balance between biocompatibility and mechanical performance. However, addressing challenges in their production and application requires further research to unleash their full potential in tackling the complexities of musculoskeletal regeneration.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Jing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
- Dehong Biomedical Engineering Research Center, Dehong Teachers’ College, Dehong, Yunnan Province , China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an, Shaanxi Province, China
| |
Collapse
|
19
|
Malik MR, Patterson N, Sharma N, Tang J, Burkitt C, Ji Y, Martino M, Hertig A, Schweitzer D, Peoples O, Snell KD. Polyhydroxybutyrate synthesis in Camelina: Towards coproduction of renewable feedstocks for bioplastics and fuels. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2671-2682. [PMID: 37610031 PMCID: PMC10651141 DOI: 10.1111/pbi.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Plant-based co-production of polyhydroxyalkanoates (PHAs) and seed oil has the potential to create a viable domestic source of feedstocks for renewable fuels and plastics. PHAs, a class of biodegradable polyesters, can replace conventional plastics in many applications while providing full degradation in all biologically active environments. Here we report the production of the PHA poly[(R)-3-hydroxybutyrate] (PHB) in the seed cytosol of the emerging bioenergy crop Camelina sativa engineered with a bacterial PHB biosynthetic pathway. Two approaches were used: cytosolic localization of all three enzymes of the PHB pathway in the seed, or localization of the first two enzymes of the pathway in the cytosol and anchoring of the third enzyme required for polymerization to the cytosolic face of the endoplasmic reticulum (ER). The ER-targeted approach was found to provide more stable polymer production with PHB levels up to 10.2% of the mature seed weight achieved in seeds with good viability. These results mark a significant step forward towards engineering lines for commercial use. Plant-based PHA production would enable a direct link between low-cost large-scale agricultural production of biodegradable polymers and seed oil with the global plastics and renewable fuels markets.
Collapse
Affiliation(s)
| | - Nii Patterson
- Yield10 Bioscience, Inc.WoburnMassachusettsUSA
- Present address:
Aquatic and Crop Resource Development Research Center, National Research Council CanadaSaskatoonSaskatchewanCanada
| | | | - Jihong Tang
- Yield10 Bioscience, Inc.WoburnMassachusettsUSA
| | | | - Yuanyuan Ji
- Yield10 Oilseeds, Inc.SaskatoonSaskatchewanCanada
| | - Matthew Martino
- Yield10 Bioscience, Inc.WoburnMassachusettsUSA
- Present address:
Middletown High SchoolMiddletownNew YorkUSA
| | - Andrew Hertig
- Yield10 Bioscience, Inc.WoburnMassachusettsUSA
- Present address:
Qualigen TherapeuticsCarlsbadCaliforniaUSA
| | - Dirk Schweitzer
- Yield10 Bioscience, Inc.WoburnMassachusettsUSA
- Present address:
Impact Nano, LLCDevensMassachusettsUSA
| | | | - Kristi D. Snell
- Yield10 Oilseeds, Inc.SaskatoonSaskatchewanCanada
- Yield10 Bioscience, Inc.WoburnMassachusettsUSA
| |
Collapse
|
20
|
Uğurlu N, Erdal E, Malekghasemi S, Demirbilek M. Effectiveness of carbonic anhydrase inhibitor loaded nanoparticles in the treatment of diabetic retinopathy. Biomed Phys Eng Express 2023; 10:015002. [PMID: 36758224 DOI: 10.1088/2057-1976/acba9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Diabetic Retinopathy (DRP) is a disease consisting of all the structural and functional changes that develop in the retinal layer of the eye due to diabetes. DRP is the most important cause of blindness between the ages of 20-74 in the world, and the most successful standard treatment option in the treatment of DRP is intravitreal injections. To synthesize acetazolamide loaded nanoparticles to be applied intravitreal treatment of DRP and to examine thein vitroefficacy of the nanoparticles. ACZ loaded PHBV nanoparticles (PHBV-ACZ NPs) formulations were prepared. Nanoparticles with a particle size of 253.20 ± 0.55 nm. A DRP model was established and characterized in HRMEC cells. The effect of the nanoparticles on permeability has been investigated and carrier proteins in BRB due to the development of DRP has been investigated. To establish thein vitroDRP model, HRMEC was stimulated with Recombinant human 165 Vascular Endothelial Growth Factor (VEGF), thereby temporarily reducing the expression levels of endothelial junction proteins, increasing the number of intercellular spaces in the monolayers of HRMECs. It was determined that after the cells were exposed to Carbonic anhydrase inhibitors (CAI) loaded nanoparticles, permeability decreased and protein expression increased.
Collapse
Affiliation(s)
- Nagihan Uğurlu
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Ophthalmology, Advanced Technologies Application and Research Center, Ankara, Turkey
- Ministry of Health, Ankara City Hospital, Ophthalmology Clinic, Ankara, Turkey
| | - Ebru Erdal
- Ankara Yıldırım Beyazıt University, Faculty of Medicine, Advanced Technologies Application and Research Center, Ankara, Turkey
| | - Soheil Malekghasemi
- Hacettepe University, Department of Bioengineering, Graduate School of Science and Engineering, Ankara, Turkey
| | - Murat Demirbilek
- Ankara Haci Bayram Veli University, Biology Department, Ankara, Turkey
| |
Collapse
|
21
|
Kim Y, Flinkstrom Z, Candry P, Winkler MKH, Myung J. Resource availability governs polyhydroxyalkanoate (PHA) accumulation and diversity of methanotrophic enrichments from wetlands. Front Bioeng Biotechnol 2023; 11:1210392. [PMID: 37588137 PMCID: PMC10425282 DOI: 10.3389/fbioe.2023.1210392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Aquatic environments account for half of global CH4 emissions, with freshwater wetlands being the most significant contributors. These CH4 fluxes can be partially offset by aerobic CH4 oxidation driven by methanotrophs. Additionally, some methanotrophs can convert CH4 into polyhydroxyalkanoate (PHA), an energy storage molecule as well as a promising bioplastic polymer. In this study, we investigate how PHA-accumulating methanotrophic communities enriched from wetlands were shaped by varying resource availability (i.e., C and N concentrations) at a fixed C/N ratio. Cell yields, PHA accumulation, and community composition were evaluated in high (20% CH4 and 10 mM NH4 +) and low resource (0.2% CH4 and 0.1 mM NH4 +) conditions simulating engineered and environmental settings, respectively. High resource availability decreased C-based cell yields, while N-based cell yields remained stable, suggesting nutrient exchange patterns differed between methanotrophic communities at different resource concentrations. PHA accumulation was only observed in high resource enrichments, producing approximately 12.6% ± 2.4% (m/m) PHA, while PHA in low resource enrichments remained below detection. High resource enrichments were dominated by Methylocystis methanotrophs, while low resource enrichments remained significantly more diverse and contained only a minor population of methanotrophs. This study demonstrates that resource concentration shapes PHA-accumulating methanotrophic communities. Together, this provides useful information to leverage such communities in engineering settings as well as to begin understanding their role in the environment.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H. Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
22
|
Esmael ME, Ibrahim MIA, Aldhumri SA, Bayoumi RA, Matsuo K, Khattab AM. Lipid-membranes interaction, structural assessment, and sustainable production of polyhydroxyalkanoate by Priestia filamentosa AZU-A6 from sugarcane molasses. Int J Biol Macromol 2023; 242:124721. [PMID: 37150380 DOI: 10.1016/j.ijbiomac.2023.124721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
This study presented for the first time the PHA-lipid interactions by circular dichroism (CD) spectroscopy, besides a sustainable PHA production strategy using a cost-effective microbial isolate. About 48 bacterial isolates were selected from multifarious Egyptian sites and screened for PHAs production. The Fe(AZU-A6) was the most potent isolate, and identified genetically as Priestia filamentosa AZU-A6, while the intracellular PHA granules were visualized by TEM. Sugarcane molasses (SCM) was used an inexpensive carbon source and the production conditions were optimized through a Factor-By-Factor strategy and a Plackett-Burman statistical model. The highest production (6.84 g L-1) was achieved at 8.0 % SCM, pH 8.0, 35 °C, 250 rpm, and 0.5 g L-1 ammonium chloride after 72 h. The complementary physicochemical techniques (e.g., FTIR, NMR, GC-MS, DSC, and TGA) have ascertained the structural identity as poly-3-hydroxybutyrate (P3HB) with a characteristic melting temperature of 174.5 °C. The circular dichroism analysis investigated the existence of interactions between the PHB and the different lipids, particularly 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The ATR technique for the lipid-PHB films suggested that both the hydrophobic and electrostatic forces control the lipid-PHB interactions that might induce changes in the structuration of PHB.
Collapse
Affiliation(s)
- Mahmoud E Esmael
- Al-Azhar Center for Fermentation Biotechnology and Applied Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed I A Ibrahim
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; National Institute of Oceanography and Fisheries, NIOF, Egypt.
| | - Sami A Aldhumri
- Department of Biology, Alkhormah University College, Taif University, Taif 21974, Saudi Arabia
| | - Reda A Bayoumi
- Department of Biology, Alkhormah University College, Taif University, Taif 21974, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Abdelrahman M Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
23
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
24
|
Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS APPLIED BIO MATERIALS 2023; 6:1398-1430. [PMID: 36912908 DOI: 10.1021/acsabm.3c00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The diseases caused by microorganisms are innumerable existing on this planet. Nevertheless, increasing antimicrobial resistance has become an urgent global challenge. Thus, in recent decades, bactericidal materials have been considered promising candidates to combat bacterial pathogens. Recently, polyhydroxyalkanoates (PHAs) have been used as green and biodegradable materials in various promising alternative applications, especially in healthcare for antiviral or antiviral purposes. However, it lacks a systematic review of the recent application of this emerging material for antibacterial applications. Therefore, the ultimate goal of this review is to provide a critical review of the state of the art recent development of PHA biopolymers in terms of cutting-edge production technologies as well as promising application fields. In addition, special attention was given to collecting scientific information on antibacterial agents that can potentially be incorporated into PHA materials for biological and durable antimicrobial protection. Furthermore, the current research gaps are declared, and future research perspectives are proposed to better understand the properties of these biopolymers as well as their possible applications.
Collapse
Affiliation(s)
- Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Alireza Saidi
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
25
|
Chernozem RV, Pariy I, Surmeneva MA, Shvartsman VV, Planckaert G, Verduijn J, Ghysels S, Abalymov A, Parakhonskiy BV, Gracey E, Gonçalves A, Mathur S, Ronsse F, Depla D, Lupascu DC, Elewaut D, Surmenev RA, Skirtach AG. Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide. Adv Healthc Mater 2023; 12:e2201726. [PMID: 36468909 DOI: 10.1002/adhm.202201726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V-1 ) and lateral (1.06 ± 0.02 pm V-1 ) piezoresponse owing to a greater presence of electroactive β-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Igor Pariy
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Vladimir V Shvartsman
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Guillaume Planckaert
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Joost Verduijn
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Stef Ghysels
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anatolii Abalymov
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova cesta 39, Ljubljana, 1000, Slovenia
| | | | - Eric Gracey
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Amanda Gonçalves
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Frederik Ronsse
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Diederik Depla
- Department of Solid State Sciences, Ghent University, 9000, Ghent, Belgium
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
26
|
Mohammadalipour M, Asadolahi M, Mohammadalipour Z, Behzad T, Karbasi S. Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering. Int J Biol Macromol 2023; 230:123167. [PMID: 36621738 DOI: 10.1016/j.ijbiomac.2023.123167] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Polyhydroxybutyrate (PHB) is a natural-source biopolymer of the polyhydroxyalkanoate (PHA) family. Nanofibrous scaffolds prepared from this biological macromolecule have piqued the interest of researchers in recent years due to their unique properties. Nonetheless, these nanofibers continue to have problems such as low surface roughness and high hydrophobicity. In this research, PHB nanofibers were produced by the electrospinning method. Following that, the surface of nanofibers was modified by atmospheric plasma. Scanning electron microscopy (SEM), water contact angle (WCA), atomic force microscopy (AFM), tensile test, and cell behavior analyses were performed on mats to investigate the performance of treated and untreated samples. The achieved results showed a lower water contact angle (from ≃120° to 43°), appropriate degradation rate (up to ≃20 % weight loss in four months), and outstanding biomineralization (Ca/P ratio of ≃1.86) for the modified sample compared to the neat PHB. Finally, not only the MTT test show better viability of MG63 osteoblast cells, but also Alizarin staining, ALP, and SEM results likewise showed better cell proliferation in the presence of modified mats. These findings back up the claim that plasma surface modification is a quick, environmentally friendly, and low-cost way to improve the performance of nanofibers in bone tissue engineering.
Collapse
Affiliation(s)
| | - Mehrdad Asadolahi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Zahra Mohammadalipour
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tayebeh Behzad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Saeed Karbasi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials and Tissue Engineering, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
27
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Biopolymer - A sustainable and efficacious material system for effluent removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130168. [PMID: 36302289 DOI: 10.1016/j.jhazmat.2022.130168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Undesired discharge of various effluents directly into the aquatic ecosystem can adversely affect water quality, endangering aquatic and terrestrial flora and fauna. Therefore, the conceptual design and fabrication of a sustainable system for alleviating the harmful toxins that are discharged into the atmosphere and water bodies using a green sustainable approach is a fundamental standpoint. Adsorptive removal of toxins (∼99% removal efficacy) is one of the most attractive and facile approaches for cleaner technologies that remediate the environmental impacts and provide a safe operating space. Recently, the introduction of biopolymers for the adsorptive abstraction of toxins from water has received considerable attention due to their eclectic accessibility, biodegradability, biocompatibility, non-toxicity, and enhanced removal efficacy (∼ 80-90% for electrospun fibers). This review summarizes the recent literature on the biosorption of various toxins by biopolymers and the possible interaction between the adsorbent and adsorbate, providing an in-depth perspective of the adsorption mechanism. Most of the observed results are explained in terms of (1) biopolymers classification and application, (2) toxicity of various effluents, (3) biopolymers in wastewater treatment and their removal mechanism, and (4) regeneration, reuse, and biodegradation of the adsorbent biopolymer.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia; Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| |
Collapse
|
28
|
Zou Y, Yang M, Tao Q, Zhu K, Liu X, Wan C, Harder MK, Yan Q, Liang B, Ntaikou I, Antonopoulou G, Lyberatos G, Zhang Y. Recovery of polyhydroxyalkanoates (PHAs) polymers from a mixed microbial culture through combined ultrasonic disruption and alkaline digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116786. [PMID: 36410150 DOI: 10.1016/j.jenvman.2022.116786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
PHAs are a form of cellular storage polymers with diverse structural and material properties, and their biodegradable and renewable nature makes them a potential green alternative to fossil fuel-based plastics. PHAs are obtained through extraction via various mechanical, physical and chemical processes after their intracellular synthesis. Most studies have until now focused on pure cultures, while information on mixed microbial cultures (MMC) remains limited. In this study, ultrasonic (US) disruption and alkaline digestion by NaOH were applied individually and in combination to obtain PHAs products from an acclimated MMC using phenol as the carbon source. Various parameters were tested, including ultrasonic sound energy density, NaOH concentration, treatment time and temperature, and biomass density. US alone caused limited cell lysis and resulted in high energy consumption and low efficiency. NaOH of 0.05-0.2 M was more efficient in cell disruption, but led to PHAs degradation under elevated temperature and prolonged treatment. Combining US and NaOH significantly improved the overall process efficiency, which could reduce energy consumption by 2/3rds with only minimal PHAs degradation. The most significant factor was identified to be NaOH dosage and treatment time, with US sound energy density playing a minor role. Under the semi-optimized condition (0.2 M NaOH, 1300 W L-1, 10 min), over 70% recovery and 80% purity were achieved from a 3 g L-1 MMC slurry of approximately 50% PHAs fraction. The material and thermal properties of the products were analyzed, and the polymers obtained from US + NaOH treatments showed comparable or higher molecular weight to previously reported results. The products also exhibited good thermal stability and rheological properties, compared to the commercial standard. In conclusion, the combined US and NaOH method has the potential in real application as an efficient process to obtain high quality PHAs from MMC, and cost-effectiveness can be further optimized.
Collapse
Affiliation(s)
- Yuqi Zou
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Mingfeng Yang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Qiuyue Tao
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Keliang Zhu
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Marie K Harder
- Values and Sustainability Research Group, Cockcroft Building, University of Brighton, Lewes Road, BN2 4GJ, United Kingdom
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi City, Jiangsu Province, China
| | - Bo Liang
- Adesso Advanced Materials Wuhu Co. Ltd., Bldg.6, Xinghui Science and Technology Industrial Park, Sanshan District, Wuhu City, Anhui Province, China
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece
| | | | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China.
| |
Collapse
|
29
|
Grey A, Costeira R, Lorenzo E, O’Kane S, McCaul MV, McCarthy T, Jordan SF, Allen CCR, Kelleher BP. Biogeochemical properties of blue carbon sediments influence the distribution and monomer composition of bacterial polyhydroxyalkanoates (PHA). BIOGEOCHEMISTRY 2023; 162:359-380. [PMID: 36873379 PMCID: PMC9971093 DOI: 10.1007/s10533-022-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Coastal wetlands are highly efficient 'blue carbon' sinks which contribute to mitigating climate change through the long-term removal of atmospheric CO2 and capture of carbon (C). Microorganisms are integral to C sequestration in blue carbon sediments and face a myriad of natural and anthropogenic pressures yet their adaptive responses are poorly understood. One such response in bacteria is the alteration of biomass lipids, specifically through the accumulation of polyhydroxyalkanoates (PHAs) and alteration of membrane phospholipid fatty acids (PLFA). PHAs are highly reduced bacterial storage polymers that increase bacterial fitness in changing environments. In this study, we investigated the distribution of microbial PHA, PLFA profiles, community structure and response to changes in sediment geochemistry along an elevation gradient from intertidal to vegetated supratidal sediments. We found highest PHA accumulation, monomer diversity and expression of lipid stress indices in elevated and vegetated sediments where C, nitrogen (N), PAH and heavy metals increased, and pH was significantly lower. This was accompanied by a reduction in bacterial diversity and a shift to higher abundances of microbial community members favouring complex C degradation. Results presented here describe a connection between bacterial PHA accumulation, membrane lipid adaptation, microbial community composition and polluted C rich sediments. Graphical Abstract Geochemical, microbiological and polyhydroxyalkanoate (PHA) gradient in a blue carbon zone. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-022-01008-5.
Collapse
Affiliation(s)
- Anthony Grey
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ricardo Costeira
- The School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - Emmaline Lorenzo
- Department of Chemistry, University of Kansas, Lawrence, 66045 USA
| | - Sean O’Kane
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Margaret V. McCaul
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | - Tim McCarthy
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Sean F. Jordan
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | | | - Brian P. Kelleher
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
30
|
Ene N, Savoiu VG, Spiridon M, Paraschiv CI, Vamanu E. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Curr Pharm Des 2023; 29:3089-3102. [PMID: 38099526 DOI: 10.2174/0113816128263175231102061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
Collapse
Affiliation(s)
- Nicoleta Ene
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
- Department of Pharmacology, National Institute for Chemical Pharmaceutical Research and Development- ICCF, Vitan Avenue 112, Bucharest 031299, Romania
| | - Valeria Gabriela Savoiu
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Maria Spiridon
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Catalina Ileana Paraschiv
- Department of Chemistry, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
31
|
Zhuo XZ, Chou SC, Li SY. Producing medium-chain-length polyhydroxyalkanoate from diverse feedstocks by deregulating unsaturated fatty acid biosynthesis in Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 365:128078. [PMID: 36216288 DOI: 10.1016/j.biortech.2022.128078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The fatty acid metabolism in Escherichia coli has served as a basic metabolic chassis for medium-chain-length polyhydroxyalkanoate (mcl-PHA) production. In this study, the phaG and phaC1 genes from Pseudomonas entomophila L48 were first cloned as pGRN08. E. coli BL21P (E. coli BL21(DE3) ΔptsG) containing pGRN08 was able to produce 23 ± 3 and 7 ± 0 mg/L homopolymer poly(3-hydroxydecanoate)(P(3HD)) from glucose and xylose, respectively. Next, a gene, PSEEN0908 (encoding a putative 3-hydroxyacyl-CoA ligase), from P. entomophila L48 was found to increase the performance of mcl-PHA production. The induction of the fatty acid biosynthesis repressor (FabR), a transcription regulator that represses UFA biosynthesis, in E. coli substantially increased the mcl-PHA production by an order of magnitude from both unrelated and related carbon source conversion. A mcl-PHA concentration of 179 ± 1 mg/L and a content of 5.79 ± 0.16 % were obtained, where 31 mol% was 3-hydroxyoctanoate (3HO) and 69 mol% was 3HD.
Collapse
Affiliation(s)
- Xiao-Zhen Zhuo
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Chiao Chou
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
32
|
Sarıipek FB, Özaytekin İ, Erci F. Effect of ultrasound treatment on bacteriostatic activity of piezoelectric
PHB‐TiO
2
hybrid biodegradable scaffolds prepared by electrospinning technique. J Appl Polym Sci 2022. [DOI: 10.1002/app.53437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - İlkay Özaytekin
- Department of Chemical Engineering Konya Technical University Konya Turkey
| | - Fatih Erci
- Department of Biotechnology Necmettin Erbakan University Konya Turkey
| |
Collapse
|
33
|
Syed Mohamed SMD, Ansari NF, Md Iqbal N, Anis SNS. Polyhydroxyalkanoates (PHA)-based responsive polymers. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2021.1962874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Nor Faezah Ansari
- Department of Biotechnology, Kulliyyah of Science, International Islamic University of Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), International Islamic University of Malaysia, Kuantan, Malaysia
| | | | - Siti Nor Syairah Anis
- IJN-UTM Cardiovascular Engineering Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
34
|
Shishatskaya EI, Dudaev AE, Volova TG. Resorbable Nanomatrices from Microbial Polyhydroxyalkanoates: Design Strategy and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3843. [PMID: 36364619 PMCID: PMC9656924 DOI: 10.3390/nano12213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
From a series of biodegradable natural polymers of polyhydroxyalkanoates (PHAs)-poly-3-hydroxybutyrate (P(3HB) and copolymers containing, in addition to 3HB monomers, monomers of 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HHx), and 4-hydroxybutyrate (4HB), with different ratios of monomers poured-solvent casting films and nanomembranes with oriented and non-oriented ultrathin fibers were obtained by electrostatic molding. With the use of SEM, AFM, and measurement of contact angles and energy characteristics, the surface properties and mechanical and biological properties of the polymer products were studied depending on the method of production and the composition of PHAs. It has been shown in cultures of mouse fibroblasts of the NIH 3T3 line and diploid human embryonic cells of the M22 line that elastic films and nanomembranes composed of P(3HB-co-4HB) copolymers have high biocompatibility and provide adhesion, proliferation and preservation of the high physiological activity of cells for up to 7 days. Polymer films, namely oriented and non-oriented nanomembranes coated with type 1 collagen, are positively evaluated as experimental wound dressings in experiments on laboratory animals with model and surgical skin lesions. The results of planimetric measurements of the dynamics of wound healing and analysis of histological sections showed the regeneration of model skin defects in groups of animals using experimental wound dressings from P(3HB-co-4HB) of all types, but most actively when using non-oriented nanomembranes obtained by electrospinning. The study highlights the importance of nonwoven nanomembranes obtained by electrospinning from degradable low-crystalline copolymers P(3HB-co-4HB) in the effectiveness of the skin wound healing process.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| |
Collapse
|
35
|
Chaber P, Tylko G, Włodarczyk J, Nitschke P, Hercog A, Jurczyk S, Rech J, Kubacki J, Adamus G. Surface Modification of PHBV Fibrous Scaffold via Lithium Borohydride Reduction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7494. [PMID: 36363086 PMCID: PMC9653721 DOI: 10.3390/ma15217494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, lithium borohydride (LiBH4) reduction was used to modify the surface chemistry of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibers. Although the most common reaction employed in the surface treatment of polyester materials is hydrolysis, it is not suitable for fiber modification of bacterial polyesters, which are highly resistant to this type of reaction. The use of LiBH4 allowed the formation of surface hydroxyl groups under very mild conditions, which was crucial for maintaining the fibers' integrity. The presence of these groups resulted in a noticeable improvement in the surface hydrophilicity of PHBV, as revealed by contact angle measurements. After the treatment with a LiBH4 solution, the electrospun PHBV fibrous mat had a significantly greater number of viable osteoblast-like cells (SaOS-2 cell line) than the untreated mat. Moreover, the results of the cell proliferation measurements correlated well with the observed cell morphology. The most flattened SaOS-2 cells were found on the surface that supported the best cell attachment. Most importantly, the results of our study indicated that the degree of surface modification could be controlled by changing the degradation time and concentration of the borohydride solution. This was of great importance since it allowed optimization of the surface properties to achieve the highest cell-proliferation capacity.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Łukasiewicz Research Network, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
| | - Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jerzy Kubacki
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
36
|
Ecofriendly poly(3-hydroxybutyrate-co-4-hydroxybutyrate) microbeads for sanitary products. Int J Biol Macromol 2022; 224:1487-1495. [DOI: 10.1016/j.ijbiomac.2022.10.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
37
|
Chernozem RV, Pariy IO, Pryadko A, Bonartsev AP, Voinova VV, Zhuikov VA, Makhina TK, Bonartseva GA, Shaitan KV, Shvartsman VV, Lupascu DC, Romanyuk KN, Kholkin AL, Surmenev RA, Surmeneva MA. A comprehensive study of the structure and piezoelectric response of biodegradable polyhydroxybutyrate-based films for tissue engineering applications. Polym J 2022; 54:1225-1236. [DOI: 10.1038/s41428-022-00662-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
|
38
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
39
|
Charon G, Peixinho J, Michely L, Guinault A, Langlois V. Rosin natural terpenes as processing aid for polyhydroxyalkanoate: Thermal, mechanical, and viscoelastic properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.53052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gaëtan Charon
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Université Paris France
| | - Jorge Peixinho
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Université Paris France
| | - Laurent Michely
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Université Paris France
| | - Alain Guinault
- Université Paris Est Creteil, CNRS, ICMPE Créteil France
| | | |
Collapse
|
40
|
A promising antimicrobial bionanocomposite based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced silver doped zinc oxide nanoparticles. Sci Rep 2022; 12:14299. [PMID: 35995923 PMCID: PMC9395520 DOI: 10.1038/s41598-022-17470-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
A bionanocomposite based on biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and reinforced with silver@zinc oxide (Ag-ZnO) was synthesized in variable loadings of Ag-ZnO using the in-situ casting dissolution technique. The degradable biopolymer PHBV had been biosynthesized from date waste as a renewable carbon source. The fabricated products were investigated as promising antibacterial materials. The Ag-ZnO nanoparticles were also synthesized using the green method in the presence of Gum Arabic. The Ag-ZnO nanoparticles were loaded within the PHBV biopolymer backbone at concentration of 1%, 3%, 5% and 10%, PHBV/Ag-ZnO(1,3,5,10%). The chemical structure, morphology, physical and thermal properties of the PHBV/Ag-ZnO bionanocomposites were assessed via common characterization tools of FTIR, TGA, XRD, SEM and EDX. One step of the degradation process was observed in the range of 200-220 °C for all the obtained materials. The onset degradation temperature of the bionanocomposites have been noticeably increased with increasing the nanofiller loading percentage. In addition, fabricated products were investigated for their interesting antibacterial performance. A detailed biological screening for the obtained products was confirmed against some selected Gram-positive and Gram-negative strains S. aureus and E. coli, respectively. Overall, the bionanocomposite PHBV/Ag-ZnO(10%) was the most potent against both types of the selected bacteria. The order of bacterial growth inhibition on the surface of the fabricated bionanocomposites was detected as follows: PHBV/Ag-ZnO(10%) > PHBV/Ag-ZnO(5%) > PHBV/Ag-ZnO(3%) > PHBV/Ag-ZnO(1%).
Collapse
|
41
|
Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14081618. [PMID: 36015244 PMCID: PMC9416746 DOI: 10.3390/pharmaceutics14081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Biodegradable nanoparticles (NPs) are preferred as drug carriers because of their effectiveness in encapsulating drugs, ability to control drug release, and low cytotoxicity. Although poly(lactide co-glycolide) (PLGA)-based NPs have been used for controlled release strategies, they have some disadvantages. This study describes an approach using biodegradable polyhydroxyalkanoate (PHA) to overcome these challenges. By varying the amount of PHA, NPs were successfully fabricated by a solvent evaporation method. The size range of the NPS ranged from 137.60 to 186.93 nm, and showed zero-order release kinetics of paclitaxel (PTX) for 7 h, and more sustained release profiles compared with NPs composed of PLGA alone. Increasing the amount of PHA improved the PTX loading efficiency of NPs. Overall, these findings suggest that PHA can be used for designing polymeric nanocarriers, which offer a potential strategy for the development of improved drug delivery systems for sustained and controlled release.
Collapse
|
42
|
Moroni S, Khorshid S, Aluigi A, Tiboni M, Casettari L. Poly(3-hydroxybutyrate): a potential biodegradable excipient for direct 3D printing of pharmaceuticals. Int J Pharm 2022; 623:121960. [PMID: 35753539 DOI: 10.1016/j.ijpharm.2022.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
During the past decades, 3D printing has revolutionised different areas of research. Despite the considerable progress achieved in 3D printing of pharmaceuticals, the limited choice of suitable materials remains a challenge to overcome. The growing search for sustainable excipients has led to an increasing interest in biopolymers. Poly(3-hydroxybutyrate) (PHB) is a biocompatible and biodegradable biopolymer obtained from bacteria that could be efficiently employed in the pharmaceutical field. Here we aimed to demonstrate its potential application as a thermoplastic material for personalised medicine through 3D printing. More specifically, we processed PHB by using direct powder extrusion, a one-step additive manufacturing technique. To assess and denote the feasibility and versatility of the process, a 3D square model was manufactured in different dimensions (side x height: 12x2 mm; 18x2 mm; 24x2 mm) and loaded with increasing percentages of a model drug (up to 30% w/w). The manufacturing process was influenced by the drug content, and indeed, an increase in the amount of the drug determined a reduction in the printing temperature, without affecting the other parameters (such as the layer height). The composition of the model squares was investigated using Fourier-transform infrared spectroscopy, the resulting spectra confirmed that the starting materials were successfully incorporated into the final formulations. The thermal behaviour of the printed systems was characterized by differential scanning calorimetry, and thermal gravimetric analysis. Moreover, the sustained drug release profile of the formulations was performed over 21 days and showed to be dependent on the dimensions of the printed object and on the amount of loaded drug. Indeed, the formulation with 30% w/w in the dimension 24x2 mm released the highest amount of drug. Hence, the results suggested that PHB and direct powder extrusion technique could be promising tools for the manufacturing of prolonged release and personalised drug delivery forms.
Collapse
Affiliation(s)
- Sofia Moroni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Shiva Khorshid
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| |
Collapse
|
43
|
Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. CHEMOSPHERE 2022; 294:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
44
|
Liu W, Jiao T, Su Y, Wei R, Wang Z, Liu J, Fu N, Sui L. Electrospun porous poly(3-hydroxybutyrate- co-4-hydroxybutyrate)/lecithin scaffold for bone tissue engineering. RSC Adv 2022; 12:11913-11922. [PMID: 35481079 PMCID: PMC9016801 DOI: 10.1039/d2ra01398c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Bone tissue engineering has emerged as a promising restorative strategy for bone reconstruction and bone defect repair. It is challenging to establish an appropriate scaffold with an excellent porous microstructure for bone defects and thereby promote bone repair. In this study, electrospinning as a simple and efficient technology was employed to fabricate a porous poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) scaffold coated with lecithin. The morphology, phase composition, and physical properties of the electrospun P34HB/lec scaffold were characterized. Meanwhile, cellular behaviors of bone marrow mesenchymal stem cells (BMSCs), including proliferation, adhesion, migration, osteogenic differentiation, and related gene expression, were also investigated. Finally, a rat subcutaneous implant model and a calvarial defect model were used to evaluated the biocompatibility and effect of these scaffolds on bone repair, respectively. The in vitro results demonstrated that these electrospun fibers were interwoven with each other to form the porous P34HB/lec scaffold and the addition of lecithin improved the hydrophilicity of the pure P34HB scaffold, enhanced the efficiency of cell migration, and decreased inflammatory response. Furthermore, the in vivo results showed that P34HB/lec scaffold had excellent biocompatibility, improved the vascularization, and promoted the bone regeneration. All these results indicated that nanofibers of P34HB scaffolds in combination with the lecithin could exert a synergistic effect on promoting osteogenesis and regeneration of bone defects; thus, the P34HB scaffold with lecithin showed great application potential for bone tissue engineering.
Collapse
Affiliation(s)
- Wei Liu
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| | - Tiejun Jiao
- Department of Implant, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| | - Yuran Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| | - Ran Wei
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| | - Zheng Wang
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| | - Jiacheng Liu
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| | - Na Fu
- Department of Implant, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| | - Lei Sui
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University Tianjin 30070 China
| |
Collapse
|
45
|
Volpini V, Giubilini A, Corsi L, Nobili A, Bondioli F. Characterization of biocompatible scaffolds manufactured by fused filament fabrication of poly(3-hydroxybutyrate- co-3-hydroxyhexanoate). ROYAL SOCIETY OPEN SCIENCE 2022; 9:211485. [PMID: 35425628 PMCID: PMC8984350 DOI: 10.1098/rsos.211485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
We characterize poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) scaffolds for tissue repair and regeneration, manufactured by three-dimensional fused filament fabrication (FFF). PHBH belongs to the class of polyhydroxyalkanoates with interesting biodegradable and biocompatible capabilities, especially attractive for tissue engineering. Equally, FFF stands as a promising manufacturing technology for the production of custom-designed scaffolds. We address thermal, rheological and cytotoxicity properties of PHBH, placing special emphasis on the mechanical response of the printed material in a wide deformation range. Indeed, effective mechanical properties are assessed in both the linear and nonlinear regime. To warrant uniqueness of the material parameters, these are measured directly through digital image correlation, both in tension and compression, while experimental data fitting of finite-element analyses is only adopted for the determination of the second invariant coefficient in the nonlinear regime. Mechanical data are clearly porosity dependent, and they are given for both the cubic and the honeycomb infill pattern. Local strain spikes due to the presence of defects are observed and measured: those falling in the range 70-100% lead to macro-crack development and, ultimately, to failure. Results suggest the significant potential attached to FFF printing of PHBH for customizable medical devices which are biocompatible and mechanically resilient.
Collapse
Affiliation(s)
- Valentina Volpini
- Department of Science and Methods in Engineering, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
- Centre En&Tech, Tecnopolo, p.le Europa 1, 42124 Reggio Emilia, Italy
| | - Alberto Giubilini
- National Consortium of Material Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Lorenzo Corsi
- Life Science Department, University of Modena and Reggio Emilia, 41125 Modena, Italy
- National Institute for Biostructures and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Roma, Italy
| | - Andrea Nobili
- Centre En&Tech, Tecnopolo, p.le Europa 1, 42124 Reggio Emilia, Italy
- Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy
| | - Federica Bondioli
- National Consortium of Material Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
46
|
Kettner A, Noll M, Griehl C. Leptolyngbya sp. NIVA-CYA 255, a Promising Candidate for Poly(3-hydroxybutyrate) Production under Mixotrophic Deficiency Conditions. Biomolecules 2022; 12:biom12040504. [PMID: 35454093 PMCID: PMC9030801 DOI: 10.3390/biom12040504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Cyanobacteria are a promising source for the sustainable production of biodegradable bioplastics such as poly(3-hydroxybutyrate) (PHB). The auto-phototrophic biomass formation is based on light and CO2, which is an advantage compared to heterotrophic PHB-producing systems. So far, only a handful of cyanobacterial species suitable for the high-yield synthesis of PHB have been reported. In the present study, the PHB formation, biomass, and elemental composition of Leptolyngbya sp. NIVA-CYA 255 were investigated. Therefore, a three-stage cultivation process was applied, consisting of a growth stage; an N-, P-, and NP-depleted phototrophic stage; and a subsequent mixotrophic deficiency stage, initiated by sodium acetate supplementation. The extracted cyanobacterial PHB was confirmed by FTIR- and GC-MS analyses. Furthermore, the fluorescent dyes LipidGreen2 and Nile red were used for fluorescence-based monitoring and the visualization of PHB. LipidGreen2 was well suited for PHB quantification, while the application of Nile red was limited by fluorescence emission crosstalk with phycocyanin. The highest PHB yields were detected in NP- (325 mg g−1) and N-deficiency (213 mg g−1). The glycogen pool was reduced in all cultures during mixotrophy, while lipid composition was not affected. The highest glycogen yield was formed under N-deficiency (217 mg g−1). Due to the high carbon storage capacity and PHB formation, Leptolyngbya sp. NIVA-CYA 255 is a promising candidate for PHB production. Further work will focus on upscaling to a technical scale and monitoring the formation by LipidGreen2-based fluorometry.
Collapse
Affiliation(s)
- Alexander Kettner
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Strasse 55, 06366 Koethen, Germany;
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany;
| | - Carola Griehl
- Competence Center Algal Biotechnology, Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Strasse 55, 06366 Koethen, Germany;
- Correspondence: ; Tel.: +49-(0)-3496-67-2526
| |
Collapse
|
47
|
Idris S, Abdul Rahim R, Abdullah Amirul AA. Bioprospecting and Molecular Identification of Used Transformer Oil-Degrading Bacteria for Bioplastics Production. Microorganisms 2022; 10:583. [PMID: 35336158 PMCID: PMC8953411 DOI: 10.3390/microorganisms10030583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
One of the major impediments to the commercialization of biodegradable plastic is the high cost of substrate. Consequently, there is a continuous search for effective microorganisms and cheaper carbon substrates to reduce the high production cost. In this study, waste transformer oil-degrading bacteria were isolated from soil, wastewater, and sediment samples, using a mineral salt medium (MSM) supplemented with 1% waste transformer oil as the sole carbon source. The isolates were screened for polyhydroxyalkanoates (PHA) production using Nile red staining and fluorescence microscopy. PHA granules accumulation was confirmed using transmission electron microscopy. Oil degradation analysis was accomplished using solvent extraction and gravimetric methods whereas, the bacteria were identified using 16S DNA sequence homology. A total of 62 transformer oil-degrading bacteria were isolated, out of which 16 (26%) showed positive results for Nile red fluorescence microscopy. The identified organisms belong to four different taxonomic genera of Acinetobacter, Bacillus, Proteus, and Serratia. The percentage of oil degradation observed among the different isolates ranged between 19.58% and 57.51%. Analysis of the PHA extracted from the selected isolate revealed the presence of medium chain length polyhydroxyalkanoates (mcl-PHA). The findings of this work have further highlighted the diversity of the bacteria capable of utilizing waste streams such as waste transformer oil. Consequently, the isolates can be explored as agents of converting waste transformer oil into bioplastics.
Collapse
Affiliation(s)
- Shehu Idris
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (S.I.); (R.A.R.)
- Department of Microbiology, Kaduna State University, Kaduna PMB 2339, Nigeria
| | - Rashidah Abdul Rahim
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (S.I.); (R.A.R.)
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (S.I.); (R.A.R.)
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Penang, Malaysia
| |
Collapse
|
48
|
Brojanigo S, Gronchi N, Cazzorla T, Wong TS, Basaglia M, Favaro L, Casella S. Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2022; 347:126383. [PMID: 34808314 DOI: 10.1016/j.biortech.2021.126383] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Starch-rich by-products could be efficiently exploited for polyhydroxyalkanoates (PHAs) production. Unfortunately, Cupriavidus necator DSM 545, one of the most efficient PHAs producers, is not able to grow on starch. In this study, a recombinant amylolytic strain of C. necator DSM 545 was developed for the one-step PHAs production from starchy residues, such as broken rice and purple sweet potato waste. The glucodextranase G1d from Arthrobacter globiformis I42 and the α-amylase amyZ from Zunongwangia profunda SM-A87 were co-expressed into C. necator DSM 545. The recombinant C. necator DSM 545 #11, selected for its promising hydrolytic activity, produced high biomass levels with noteworthy PHAs titers: 5.78 and 3.65 g/L from broken rice and purple sweet potato waste, respectively. This is the first report on the engineering of C. necator DSM 545 for efficient amylase production and paves the way to the one-step conversion of starchy waste into PHAs.
Collapse
Affiliation(s)
- Silvia Brojanigo
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Nicoletta Gronchi
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Tiziano Cazzorla
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom; National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Marina Basaglia
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy.
| | - Sergio Casella
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, (PD), Italy
| |
Collapse
|
49
|
Foong CP, Higuchi-Takeuchi M, Ohtawa K, Asai T, Liu H, Ozeki Y, Numata K. Engineered Mutants of a Marine Photosynthetic Purple Nonsulfur Bacterium with Increased Volumetric Productivity of Polyhydroxyalkanoate Bioplastics. ACS Synth Biol 2022; 11:909-920. [PMID: 35061943 DOI: 10.1021/acssynbio.1c00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are green and sustainable bioplastics that could replace petrochemical synthetic plastics without posing environmental threats to living organisms. In addition, sustainable PHA production could be achieved using marine photosynthetic purple nonsulfur bacteria (PNSBs) that utilize natural seawater, sunlight, carbon dioxide gas, and nitrogen gas for growth. However, PHA production using marine photosynthetic PNSBs has not been economically feasible yet due to its high cost and low productivity. In this work, strain improvement, using genome-wide mutagenesis coupled with high-throughput screening via fluorescence-activated cell sorting, we were able to create Rhodovulum sulfidophilum mutants with enhanced volumetric PHA productivity, with an up to 1.7-fold increase. The best selected mutants (E6 and E6M4) reached the stationary growth phase 1 day faster and accumulated the maximum PHA content 2 days faster than the wild type. Maximizing volumetric PHA productivity before the stationary growth phase is indeed an additional advantage for R. sulfidophilum as a growth-associated PHA producer.
Collapse
Affiliation(s)
- Choon Pin Foong
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8246, Japan
| | - Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenji Ohtawa
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hanqin Liu
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8246, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
50
|
Saratale RG, Cho SK, Kadam AA, Ghodake GS, Kumar M, Bharagava RN, Varjani S, Nair S, Kim DS, Shin HS, Saratale GD. Developing Microbial Co-Culture System for Enhanced Polyhydroxyalkanoates (PHA) Production Using Acid Pretreated Lignocellulosic Biomass. Polymers (Basel) 2022; 14:polym14040726. [PMID: 35215639 PMCID: PMC8876045 DOI: 10.3390/polym14040726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
In the growing polymer industry, the interest of researchers is captivated by bioplastics production with biodegradable and biocompatible properties. This study examines the polyhydroxyalkanoates (PHA) production performance of individual Lysinibacillus sp. RGS and Ralstonia eutropha ATCC 17699 and their co-culture by utilizing sugarcane bagasse (SCB) hydrolysates. Initially, acidic (H2SO4) and acidified sodium chlorite pretreatment was employed for the hydrolysis of SCB. The effects of chemical pretreatment on the SCB biomass assembly and its chemical constituents were studied by employing numerous analytical methods. Acidic pretreatment under optimal conditions showed effective delignification (60%) of the SCB biomass, leading to a maximum hydrolysis yield of 74.9 ± 1.65% and a saccharification yield of 569.0 ± 5.65 mg/g of SCB after enzymatic hydrolysis. The resulting SCB enzymatic hydrolysates were harnessed for PHA synthesis using individual microbial culture and their defined co-culture. Co-culture strategy was found to be effective in sugar assimilation, bacterial growth, and PHA production kinetic parameters relative to the individual strains. Furthermore, the effects of increasing acid pretreated SCB hydrolysates (20, 30, and 40 g/L) on cell density and PHA synthesis were studied. The effects of different cost-effective nutrient supplements and volatile fatty acids (VFAs) with acid pretreated SCB hydrolysates on cell growth and PHA production were studied. By employing optimal conditions and supplementation of corn steep liquor (CSL) and spent coffee waste extracted oil (SCGO), the co-culture produced maximum cell growth (DCW: 11.68 and 11.0 g/L), PHA accumulation (76% and 76%), and PHA titer (8.87 and 8.36 g/L), respectively. The findings collectively suggest that the development of a microbial co-culture strategy is a promising route for the efficient production of high-value bioplastics using different agricultural waste biomass.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (R.G.S.); (A.A.K.)
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (S.-K.C.); (G.S.G.)
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (R.G.S.); (A.A.K.)
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (S.-K.C.); (G.S.G.)
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow 226 025, Uttar Pradesh, India;
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India;
| | - Supriya Nair
- Department of Research and Development, SRL Limited, Prime Square, S. V. Road, Goregaon (W), Mumbai 400 062, Maharashtra State, India;
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
- Correspondence:
| |
Collapse
|