1
|
Li X, Guo Y, Ling Q, Guo Z, Lei Y, Feng X, Wu J, Zhang N. Advances in the Structure, Function, and Regulatory Mechanism of Plant Plasma Membrane Intrinsic Proteins. Genes (Basel) 2024; 16:10. [PMID: 39858557 PMCID: PMC11765485 DOI: 10.3390/genes16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Plasma membrane intrinsic proteins (PIPs), as members of the aquaporin (AQPs) family, can transport not only water but also urea, CO2, H2O2, metal ions, and trace elements. They are crucial for maintaining water balance, substance transport, and responding to various stresses. This article delves into the structure, function, response mechanism, molecular mechanism, and regulatory mechanism of PIPs as a result of biological and abiotic stresses. It also summarizes current research trends surrounding PIPs and highlights potential research directions for further exploration. The aim is to assist researchers in related fields in gaining a more comprehensive understanding and precise insight into the advancements in PIP research.
Collapse
Affiliation(s)
- Xueting Li
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Yirong Guo
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Qiuping Ling
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Zhejun Guo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yawen Lei
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| |
Collapse
|
2
|
Chen D, Zhu H, Lu L, Chen Y, Zhang X, Huang X, Ouyang P, Geng Y, Li Z. Identification, characterization and the inflammatory regulating effect of NOD1/2 in sturgeon. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109407. [PMID: 38281612 DOI: 10.1016/j.fsi.2024.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
As an ancient species with both conservation and commercial value, Sturgeon's inflammatory regulation mechanism is a research point. Nucleotide-binding and oligomerization domain-containing proteins 1 and 2 (NOD1/2) are classical intracellular pattern recognition receptors (PRRs) in immunity of anti-bacterial infection. However, the characterization and function of NOD1/2 in Sturgeon are still unclear. In this study, we analyzed the synteny relationship of NOD1/2 genes between Acipenser ruthenus and representative fishes at the genome-level. Results showed that the ArNOD2 collinear genes pair was present in all representative fishes. The duplicated ArNOD1/2 genes were under purifying selection during evolution as indicated by their Ka/Ks values. To explore the function of NOD1/2, we further investigated their expression patterns and the effects of pathogenic infection, PAMPs treatment, and siRNA interference in Acipenser baerii, the sibling species of A. ruthenus. Results showed that both AbNOD1/2 were expressed at early developmental stages and in different tissues. Pathogenic infection in vivo and PAMPs treatment in vitro demonstrated that AbNOD1/2 could respond to pathogen stimulation. siRNA interference with AbNOD1/2 inhibited expression levels of RIPK2 and inflammatory cytokines compared to the control group after iE-DAP or MDP treatment. This study hinted that the AbNOD1/2 could stimulate the inflammatory cytokines response during evolutionary processes.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Zhu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinqiu Chen
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Ouyang
- Basic Veterinary Department, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Geng
- Basic Veterinary Department, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Yang X, Li J, Ji C, Wei Z, Zhao T, Pang Q. Overexpression of an aquaporin gene EsPIP1;4 enhances abiotic stress tolerance and promotes flowering in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:25-35. [PMID: 36323195 DOI: 10.1016/j.plaphy.2022.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Aquaporins are water channel proteins that play an essential role in plant growth and development. Despite extensive functional characterization of aquaporins in model plants such as Arabidopsis, their contributions to abiotic stress tolerance in non-model plants are still poorly understood. As a close relative of Arabidopsis thaliana, Eutrema salsugineum is an excellent model for studying salt tolerance. Here, we identified and functionally characterized EsPIP1;4, a gene encoding a plasma membrane intrinsic protein (PIP) aquaporin in E. salsugineum. Overexpression of EsPIP1;4 in Arabidopsis improved seed germination and root growth of transgenic plants under abiotic stress, which was accompanied by an increase in proline accumulation, reduction in MDA, and decrease in the rate of ion leakage. Under abiotic stress, transgenic plants overexpressing EsPIP1;4 also showed increased antioxidant enzyme activity, and enhanced K+/Na+ ratio compared to control plants. Furthermore, overexpression of EsPIP1;4 promoted flowering by regulating genes in multiple flowering pathways. Together, our results demonstrated that an aquaporin from E. salsugineum improves abiotic stress tolerance and promotes flowering.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiawen Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Chengcheng Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhaoxin Wei
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Tong Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Guo Z, Ma D, Li J, Wei M, Zhang L, Zhou L, Zhou X, He S, Wang L, Shen Y, Li QQ, Zheng HL. Genome-wide identification and characterization of aquaporins in mangrove plant Kandelia obovata and its role in response to the intertidal environment. PLANT, CELL & ENVIRONMENT 2022; 45:1698-1718. [PMID: 35141923 DOI: 10.1111/pce.14286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 05/26/2023]
Abstract
Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lichun Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Cheng M, Yuan H, Wang R, Zou J, Liang T, Yang F, Li S. Genome-Wide Identification and Analysis of the Metallothionein Genes in Oryza Genus. Int J Mol Sci 2021; 22:ijms22179651. [PMID: 34502554 PMCID: PMC8431808 DOI: 10.3390/ijms22179651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022] Open
Abstract
Metallothionein (MT) proteins are low molecular mass, cysteine-rich, and metal-binding proteins that play an important role in maintaining metal homeostasis and stress response. However, the evolutionary relationships and functional differentiation of MT in the Oryza genus remain unclear. Here we identified 53 MT genes from six Oryza genera, including O. sativa ssp. japonica, O. rufipogon, O. sativa ssp. indica, O. nivara, O. glumaepatula, and O. barthii. The MT genes were clustered into four groups based on phylogenetic analysis. MT genes are unevenly distributed on chromosomes; almost half of the MT genes were clustered on chromosome 12, which may result from a fragment duplication containing the MT genes on chromosome 12. Five pairs of segmental duplication events and ten pairs of tandem duplication events were found in the rice MT family. The Ka/Ks values of the fifteen duplicated MT genes indicated that the duplicated MT genes were under a strong negative selection during evolution. Next, combining the promoter activity assay with gene expression analysis revealed different expression patterns of MT genes. In addition, the expression of OsMT genes was induced under different stresses, including NaCl, CdCl2, ABA, and MeJ treatments. Additionally, we found that OsMT genes were mainly located in chloroplasts. These results imply that OsMT genes play different roles in response to these stresses. All results provide important insights into the evolution of the MT gene family in the Oryza genus, and will be helpful to further study the function of MT genes.
Collapse
|
6
|
Ye X, Gao Y, Chen C, Xie F, Hua Q, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. Genome-Wide Identification of Aquaporin Gene Family in Pitaya Reveals an HuNIP6;1 Involved in Flowering Process. Int J Mol Sci 2021; 22:7689. [PMID: 34299311 PMCID: PMC8306030 DOI: 10.3390/ijms22147689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are essential membrane proteins involved in seed maturation and germination, stomata movement, photosynthesis, and regulation of plant flowering processes. Pitaya flowers are open at night and wither at daybreak, which shows an obvious circadian rhythm. In this study, a comprehensive genome-wide analysis of AQPs in Hylocereus undantus was conducted to screen key genes associated with flowering processes. A total of 33 HuAQP genes were identified from the H. undantus genome. The 33 HuAQPs were grouped into four subfamilies: 10 PIPs, 13 TIPs, 8 NIPs, and 2 SIPs, which were distributed on 9 out of 11 pitaya chromosomes (Chr) (except for Chr7 and Chr10). Results from expression profiles showed that HuNIP6;1 may be involved in pitaya's floral opening. HuNIP6;1 was localized exclusively in the cell membrane. Overexpression of HuNIP6;1 in Arabidopsis thaliana significantly promoted early flowering through regulating negative flowering regulators of MJM30, COL9, and PRR5, suggesting that HuNIP6;1 plays key roles in regulating flowering time. The present study provides the first genome-wide analysis of the AQP gene family in pitaya and valuable information for utilization of HuAQPs.
Collapse
Affiliation(s)
- Xiaoying Ye
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Canbin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Fangfang Xie
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Qingzhu Hua
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Zhike Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Jietang Zhao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Guibing Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.C.); (F.X.); (Q.H.); (Z.Z.); (R.Z.); (J.Z.); (G.H.)
| |
Collapse
|
7
|
Venisse JS, Õunapuu-Pikas E, Dupont M, Gousset-Dupont A, Saadaoui M, Faize M, Chen S, Chen S, Petel G, Fumanal B, Roeckel-Drevet P, Sellin A, Label P. Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of the Aquaporin Gene Family in Betula pendula. Int J Mol Sci 2021; 22:7269. [PMID: 34298887 PMCID: PMC8304918 DOI: 10.3390/ijms22147269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023] Open
Abstract
Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.
Collapse
Affiliation(s)
- Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Eele Õunapuu-Pikas
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Maxime Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Aurélie Gousset-Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
- National Institute of Agronomy of Tunisia (INAT), Crop Improvement Laboratory, INRAT, Tunis CP 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Gilles Petel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| |
Collapse
|
8
|
Li Q, Tong T, Jiang W, Cheng J, Deng F, Wu X, Chen ZH, Ouyang Y, Zeng F. Highly Conserved Evolution of Aquaporin PIPs and TIPs Confers Their Crucial Contribution to Flowering Process in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:761713. [PMID: 35058944 PMCID: PMC8764411 DOI: 10.3389/fpls.2021.761713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 05/10/2023]
Abstract
Flowering is the key process for the sexual reproduction in seed plants. In gramineous crops, the process of flowering, which includes the actions of both glume opening and glume closing, is directly driven by the swelling and withering of lodicules due to the water flow into and out of lodicule cells. All these processes are considered to be controlled by aquaporins, which are the essential transmembrane proteins that facilitate the transport of water and other small molecules across the biological membranes. In the present study, the evolution of aquaporins and their contribution to flowering process in plants were investigated via an integration of genome-wide analysis and gene expression profiling. Across the barley genome, we found that HvTIP1;1, HvTIP1;2, HvTIP2;3, and HvPIP2;1 were the predominant aquaporin genes in lodicules and significantly upregulated in responding to glume opening and closing, suggesting the importance of them in the flowering process of barley. Likewise, the putative homologs of the above four aquaporin genes were also abundantly expressed in lodicules of the other monocots like rice and maize and in petals of eudicots like cotton, tobacco, and tomato. Furthermore, all of them were mostly upregulated in responding to the process of floret opening, indicating a conserved function of these aquaporin proteins in plant flowering. The phylogenetic analysis based on the OneKP database revealed that the homologs of TIP1;1, TIP1;2, TIP2;3, and PIP2;1 were highly conserved during the evolution, especially in the angiosperm species, in line with their conserved function in controlling the flowering process. Taken together, it could be concluded that the highly evolutionary conservation of TIP1;1, TIP1;2, TIP2;3 and PIP2;1 plays important roles in the flowering process for both monocots and eudicots.
Collapse
Affiliation(s)
- Qi Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Younan Ouyang
- China National Rice Research Institute, Hangzhou, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Fanrong Zeng,
| |
Collapse
|
9
|
Versatile Roles of Aquaporins in Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21249485. [PMID: 33322217 PMCID: PMC7763978 DOI: 10.3390/ijms21249485] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Aquaporins (AQPs) are universal membrane integrated water channel proteins that selectively and reversibly facilitate the movement of water, gases, metalloids, and other small neutral solutes across cellular membranes in living organisms. Compared with other organisms, plants have the largest number of AQP members with diverse characteristics, subcellular localizations and substrate permeabilities. AQPs play important roles in plant water relations, cell turgor pressure maintenance, the hydraulic regulation of roots and leaves, and in leaf transpiration, root water uptake, and plant responses to multiple biotic and abiotic stresses. They are also required for plant growth and development. In this review, we comprehensively summarize the expression and roles of diverse AQPs in the growth and development of various vegetative and reproductive organs in plants. The functions of AQPs in the intracellular translocation of hydrogen peroxide are also discussed.
Collapse
|
10
|
Kong W, Zhang C, Qiang Y, Zhong H, Zhao G, Li Y. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots. Int J Mol Sci 2020; 21:ijms21134615. [PMID: 32610550 PMCID: PMC7369714 DOI: 10.3390/ijms21134615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Rice (Oryza sativa L.) is a widely cultivated food crop around the world, especially in Asia. However, rice seedlings often suffer from cold stress, which affects their growth and yield. Here, RNA-seq analysis and Meta-QTLs mapping were performed to understand the molecular mechanisms underlying cold tolerance in the roots of 14-day-old seedlings of rice (RPY geng, cold-tolerant genotype). A total of 4779 of the differentially expressed genes (DEGs) were identified, including 2457 up-regulated and 2322 down-regulated DEGs. The GO, COG, KEEG, and Mapman enrichment results of DEGs revealed that DEGs are mainly involved in carbohydrate transport and metabolism, signal transduction mechanisms (plant hormone signal transduction), biosynthesis, transport and catabolism of secondary metabolites (phenylpropanoid biosynthesis), defense mechanisms, and large enzyme families mechanisms. Notably, the AP2/ERF-ERF, NAC, WRKY, MYB, C2H2, and bHLH transcription factors participated in rice’s cold–stress response and tolerance. On the other hand, we mapped the identified DEGs to 44 published cold–stress-related genes and 41 cold-tolerant Meta-QTLs regions. Of them, 12 DEGs were the published cold–stress-related genes and 418 DEGs fell into the cold-tolerant Meta-QTLs regions. In this study, the identified DEGs and the putative molecular regulatory network can provide insights for understanding the mechanism of cold stress tolerance in rice. In addition, DEGs in KEGG term-enriched terms or cold-tolerant Meta-QTLs will help to secure key candidate genes for further functional studies on the molecular mechanism of cold stress response in rice.
Collapse
|
11
|
Singh S, Bhatt V, Kumar V, Kumawat S, Khatri P, Singla P, Shivaraj S, Nadaf A, Deshmukh R, Sharma TR, Sonah H. Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea. PLANTS 2020; 9:plants9060799. [PMID: 32604788 PMCID: PMC7355465 DOI: 10.3390/plants9060799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
Abstract
Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.
Collapse
Affiliation(s)
- Shweta Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Vacha Bhatt
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra 411007, India; (V.B.); (A.N.)
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Pankaj Singla
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - S.M. Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Altaf Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra 411007, India; (V.B.); (A.N.)
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi 110001, India
- Correspondence: (T.R.S.); (H.S.); Tel.: +91-172-522-1181 (H.S.)
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India; (S.S.); (V.K.); (S.K.); (P.K.); (P.S.); (S.M.S.); (R.D.)
- Correspondence: (T.R.S.); (H.S.); Tel.: +91-172-522-1181 (H.S.)
| |
Collapse
|
12
|
Faize M, Fumanal B, Luque F, Ramírez-Tejero JA, Zou Z, Qiao X, Faize L, Gousset-Dupont A, Roeckel-Drevet P, Label P, Venisse JS. Genome Wild Analysis and Molecular Understanding of the Aquaporin Diversity in Olive Trees ( Olea Europaea L.). Int J Mol Sci 2020; 21:E4183. [PMID: 32545387 PMCID: PMC7312470 DOI: 10.3390/ijms21114183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life, playing important roles in the uptake of water and many solutes across the membranes. In olive trees, AQP diversity, protein features and their biological functions are still largely unknown. This study focuses on the structure and functional and evolution diversity of AQP subfamilies in two olive trees, the wild species Olea europaea var. sylvestris (OeuAQPs) and the domesticated species Olea europaea cv. Picual (OleurAQPs), and describes their involvement in different physiological processes of early plantlet development and in biotic and abiotic stress tolerance in the domesticated species. A scan of genomes from the wild and domesticated olive species revealed the presence of 52 and 79 genes encoding full-length AQP sequences, respectively. Cross-genera phylogenetic analysis with orthologous clustered OleaAQPs into five established subfamilies: PIP, TIP, NIP, SIP, and XIP. Subsequently, gene structures, protein motifs, substrate specificities and cellular localizations of the full length OleaAQPs were predicted. Functional prediction based on the NPA motif, ar/R selectivity filter, Froger's and specificity-determining positions suggested differences in substrate specificities of Olea AQPs. Expression analysis of the OleurAQP genes indicates that some genes are tissue-specific, whereas few others show differential expressions at different developmental stages and in response to various biotic and abiotic stresses. The current study presents the first detailed genome-wide analysis of the AQP gene family in olive trees and it provides valuable information for further functional analysis to infer the role of AQP in the adaptation of olive trees in diverse environmental conditions in order to help the genetic improvement of domesticated olive trees.
Collapse
Affiliation(s)
- Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Francisco Luque
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, 23071 Jaén, Spain; (F.L.); (J.A.R.-T.)
| | - Jorge A. Ramírez-Tejero
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, 23071 Jaén, Spain; (F.L.); (J.A.R.-T.)
| | - Zhi Zou
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; (Z.Z.); (X.Q.)
| | - Xueying Qiao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China; (Z.Z.); (X.Q.)
| | - Lydia Faize
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, Murcia University, CEBAS CSIC, 30100 Murcia, Spain;
| | - Aurélie Gousset-Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (B.F.); (A.G.-D.); (P.R.-D.); (P.L.)
| |
Collapse
|
13
|
Kong W, An B, Zhang Y, Yang J, Li S, Sun T, Li Y. Sugar Transporter Proteins (STPs) in Gramineae Crops: Comparative Analysis, Phylogeny, Evolution, and Expression Profiling. Cells 2019; 8:cells8060560. [PMID: 31181814 PMCID: PMC6628381 DOI: 10.3390/cells8060560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Sugar transporter proteins (STPs), such as H+/sugar symporters, play essential roles in plants’ sugar transport, growth, and development, and possess an important potential to enhance plants’ performance of multiple agronomic traits, especially crop yield and stress tolerance. However, the evolutionary dynamics of this important gene family in Gramineae crops are still not well-documented and functional differentiation of rice STP genes remain unclear. To address this gap, we conducted a comparative genomic study of STP genes in seven representative Gramineae crops, which are Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Setaria italica (Si), Sorghum bicolor (Sb), Zea mays (Zm), Oryza rufipogon (Or), and Oryza sativa ssp. japonica (Os). In this case, a total of 177 STP genes were identified and grouped into four clades. Of four clades, the Clade I, Clade III, and Clade IV showed an observable number expansion compared to Clade II. Our results of identified duplication events and divergence time of duplicate gene pairs indicated that tandem, Whole genome duplication (WGD)/segmental duplication events play crucial roles in the STP gene family expansion of some Gramineae crops (expect for Hv) during a long-term evolutionary process. However, expansion mechanisms of the STP gene family among the tested species were different. Further selective force studies revealed that the STP gene family in Gramineae crops was under purifying selective forces and different clades and orthologous groups with different selective forces. Furthermore, expression analysis showed that rice STP genes play important roles not only in flower organs development but also under various abiotic stresses (cold, high-temperature, and submergence stresses), blast infection, and wounding. The current study highlighted the expansion and evolutionary patterns of the STP gene family in Gramineae genomes and provided some important messages for the future functional analysis of Gramineae crop STP genes.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yue Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Yue.Zhang-@whu.edu.cn
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuangmiao Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Tong Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Bienert MD, Muries B, Crappe D, Chaumont F, Bienert GP. Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues. PLANT DIRECT 2019; 3:e00143. [PMID: 31245781 PMCID: PMC6549384 DOI: 10.1002/pld3.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Major Intrinsic Proteins (MIP) are a family of channels facilitating the diffusion of water and/or small solutes across cellular membranes. X Intrinsic Proteins (XIP) form the least characterized MIP subfamily in vascular plants. XIPs are mostly impermeable to water but facilitate the diffusion of hydrogen peroxide, urea and boric acid when expressed in heterologous expression systems. However, their transport capabilities in planta and their impact on plant physiology are still unknown. Here, we demonstrated that overexpression of NtXIP1;1 in Nicotiana tabacum by the En2pPMA4 or the 35S CaMV promoter and in Arabidopsis, which does not contain any XIP gene, by the 35S CaMV promoter, resulted in boron (B)-deficiency symptoms such as death of the shoot apical meristem, infertile flowers, and puckered leaves. Leaf B concentrations in symptomatic tissues and B xylem sap concentrations were lower in the overexpressors than in control plants. Importantly, expression of NtXIP1;1 under the control of the AtNIP5;1 promoter complemented the B deficiency phenotype of the Atnip5;1 knockout mutant, defining its ability to act as a boric acid channel in planta. Protein quantification analysis revealed that NtXIP1;1 was predominantly expressed in young B-demanding tissues and induced under B-deficient conditions. Our results strongly suggest that NtXIP1;1 plays a role in B homeostasis and its tissue-specific expression critically contributes to the distribution of B within tobacco.
Collapse
Affiliation(s)
- Manuela Desiree Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Beatriz Muries
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Delphine Crappe
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Gerd Patrick Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| |
Collapse
|
15
|
Kong W, Gong Z, Zhong H, Zhang Y, Zhao G, Gautam M, Deng X, Liu C, Zhang C, Li Y. Expansion and Evolutionary Patterns of Glycosyltransferase Family 8 in Gramineae Crop Genomes and Their Expression under Salt and Cold Stresses in Oryza sativa ssp. japonica. Biomolecules 2019; 9:E188. [PMID: 31096659 PMCID: PMC6571792 DOI: 10.3390/biom9050188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls play a fundamental role in several ways, providing structural support for cells, resistance against pathogens and facilitating the communication between cells. The glycosyltransferase family 8 (GT8) is involved in the formation of the plant cell wall. However, the evolutionary relationship and the functional differentiation of this important gene family remain obscure in Gramineae crop genomes. In the present investigation, we identified 269 GT8 genes in the seven Gramineae representative crop genomes, namely, 33 in Hordeum vulgare, 37 in Brachypodium distachyon, 40 in Oryza sativa ssp. japonica, 41 in Oryza rufipogon, 36 in Setaria italica, 37 in Sorghum bicolor, and 45 in Zea mays. Phylogenetic analysis suggested that all identified GT8 proteins belonged to seven subfamilies: galacturonosyltransferase (GAUT), galacturonosyltransferase-like (GATL), GATL-related (GATR), galactinol synthase (GolS), and plant glycogenin-like starch initiation proteins A (PGSIP-A), PGSIP-B, and PGSIP-C. We estimated that the GAUT subfamily might be further divided into four subgroups (I-IV) due to differentiation of gene structures and expression patterns. Our orthogroup analysis identified 22 orthogroups with different sizes. Of these orthogroups, several orthogroups were lost in some species, such as S. italica and Z. mays. Moreover, lots of duplicate pairs and collinear pairs were discovered among these species. These results indicated that multiple duplication modes led to the expansion of this important gene family and unequal loss of orthogroups and subfamilies might have happened during the evolutionary process. RNA-seq, microarray analysis, and qRT-PCR analyses indicated that GT8 genes are critical for plant growth and development, and for stresses responses. We found that OsGolS1 was significantly up-regulated under salt stress, while OsGAUT21, OsGATL2, and OsGATL5 had remarkable up-regulation under cold stress. The current study highlighted the expansion and evolutionary patterns of the GT8 gene family in these seven Gramineae crop genomes and provided potential candidate genes for future salt- and cold- resistant molecular breeding studies in O. sativa.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Ziyun Gong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yue Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Yue.Zhang-@whu.edu.cn
| | - Gangqing Zhao
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mayank Gautam
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoxiao Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chang Liu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chenhao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Deng X, An B, Zhong H, Yang J, Kong W, Li Y. A Novel Insight into Functional Divergence of the MST Gene Family in Rice Based on Comprehensive Expression Patterns. Genes (Basel) 2019; 10:genes10030239. [PMID: 30897847 PMCID: PMC6470851 DOI: 10.3390/genes10030239] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023] Open
Abstract
Sugars are critical for plant growth and development as suppliers of carbon and energy, as signal molecules, or as solute molecules for osmotic homeostasis. Monosaccharide transporter (MST) genes are involved in various processes of plant growth and development as well as in response to abiotic stresses. However, the evolution and their roles of MST genes in growth and development and in coping with abiotic stresses in rice are poorly known. Here, we identified 64 MST genes in rice genome, which are classified into seven subfamilies: STP, PLT, AZT, ERD, pGlcT, INT, and XTPH. MST genes are not evenly distributed between chromosomes (Chrs) with a bias to Chr 3, 4, 7, and 11, which could be a result of duplication of fragments harboring MST genes. In total, 12 duplication events were found in the rice MST family, among which, two pairs were derived from fragmental duplications and ten pairs were from tandem duplications. The synonymous and nonsynonymous substitution rates of duplicate gene pairs demonstrated that the MST family was under a strong negative selection during the evolution process. Furthermore, a comprehensive expression analysis conducted in 11 different tissues, three abiotic stresses, five hormone treatments, and three sugar treatments revealed different expression patterns of MST genes and indicated diversified functions of them. Our results suggest that MST genes play important roles not only in various abiotic stresses but also in hormone and sugar responses. The present results will provide a vital insight into the functional divergence of the MST family in the future study.
Collapse
Affiliation(s)
- Xiaolong Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Evolutionary Analysis of GH3 Genes in Six Oryza Species/Subspecies and Their Expression under Salinity Stress in Oryza sativa ssp. japonica. PLANTS 2019; 8:plants8020030. [PMID: 30682815 PMCID: PMC6409606 DOI: 10.3390/plants8020030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/09/2023]
Abstract
Glycoside Hydrolase 3 (GH3), a member of the Auxin-responsive gene family, is involved in plant growth, the plant developmental process, and various stress responses. The GH3 gene family has been well-studied in Arabidopsis thaliana and Zea mays. However, the evolution of the GH3 gene family in Oryza species remains unknown and the function of the GH3 gene family in Oryza sativa is not well-documented. Here, a systematic analysis was performed in six Oryza species/subspecies, including four wild rice species and two cultivated rice subspecies. A total of 13, 13, 13, 13, 12, and 12 members were identified in O. sativa ssp. japonica, O. sativa ssp. indica, Oryza rufipogon, Oryza nivara, Oryza punctata, and Oryza glumaepatula, respectively. Gene duplication events, structural features, conserved motifs, a phylogenetic analysis, chromosome locations, and Ka/Ks ratios of this important family were found to be strictly conservative across these six Oryza species/subspecies, suggesting that the expansion of the GH3 gene family in Oryza species might be attributed to duplication events, and this expansion could occur in the common ancestor of Oryza species, even in common ancestor of rice tribe (Oryzeae) (23.07~31.01 Mya). The RNA-seq results of different tissues displayed that OsGH3 genes had significantly different expression profiles. Remarkably, the qRT-PCR result after NaCl treatment indicated that the majority of OsGH3 genes play important roles in salinity stress, especially OsGH3-2 and OsGH3-8. This study provides important insights into the evolution of the GH3 gene family in Oryza species and will assist with further investigation of OsGH3 genes’ functions under salinity stress.
Collapse
|
18
|
Kong W, Zhang Y, Deng X, Li S, Zhang C, Li Y. Comparative Genomic and Transcriptomic Analysis Suggests the Evolutionary Dynamic of GH3 Genes in Gramineae Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:1297. [PMID: 31681387 PMCID: PMC6803601 DOI: 10.3389/fpls.2019.01297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/18/2019] [Indexed: 05/18/2023]
Abstract
Glycoside hydrolase 3 (GH3) gene family belongs to auxin-responsive gene families and is tightly linked with hormone homeostasis and signaling pathways. However, our knowledge about the evolutionary dynamic of GH3 genes in Gramineae crops is limited. In this study, a comparative genomic and transcriptomic analysis was conducted to study evolutionary patterns and the driving selective forces of GH3 gene family in six representative Gramineae crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa ssp. japonica (Os). A total of 17, 13, 11, 9, 8, and 11 GH3 proteins (GH3s) were identified in Si, Zm, Sb, Hv, Bd, and Os, respectively. Phylogenetic, conserved motif, and gene structural analyses could divide all GH3s into two groups (I and II), and all GH3s consisted of seven orthogroups (Ors) on the basis of Or identification result. We further found that genes in the same Or showed similar sequence and structural features, whereas genes in the same groups exhibited intrinsic differences in exon numbers and intron lengths. These results revealed GH3 genes in the same groups have been differentiated. Obvious differences in total numbers of GH3 genes, Ors, and duplication events among these six tested Gramineae crops reflected lineage-specific expansions and homologous gene loss/gain of GH3 gene family during the evolutionary process. In addition, selective force and expression analyses indicated that all GH3 genes were constrained by strong purifying selection, and GH3 genes in conserved Ors showed higher expression levels than that in unconserved Ors. The current study highlighted different evolutionary patterns of GH3 genes in Gramineae crops resulted from different evolutionary rates and duplication events and provided a vital insight into the functional divergence of GH3 genes.
Collapse
|
19
|
Zhong H, Kong W, Gong Z, Fang X, Deng X, Liu C, Li Y. Evolutionary Analyses Reveal Diverged Patterns of SQUAMOSA Promoter Binding Protein-Like ( SPL) Gene Family in Oryza Genus. FRONTIERS IN PLANT SCIENCE 2019; 10:565. [PMID: 31139200 PMCID: PMC6517846 DOI: 10.3389/fpls.2019.00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/15/2019] [Indexed: 05/07/2023]
Abstract
The SPL (SQUAMOSA promoter binding protein-like) gene family is one of the plant-specific transcription factor families and controls a considerable number of biological functions, including floral development, phytohormone signaling, and toxin resistance. However, the evolutionary patterns and driving forces of SPL genes in the Oryza genus are still not well-characterized. In this study, we investigated a total of 105 SPL genes from six AA genome Oryza representative species (O. barthii, O. glumipatula, O. nivara, O. rufipogon, O. glaberrima, and O. sativa). Phylogenetic and motif analyses indicated that SPL proteins could be divided into two distinct lineages (I and II), and further studies showed lineage II consisted of three clades (IIA, IIB, and IIC). We found that clade I had comparable structural features with clade IIA, whereas genes in clade IIC displayed intrinsic differences, such as lower exon numbers and the presence of miR156 regulation elements. Nineteen orthologous groups of OsSPLs in Oryza were also identified, and most exons within those genes maintained constant length, whereas length of intron changed relatively. All groups were constrained by stronger purifying selection and diversified continually including alterative gene number, intron length, and miR156 regulation. Subsequently, cis-acting element analyses revealed the potential role of SPLs in wild rice, which might participate in light-responsive, phytohormone response, and plant growth and development. Our results shed light on that different evolutionary rates and duplication events might result in divergent evolutionary patterns in each lineage of SPL genes, providing a guide in exploring diverse function in the rice gene family among six closely related Oryza species.
Collapse
|
20
|
Chen S, Xu Z, Zhao Y, Zhong X, Li C, Yang G. Structural characteristic and phylogenetic analysis of the complete chloroplast genome of Dianthus Caryophyllus. Mitochondrial DNA B Resour 2018; 3:1131-1132. [PMID: 33474443 PMCID: PMC7799632 DOI: 10.1080/23802359.2018.1521313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
Chloroplast genomes are widely used in genetic engineering, molecular marker development, and phylogeny. In order to analyze the complete chloroplast genome of Dianthus caryophyllus, the complete chloroplast genome of D. caryophyllus was sequenced and annotated. On the other hand, phylogenetic analysis of the chloroplast genome of D. caryophyllus was carried out. The results showed that the whole length of the chloroplast genome of D. caryophyllus was 147,604 bp, and had a typical conserved quadripartite structure. The G and C basic content of D. caryophyllus chloroplast was 36.3%. The genome contained 83 protein-coding genes, 34 tRNA genes, and 6 rRNA genes. Among the protein-coding genes, 10 genes contain a single intron and 2 genes contain two introns. The phylogeny of D. caryophyllus indicated that the closest phylogenetic relationship was D. longicalyxanus. This study provides materials for the molecular study of D. caryophyllus may improve the carnation industry.
Collapse
Affiliation(s)
- Shuwen Chen
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
- School of Material and Chemical Engineering, Hunan City University, Yiyang, Hunan, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiaofen Zhong
- School of Material and Chemical Engineering, Hunan City University, Yiyang, Hunan, China
| | - Chaoyang Li
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Guiyan Yang
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|