1
|
Yang R, Zhao C, Ding S, Ruan J, Li D, Xiang Y, Zhou J, Su H, Li N. Label-free SELEX of aptamers for ultra-sensitive electrochemical aptasensor detection of amanitin in wild mushrooms. Anal Chim Acta 2024; 1326:343136. [PMID: 39260920 DOI: 10.1016/j.aca.2024.343136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Mushroom poisoning poses a significant global health concern, with high morbidity and mortality rates. The primary lethal toxins responsible for this condition are alpha-amanitin (ɑ-AMA) and beta-amanitin (β-AMA). As a promising bio-recognition molecules in biosensors, aptamers, have been broadly used in the field of food detection. However, the current SELEX-based methods for screening aptamers for structurally similar small molecules were limited by the labelling or salt ion induction. In this study, we aimed to develop a novel label-free SELEX strategy for the screening of aptamers with high affinity and constructed new aptasensors for the detection of ɑ-AMA and β-AMA. RESULTS A novel label-free SELEX strategy based on the positively charged gold nanoparticles (AuNPs) was proposed to simultaneous screening of aptamers for ɑ-AMA and β-AMA. Only 18 rounds of SELEX were required to obtain new aptamers. The candidate aptamers were analyzed by colloidal gold assay, and the sequences of ɑ-30 and β-37 displayed great affinity with Kd values of 22.26 nM and 23.32 nM, respectively, without interference from botanical toxins. Notably, the truncated aptamers ɑ-30-2 (50 bp) and β-37-2 (57 bp) exhibited higher affinity than their original counterpart (79 bp). Subsequently, the selected aptamers were utilized to construct recognition probes for electrochemical aptasensors based on hairpin cyclic cleavage of substrates by Cu2+ dependent DNAzyme and Exo I-triggered recycling cascades. The detection platform showed excellent analytical performance with limits of detection as low as 4.57 pg/mL (ɑ-AMA) and 8.49 pg/mL (β-AMA). Moreover, the aptasensors exhibited superior performance in mushroom and urine samples. SIGNIFICANCE This work developed a simple and efficient label-free SELEX method for screening new aptamers for ɑ-AMA and β-AMA, which employed the positively charged AuNPs as the screening medium, without the need for chemical labelling of libraries or induction of salt ions. Furthermore, two novel electrochemical aptasensors were developed based on our newly obtained aptamers, which offer the new biosensing tool for ultrasensitive detection of the AMA poisoning, showing great potential in practical applications.
Collapse
Affiliation(s)
- Renxiang Yang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Sheng Ding
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, Sichuan, 610041, China
| | - Jia Ruan
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Dongqiu Li
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yijia Xiang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jie Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China.
| |
Collapse
|
2
|
Deng X, Ma B, Gong Y, Li J, Zhou Y, Xu T, Hao P, Sun K, Lv Z, Yu X, Zhang M. Advances in Aptamer-Based Conjugate Recognition Techniques for the Detection of Small Molecules in Food. Foods 2024; 13:1749. [PMID: 38890976 PMCID: PMC11172347 DOI: 10.3390/foods13111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Small molecules are significant risk factors for causing food safety issues, posing serious threats to human health. Sensitive screening for hazards is beneficial for enhancing public security. However, traditional detection methods are unable to meet the requirements for the field screening of small molecules. Therefore, it is necessary to develop applicable methods with high levels of sensitivity and specificity to identify the small molecules. Aptamers are short-chain nucleic acids that can specifically bind to small molecules. By utilizing aptamers to enhance the performance of recognition technology, it is possible to achieve high selectivity and sensitivity levels when detecting small molecules. There have been several varieties of aptamer target recognition techniques developed to improve the ability to detect small molecules in recent years. This review focuses on the principles of detection platforms, classifies the conjugating methods between small molecules and aptamers, summarizes advancements in aptamer-based conjugate recognition techniques for the detection of small molecules in food, and seeks to provide emerging powerful tools in the field of point-of-care diagnostics.
Collapse
Affiliation(s)
- Xin Deng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Yunfei Gong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Jiali Li
- Hangzhou Quickgene Sci-Tech. Co., Ltd., Hangzhou 310018, China;
| | - Yuxin Zhou
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Tianran Xu
- College of Life Science, China Jiliang University, Hangzhou 310018, China; (Y.Z.); (T.X.)
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Zhiyong Lv
- Dept Qual Managemet, Inner Mongolia Yili Grp. Co., Ltd., Hohhot 151100, China;
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (X.D.); (B.M.); (Y.G.); (P.H.); (K.S.); (X.Y.)
| |
Collapse
|
3
|
Geng L, Sun J, Liu M, Huang J, Dong J, Guo Z, Guo Y, Sun X. Molecularly imprinted polymers-aptamer electrochemical sensor based on dual recognition strategy for high sensitivity detection of chloramphenicol. Food Chem 2024; 437:137933. [PMID: 37951077 DOI: 10.1016/j.foodchem.2023.137933] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
In this paper, an electrochemical sensor based on a dual recognition strategy of molecularly imprinted polymers (MIPs) and aptamer (Apt) has been designed for the high sensitivity detection of chloramphenicol (CAP). Here, MIPs and Apt have provided dual recognition sites to greatly improve the specific recognition ability of the sensor. Chitosan-multi-walled carbon nanotubes (CS-MWNTs) and AuNPs (gold nanoparticles) have been used for their excellent electrical conductivity. When CAP existed in the detection environment, the imprinted cavities with specific recognition ability bound to CAP through forces such as hydrogen bonds. It hindered the rate of electron transfer and resulted in a decrease in current value. Quantitative detection of CAP could be achieved after analyzing the relationship between the concentration of CAP and the change of current value. After optimizing the experimental parameters, the detection range of the sensor was 10-8 g/L-10-2 g/L with the limit of detection of 3.3 × 10-9 g/L, indicating that the sensor had a high practical application potential.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiwei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
4
|
Ferreira L, Flanagan SP, Fogel R, Limson JL. Generation of epitope-specific hCG aptamers through a novel targeted selection approach. PLoS One 2024; 19:e0295673. [PMID: 38394285 PMCID: PMC10890750 DOI: 10.1371/journal.pone.0295673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/28/2023] [Indexed: 02/25/2024] Open
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone used as a biomarker for several medical conditions, including pregnancy, trophoblastic and nontrophoblastic cancers. Most commercial hCG tests rely on a combination of antibodies, one of which is usually specific to the C-terminal peptide of the β-subunit. However, cleavage of this region in many hCG degradation variants prevents rapid diagnostic tests from quantifying all hCG variants in serum and urine samples. An epitope contained within the core fragment, β1, represents an under-researched opportunity for developing immunoassays specific to most variants of hCG. In the study described here, we report on a SELEX procedure tailored towards the identification of two pools of aptamers, one specific to the β-subunit of hCG and another to the β1 epitope within it. The described SELEX procedure utilized antibody-blocked targets, which is an underutilized strategy to exert negative selection pressure and in turn direct aptamer enrichment to a specific epitope. We report on the first aptamers, designated as R4_64 and R6_5, each capable of recognising two distinct sites of the hCG molecule-the β-subunit and the (presumably) β1-epitope, respectively. This study therefore presents a new SELEX approach and the generation of novel aptamer sequences that display potential hCG-specific biorecognition.
Collapse
Affiliation(s)
- Lauren Ferreira
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Shane Patrick Flanagan
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Ronen Fogel
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Janice Leigh Limson
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, Eastern Cape, South Africa
| |
Collapse
|
5
|
Kumar P, Birader K, Suman P. Development of an Impedimetric Aptasensor for Detection of Progesterone in Undiluted Biological Fluids. ACS Pharmacol Transl Sci 2023; 6:92-99. [PMID: 36654753 PMCID: PMC9841775 DOI: 10.1021/acsptsci.2c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 12/03/2022]
Abstract
A cost-effective, deployable, and quantitative progesterone biosensor is desirable for regular progesterone sensing in biological and environmental samples to safeguard public health. Aptasensors have been shown to be affordable as compared to antibody-based sensors, but so far, none of the progesterone aptamers could detect it in undiluted and unprocessed biological samples. Thus, to select an aptamer suitable for biosensing in unprocessed biological samples, a modified magnetic bead-based approach with counter-selection in milk and serum was performed. G-quadruplex forming progesterone aptamers were preferentially screened through in silico, gold nanoparticle-based adsorption-desorption assay and circular dichroism spectroscopy. GQ5 aptamer showed extended stability and a high progesterone binding affinity (K D 5.29 ± 2.9 nM) as compared to any other reported progesterone aptamers (P4G11 and P4G13). Under optimized conditions, GQ5 aptamer was coated on the gold electrode to develop an impedimetric aptasensor (limit of detection: 0.53, 0.91, and 1.9 ng/mL in spiked buffer, undiluted milk, and serum, respectively, with the dynamic range of detection from 0.1 to 50 ng/mL in buffer and 0.1 to 30 ng/mL in both milk and serum). The aptasensor exhibited a very high level of κ value (>0.9) with ELISA to detect progesterone in milk and serum. The aptasensor could be regenerated three times and can be stored for up to 10 days at 4 °C. Therefore, GQ5 may be used to develop a portable impedimetric aptasensor for clinical and on-site progesterone sensing in various biological and environmental samples.
Collapse
Affiliation(s)
- Pankaj Kumar
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| | - Komal Birader
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
| | - Pankaj Suman
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| |
Collapse
|
6
|
Ye H, Wan T, Li X, Li C, He K, Guo Y. Rapid detection of kanamycin using cooperative recognition split aptamer and graphene oxide nanosheets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Wu W, Sun Q, Li T, Liu K, Jiang Y, Wang Y, Yang Y. Selection and characterization of bispecific aptamers against malachite green and leucomalachite green. Anal Biochem 2022; 658:114849. [PMID: 36150472 DOI: 10.1016/j.ab.2022.114849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/01/2022]
Abstract
In order to develop multi-residues rapid detection, the bispecific aptamers against malachite green (MG) and leucomalachite green (LMG) were isolated by the capture systematic evolution of ligands by exponential enrichment (Capture-SELEX). After thirteen rounds of selection, the enriched ssDNA pools were sent for high-throughput sequencing. Nine aptamer candidates (A1-A9) were picked out to test their specificity by gold nanoparticles (AuNPs) colorimetric assay. Three aptamers (A2, A3, A5) with good selectivity were truncated to verify their affinity by fluorescence assay. Finally, three truncated aptamers (A2-a, A3-a, A5-a) with bispecificity and high affinity were identified. For LMG, the dissociation constant (Kd) of them were 8.4 ± 0.8 nM, 8.2 ± 1.2 nM, and 13.7 ± 1.4 nM, respectively. For MG, Kd of them were 3.4 ± 0.3 μM, 2.3 ± 0.2 μM, 3.0 ± 0.2μM. Among them, A3-a is the best. Our work will provide novel probes for the development of multi-residues rapid detection as well as opportunities for multiple target aptamer discovery.
Collapse
Affiliation(s)
- Wenwei Wu
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Qifeng Sun
- Beijing Hightrust Medical Laboratory Co., LTD, Beijing, 102600, China
| | - Tiansong Li
- College of Science, Beihua University, Jilin, 132001, China
| | - Kexin Liu
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yan Jiang
- Agricultural College, Yanbian University, Yanji, 133002, China
| | - Yi Wang
- College of Science, Beihua University, Jilin, 132001, China.
| | - Yongjie Yang
- Agricultural College, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
8
|
Gao J, Liu N, Zhang X, Yang E, Song Y, Zhang J, Han Q. Utilizing the DNA Aptamer to Determine Lethal α-Amanitin in Mushroom Samples and Urine by Magnetic Bead-ELISA (MELISA). Molecules 2022; 27:molecules27020538. [PMID: 35056853 PMCID: PMC8779134 DOI: 10.3390/molecules27020538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Amanita poisoning is one of the most deadly types of mushroom poisoning. α-Amanitin is the main lethal toxin in amanita, and the human-lethal dose is about 0.1 mg/kg. Most of the commonly used detection techniques for α-amanitin require expensive instruments. In this study, the α-amanitin aptamer was selected as the research object, and the stem-loop structure of the original aptamer was not damaged by truncating the redundant bases, in order to improve the affinity and specificity of the aptamer. The specificity and affinity of the truncated aptamers were determined using isothermal titration calorimetry (ITC) and gold nanoparticles (AuNPs), and the affinity and specificity of the aptamers decreased after truncation. Therefore, the original aptamer was selected to establish a simple and specific magnetic bead-based enzyme linked immunoassay (MELISA) method for α-amanitin. The detection limit was 0.369 μg/mL, while, in mushroom it was 0.372 μg/mL and in urine 0.337 μg/mL. Recovery studies were performed by spiking urine and mushroom samples with α-amanitin, and these confirmed the desirable accuracy and practical applicability of our method. The α-amanitin and aptamer recognition sites and binding pockets were investigated in an in vitro molecular docking environment, and the main binding bases of both were T3, G4, C5, T6, T7, C67, and A68. This study truncated the α-amanitin aptamer and proposes a method of detecting α-amanitin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinqin Han
- Correspondence: ; Tel.: +86-(0871)-65939528
| |
Collapse
|
9
|
Xiao S, Sun L, Lu J, Dong Z. A label-free aptasensor for rapid detection of clenbuterol based on SYBR GREEN I. NEW J CHEM 2022. [DOI: 10.1039/d2nj01959k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free fluorescent biosensor based on clenbuterol binding aptamer and the fluorescent intercalator SYBR Green I (SGI) was established for the sensitive and selective detection of clenbuterol. In the absence...
Collapse
|
10
|
Xiao S, Sun L, Kang M, Dong Z. A label-free aptasensor for clenbuterol detection based on fluorescence resonance energy transfer between graphene oxide and rhodamine B. RSC Adv 2022; 12:32737-32743. [DOI: 10.1039/d2ra06260g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
A label-free aptasensor for clenbuterol was developed through the fluorescence resonance energy transfer mechanism by using an aptamer as the recognition element, rhodamine B as the fluorescence probe and graphene oxide as the fluorescence quencher.
Collapse
Affiliation(s)
- Shuyan Xiao
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Liang Sun
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Mingqin Kang
- Changchun Customs Technology Center, Changchun 130062, China
| | - Zhongping Dong
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
11
|
Fan H, Liu Y, Dong J, Luo Z. Screening Aptamers that Are Specific for Beclomethasone and the Development of Quantum Dot-Based Assay. Appl Biochem Biotechnol 2021; 193:3139-3150. [PMID: 34085169 DOI: 10.1007/s12010-021-03585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
We developed an aptamer that was specific for beclomethasone (BEC) via systematic evolution of ligands by exponential enrichment (SELEX). Development was monitored by real-time quantitative PCR (Q-PCR) and the enriched library was sequenced by high-throughput sequencing. Forty-seven aptamer candidates were obtained; of these, BEC-6 showed the highest affinity (Kd = 0.15 ± 0.02 μM) and did not cross-react with other BEC analogs. We also developed a quantum dot-based assay (QDA) for the detection of BEC that was based upon a quantum dot (QD) composite probe. Under optimized reaction conditions, the linear range of this method for BEC was 0.1 to 10 μM with a low detection limit (LOD) of 0.1 μM. Subsequently, the method was used to detect BEC in Traditional Chinese Medicine (TCM) with a mean recovery of 81.72-91.84%. This is the first report to describe the development of an aptamer against BEC; BEC-6 can also be engineered into QDA for the detection of BEC.
Collapse
Affiliation(s)
- Hongli Fan
- Institute of Mathematical Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yaxiong Liu
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Jiamei Dong
- Institute of Mathematical Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhuoya Luo
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, 510663, China.
| |
Collapse
|
12
|
Earnest KG, McConnell EM, Hassan EM, Wunderlich M, Hosseinpour B, Bono BS, Chee MJ, Mulloy JC, Willmore WG, DeRosa MC, Merino EJ. Development and characterization of a DNA aptamer for MLL-AF9 expressing acute myeloid leukemia cells using whole cell-SELEX. Sci Rep 2021; 11:19174. [PMID: 34580387 PMCID: PMC8476576 DOI: 10.1038/s41598-021-98676-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Current classes of cancer therapeutics have negative side effects stemming from off-target cytotoxicity. One way to avoid this would be to use a drug delivery system decorated with targeting moieties, such as an aptamer, if a targeted aptamer is available. In this study, aptamers were selected against acute myeloid leukemia (AML) cells expressing the MLL-AF9 oncogene through systematic evolution of ligands by exponential enrichment (SELEX). Twelve rounds of SELEX, including two counter selections against fibroblast cells, were completed. Aptamer pools were sequenced, and three candidate sequences were identified. These sequences consisted of two 23-base primer regions flanking a 30-base central domain. Binding studies were performed using flow cytometry, and the lead sequence had a binding constant of 37.5 + / - 2.5 nM to AML cells, while displaying no binding to fibroblast or umbilical cord blood cells at 200 nM. A truncation study of the lead sequence was done using nine shortened sequences, and showed the 5' primer was not important for binding. The lead sequence was tested against seven AML patient cultures, and five cultures showed binding at 200 nM. In summary, a DNA aptamer specific to AML cells was developed and characterized for future drug-aptamer conjugates.
Collapse
Affiliation(s)
- Kaylin G Earnest
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Erin M McConnell
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Eman M Hassan
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Bianca S Bono
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Maria C DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Birader K, Kumar P, Tammineni Y, Barla JA, Reddy S, Suman P. Colorimetric aptasensor for on-site detection of oxytetracycline antibiotic in milk. Food Chem 2021; 356:129659. [PMID: 33812186 DOI: 10.1016/j.foodchem.2021.129659] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Oxytetracycline (OTC), one of the largely used antibiotic in veterinary practice has been banned due to its potential side effects. Development of a field applicable and affordable kit to detect OTC will help to eliminate such milk from human consumption. An aptamer has been designed (27 nt; Kd = 29.2 ± 19.4 nM) through rational truncation. OTC interacts with this aptamer in G rich regions as confirmed by molecular modelling and circular dichroism spectroscopy. To develop a lateral flow based aptasensor, OTC was conjugated with a 7 kDa carrier protein to immobilize onto the nitrocellulose membrane. Using 0.125 µM aptamer-gold conjugate, assay could visually detects upto 5 ng/mL of OTC in spiked milk within 10 mins [Limit of quantitation (LOQ)-0.254 ± 1.62 ng/mL; permissible limit 100 ng/mL]. It showed no cross reactivity with components of milk and data correlated with analysis done through HPLC.
Collapse
Affiliation(s)
- Komal Birader
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Pankaj Kumar
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Yathirajarao Tammineni
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Jeannie Alice Barla
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Shashidhar Reddy
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India
| | - Pankaj Suman
- Animal Biotechnology Laboratory, National Institute of Animal Biotechnology Hyderabad, 500032, India.
| |
Collapse
|
14
|
Zhang W, Li D, Zhang J, Jiang L, Li Z, Lin JS. Preparation and Characterization of Aptamers Against O,p'-DDT. Int J Mol Sci 2020; 21:ijms21062211. [PMID: 32210057 PMCID: PMC7139375 DOI: 10.3390/ijms21062211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
The compound 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o,p’-DDT) has been identified as one of the endocrine-disrupting chemicals causing adverse effects on wildlife and even humans through bioaccumulation. Its detection has become increasingly important. We have obtained candidate aptamers binding to o,p’-DDT by a systematic evolution of ligands by exponential enrichment (SELEX) protocol. Five out of seventeen candidate sequences were selected for preliminary characterization by SYBR Green I assay. One sequence with highest fluorescence response with o,p’-DDT, designated DDT_13, was chosen for further characterization. Its dissociation constant (Kd) was determined to be 412.3 ± 124.6 nM. DDT_13 exhibited low cross-binding activities on other tested small molecules. The good bioactivities of DDT_13 were demonstrated for the analysis of spiked lake water and tap water samples. This study provides a novel o,p’-DDT-specific probe for its future applications.
Collapse
|
15
|
Lu Q, Liu X, Hou J, Yuan Q, Li Y, Chen S. Selection of Aptamers Specific for DEHP Based on ssDNA Library Immobilized SELEX and Development of Electrochemical Impedance Spectroscopy Aptasensor. Molecules 2020; 25:molecules25030747. [PMID: 32050451 PMCID: PMC7038136 DOI: 10.3390/molecules25030747] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/20/2022] Open
Abstract
A selection of aptamers specific for di(2-ethylhexyl) phthalate (DEHP) and development of electrochemical impedance spectroscopy (EIS) aptasensor are described in this paper. The aptamers were selected from an immobilized ssDNA library using the systematic evolution of ligands by exponential enrichment (SELEX). The enrichment was monitored using real-time quantitative PCR (Q-PCR), and the aptamers were identified by high-throughput sequencing (HTS), gold nanoparticles (AuNPs) colorimetric assay, and localized surface plasmon resonance (LSPR). The EIS aptasensor was developed to detect DEHP in water samples. After eight rounds of enrichment, HTS, AuNPs colorimetric assay, and LSPR analysis indicated that four aptamers had higher binding activity, and aptamer 31 had the highest affinity (Kd = 2.26 ± 0.06 nM). The EIS aptasensor had a limit of detection (LOD) of 0.103 pg/mL with no cross-reactivity to DEHP analogs and a mean recovery of 76.07% to 141.32% for detection of DEHP in water samples. This aptamer is novel with the highest affinity and sensitivity.
Collapse
Affiliation(s)
- Qi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (Q.L.); (Q.Y.); (Y.L.); (S.C.)
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (Q.L.); (Q.Y.); (Y.L.); (S.C.)
- Hubei Engineering Research Center of typical wild vegetable Breeding and Comprehensive Utilization Technology; Hubei Normal University, Huangshi 435002, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, China
- Correspondence: (X.L.); (J.H.)
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (Q.L.); (Q.Y.); (Y.L.); (S.C.)
- Hubei Engineering Research Center of typical wild vegetable Breeding and Comprehensive Utilization Technology; Hubei Normal University, Huangshi 435002, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, China
- Correspondence: (X.L.); (J.H.)
| | - Qiuxue Yuan
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi 435002, China
| | - Yani Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (Q.L.); (Q.Y.); (Y.L.); (S.C.)
| | - Sirui Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (Q.L.); (Q.Y.); (Y.L.); (S.C.)
| |
Collapse
|
16
|
The Twice-Oxidized Graphene Oxide/Gold Nanoparticles Composite SERS Substrate for Sensitive Detection of Clenbuterol Residues in Animal-Origin Food Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, LIN JS. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng 2020; 14:1. [PMID: 31956340 PMCID: PMC6956507 DOI: 10.1186/s13036-019-0223-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aptamers, single-stranded DNAs or RNAs, can be selected from a library containing random sequences using a method called Systematic Evolution of Ligands by EXponential Enrichment (SELEX). In SELEX, monitoring the enriching statuses of aptamer candidates during the process is a key step until today. Conformational change of an aptamer caused by target-binding in gel can be used to indicate its statuses of binding. RESULTS In this study, an easy-to-implement gel-based diffusion method (GBDM) was developed to monitor the interaction between enriched aptamer candidates and their targets. In order to prove the concept, characterization of aptamers targeting their targets including protein (thrombin) and non-protein molecules (acetamiprid, ATP, atrazine, profenofos and roxithromycin), respectively, were performed using mini gels. Our method has advantages over the common methods including easy performed with labor- and time- saving in experimental operation. The concept has been proven by monitoring enrichment of dynamic aptamer candidate libraries targeting a small molecule 2,2-bis(4-chlorophenyl) acetic acid (DDA) during SELEX process. A mini gel cassette was designed and fabricated by our laboratory to make mini agarose gels for diffusion with different directions. CONCLUSIONS These results indicate that GBDM, in particular, chasing diffusion is suitable for monitoring the interaction between enriched aptamer candidates and their targets. These pioneering efforts are helpful for novel aptamer selection by breaking through the technical bottleneck of aptamer development and helpful for development of novel aptasensors.
Collapse
Affiliation(s)
- Qingxiu Liu
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Wei Zhang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Siying Chen
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Yi Zhang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Lingli Jiang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Jun Sheng LIN
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| |
Collapse
|