1
|
Qu T, Zhang N, Li C, Liu X, Yun K, An Q. Network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification analysis to reveal the action mechanism of RenShen Guipi Wan in the treatment of anemia. Biotechnol Lett 2025; 47:43. [PMID: 40237838 DOI: 10.1007/s10529-025-03580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE To explore the action mechanisms of RGW that may treat anemia through the integration of network pharmacology, molecular docking, molecular dynamics simulation, and experiment verification. RESULT In particular, Ginsenoside Rg4, Ginsenoside Rg1, 3,3',4,4'-Tetrahydroxy 2-methoxychalcone, Ginsenoside F1, Glycyrol, Chalconaringenin 4'-glucoside, Licochalcone B, 4',7-Dihydroxyflavone, Glycycoumarin, and Ginsenoside Rh1 were the core components, while TP53, STAT3, PIK3R1, SRC, HIF-1α were the core targets. The GO and KEGG analyses indicated that RGW may modulate multiple biological processes and pathways, including the PI3K-Akt, HIF-1, and NF-kappa B signaling pathways, as well as EGFR tyrosine kinase inhibitor resistance. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of RGW, with stable binding within 100 nano seconds. Experiment verification revealed RGW could improve the routine blood markers of mice, and decrease the level of HIF-1α significantly. CONCLUSION RGW may treat anemia by regulating the PI3K-Akt and HIF-1 signaling pathways. It demonstrates the potential pharmacological mechanism of RGW in the treatment of anemia and provides a reference for clinical application of this formula.
Collapse
Affiliation(s)
- Tingli Qu
- China Institute for Radiation Protection, Taiyuan, China
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Nan Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Chen Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Xuyuan Liu
- Department of Pharmaceutical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, China.
| | - Quan An
- China Institute for Radiation Protection, Taiyuan, China
| |
Collapse
|
2
|
Cui Y, Pan D, Feng J, Zhao D, Liu M, Dong Z, Liu S, Wang S. Untargeted Metabolomics and Soil Community Metagenomics Analyses Combined with Machine Learning Evaluation Uncover Geographic Differences in Ginseng from Different Locations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21922-21934. [PMID: 39302083 DOI: 10.1021/acs.jafc.4c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Panax ginseng C.A. Meyer, known as the "King of Herbs," has been used as a nutritional supplement for both food and medicine with the functions of relieving fatigue and improving immunity for thousands of years in China. In agricultural planting, soil environments of different geographical origins lead to obvious differences in the quality of ginseng, but the potential mechanism of the differences remains unclear. In this study, 20 key differential metabolites, including ginsenoside Rb1, glucose 6-phosphate, etc., were found in ginseng from 10 locations in China using an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-untargeted metabolomics approach. The soil properties were analyzed and combined with metagenomics technology to explore the possible relationships among microbial elements in planting soil. Through Spearman correlation analysis, it was found that the top 10 microbial colonies with the highest abundance in the soil were significantly correlated with key metabolites. In addition, the relationship model established by the random forest algorithm and the quantitative relationship between soil microbial abundance and ginseng metabolites were successfully predicted. The XGboost model was used to determine 20(R)-ginseng Rg2 and 2'(R)-ginseng Rg3 as feature labeled metabolites, and the optimal ginseng production area was discovered. These results prove that the accumulation of metabolites in ginseng was influenced by microorganisms in the planting soil, which led to geographical differences in ginseng quality.
Collapse
Affiliation(s)
- Yuan Cui
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daian Pan
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jiabao Feng
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, China
| | - Shichao Liu
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
3
|
Geng X, Wang J, Liu Y, Liu L, Liu X, Zhao Y, Wang C, Liu J. Research progress on chemical diversity of saponins in Panax ginseng. CHINESE HERBAL MEDICINES 2024; 16:529-547. [PMID: 39606259 PMCID: PMC11589341 DOI: 10.1016/j.chmed.2024.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024] Open
Abstract
Saponins, the major bioactive components of Panax ginseng C. A. Mey., are gradually emerging as research hotspots owing to the possession of various pharmacological activities. This review updates the ginsenosides list from P. ginseng and the steam-processed ginseng (red ginseng and black ginseng) up to 271 by June of 2024, encompassing 243 saponins from different parts of P. ginseng (roots, stems, leaves, flowers, berries, and seeds), 103 from red ginseng, and 65 from black ginseng, respectively. Among 271 saponins, there are a total of 249 (1-249) dammarane type (with a - z subtypes) tetracyclic triterpene saponins reported from each part of P. ginseng and steam-processed ginseng, two (250-251) lanostane type tetracyclic triterpene saponins identified from red ginseng, 18 (252-269) oleanane type pentacyclic triterpenoid saponins discovered from each part of P. ginseng and steam-processed ginseng, and two (270-271) ursane type pentacyclic triterpenoid saponins reported from red ginseng. Overall, this review expounds on the chemical diversity of ginsenosides in various aspects, such as chemical structure, spatial distribution and subtype comparison, processed products, and transformation. This facilitates more in-depth research on ginsenosides and contributes to the future development of ginseng.
Collapse
Affiliation(s)
- Xiaoyu Geng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Jia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yuwei Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Linxuan Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xuekun Liu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Li T, Wang H, Bi W, Su Y, Xiong Y, Wang S, Han L. Nano-Characterization, Composition Analysis, and Anti-Inflammatory Activity of American-Ginseng-Derived Vesicle-like Nanoparticles. Molecules 2024; 29:3443. [PMID: 39124849 PMCID: PMC11313632 DOI: 10.3390/molecules29153443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Medicinal plant-derived vesicle-like nanoparticles can carry chemical components and exert intercellular activity due to the encapsulation of nanostructures. American ginseng is well known as a traditional herb and is commonly used in clinical decoctions. However, the nano-characteristics and chemical composition of American-ginseng-derived vesicle-like nanoparticles (AGVNs) in decoctions are unclear. In this study, the gradient centrifugation method was used to extract and isolate AGVNs. A metabolomic method based on high-resolution mass spectrometry was established to analyze small molecules loaded in AGVNs. Zebrafish and RAW264.7 cells were employed to investigate the anti-inflammatory effects of AGVNs. The results showed that the particle size of AGVNs was generally 243.6 nm, and the zeta potential was -14.5 mV. AGVNs were found to contain 26 ginsenosides (14 protopanaxadiols, 11 protopanaxatriols, and 1 oleanolic acid). Ginsenoside Rb1 and malonyl-ginsenoside Rb1 tended to be enriched in AGVNs. Moreover, AGVNs were found to exert anti-inflammatory effects by reducing macrophage migration in zebrafish and regulating inflammatory factor (NO, TNF-α, IL-6, IL-10) secretion in RAW 264.7 cells. The characterization and analysis of AGVNs provide references and data that support the development of nanoscale anti-inflammatory substances from medicinal plants.
Collapse
Affiliation(s)
- Taiping Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Huan Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Wenjie Bi
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Yonghui Su
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijng 100700, China
| |
Collapse
|
5
|
Kim HW, Kim DH, Ryu B, Chung YJ, Lee K, Kim YC, Lee JW, Kim DH, Jang W, Cho W, Shim H, Sung SH, Yang TJ, Kang KB. Mass spectrometry-based ginsenoside profiling: Recent applications, limitations, and perspectives. J Ginseng Res 2024; 48:149-162. [PMID: 38465223 PMCID: PMC10920005 DOI: 10.1016/j.jgr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.
Collapse
Affiliation(s)
- Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byeol Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - You Jin Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyungha Lee
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young Chang Kim
- Future Agriculture Strategy Team, Research Policy Bureau, Rural Development Administration, Jeonju, Republic of Korea
| | - Jung Woo Lee
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Dong Hwi Kim
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Woojong Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Republic of Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hyun Sung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wu J, Wang Z, Cheng X, Lian Y, An X, Wu D. Preliminary Study on Total Component Analysis and In Vitro Antitumor Activity of Eucalyptus Leaf Residues. Molecules 2024; 29:280. [PMID: 38257193 PMCID: PMC10820358 DOI: 10.3390/molecules29020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Eucalyptus globulus is widely introduced and cultivated in Yunnan province. Its foliage is mainly used to extract eucalyptus oil, but the by-product eucalyptus residue has not been fully utilized. Based on the above reasons, in this study, we sought to explore the comprehensive utilization potential of eucalyptus resources. The total composition of eucalyptus residue was analyzed by ultra performance liquid chromatography-time-of-flight mass spectrometry (UPLC-Q/TOF MS), and the active components and nutrient components of eucalyptus leaf residue were determined by chemical methods and liquid phase techniques. Meanwhile, the antitumor activity of triterpenoids in eucalyptus leaves was evaluated by tetramethylazazole blue colorimetric assay (MTT). The results of qualitative analysis indicated that 55 compounds were identified from eucalyptus residue, including 28 phloroglucinols, 17 terpenoids, 3 flavonoids, 5 fatty acids, 1 amino acid and 2 polyphenols. Among them, the pentacyclic triterpenoids, in eucalyptus residue, were mainly oleanane type and urthane type. The results of quantitative determination indicated that the content of triterpenoid compounds was 2.84% in eucalyptus residue, which could be enhanced to 82% by silicone separation. The antitumor activity results showed that triterpenoid compounds have moderate inhibitory effects on human breast cancer cell MDA-MB-231, gastric adenocarcinoma cell SGC-7901 and cervical cancer cell Hela. The half maximal inhibitory concentration (IC50) was 50.67, 43.12 and 42.65 μg/mL, respectively. In this study, the triterpenoids from eucalyptus leaf residues were analyzed to reveal that the triterpenoids from eucalyptus leaf have antitumor effects and have potential to be developed as antitumor drugs.
Collapse
Affiliation(s)
- Juanjuan Wu
- Chenguang Biotech Group Co., Ltd., Handan 057250, China
| | - Zixuan Wang
- Chenguang Biotech Group Co., Ltd., Handan 057250, China
| | - Xinying Cheng
- Chenguang Biotech Group HanDan Co., Ltd., Handan 056000, China;
| | - Yunhe Lian
- Chenguang Biotech Group Co., Ltd., Handan 057250, China
| | - Xiaodong An
- Chenguang Biotech Group Co., Ltd., Handan 057250, China
| | - Di Wu
- Chenguang Biotech Group Co., Ltd., Handan 057250, China
- Hebei Key Laboratory of Comprehensive Utilization of Plant Resources, Handan 057250, China
| |
Collapse
|
7
|
Chen G, Zhang H, Jiang J, Chen S, Zhang H, Zhang G, Zheng C, Xu H. Metabolomics approach to growth-age discrimination in mountain-cultivated ginseng (Panax ginseng C. A. Meyer) using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Sep Sci 2023; 46:e2300445. [PMID: 37736007 DOI: 10.1002/jssc.202300445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Mountain-cultivated ginseng is typically harvested after 10 years, while ginseng aged over 15 years is considered wild ginseng. This study aims to differentiate mountain-cultivated ginseng by age, as the fraudulent practice of selling low-aged cultivated ginseng disguised as high-aged one is damaging the market. In this study, LC-MS analyzed 98 ginseng samples, and multivariate statistical analysis identified patterns between samples to select influential components. Machine learning models were developed to identify ginseng samples of different ages. The untargeted metabolomic analysis clearly divided samples aged 4-20 years into three age groups. Twenty-two potential age-dependent biomarkers were discovered to differentiate the three sample groups. Three machine learning models were used to predict new samples, and the optimal model was selected. Some biomarkers could determine age phases according to the differentiation of mountain-cultivated ginseng samples. These biomarkers were thoroughly analyzed for variation trends. The machine learning models established using the screened biomarkers successfully predicted the age group of new samples.
Collapse
Affiliation(s)
- Gan Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jiaming Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Simin Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hongmei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Gongmin Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
8
|
Ji R, Garran TA, Luo Y, Cheng M, Ren M, Zhou X. Untargeted Metabolomic Analysis and Chemometrics to Identify Potential Marker Compounds for the Chemical Differentiation of Panax ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major. Molecules 2023; 28:molecules28062745. [PMID: 36985717 PMCID: PMC10052814 DOI: 10.3390/molecules28062745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The Panax L. genus is well-known for many positive physiological effects on humans, with major species including P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major, the first three of which are globally popular. The combination of UPLC-QTOF-MS and chemometrics were developed to profile "identification markers" enabling their differentiation. The establishment of reliable biomarkers that embody the intrinsic metabolites differentiating species within the same genus is a key in the modernization of traditional Chinese medicine. In this work, the metabolomic differences among these five species were shown, which is critical to ensure their appropriate use. Consequently, 49 compounds were characterized, including 38 identified robust biomarkers, which were mainly composed of saponins and contained small amounts of amino acids and fatty acids. VIP (projection variable importance) was used to identify these five kinds of ginseng. In conclusion, by illustrating the similarities and differences between the five species of ginseng with the use of an integrated strategy of combining UPLC-QTOF-MS and multivariate analysis, we provided a more efficient and more intelligent manner for explaining how the species differ and how their secondary metabolites affect this difference. The most important biomarkers that distinguished the five species included Notoginsenoside-R1, Majonoside R1, Vinaginsenoside R14, Ginsenoside-Rf, and Ginsenoside-Rd.
Collapse
Affiliation(s)
- Ruifeng Ji
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Thomas Avery Garran
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yilu Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meng Cheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiuteng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
9
|
Wang X, Jiang M, Lou J, Zou Y, Liu M, Li Z, Guo D, Yang W. Pseudotargeted Metabolomics Approach Enabling the Classification-Induced Ginsenoside Characterization and Differentiation of Ginseng and Its Compound Formulation Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1735-1747. [PMID: 36632992 DOI: 10.1021/acs.jafc.2c07664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The use of diversified ginseng extracts in health-promoting foods is difficult to differentiate, as they share bioactive ginsenosides among different Panax species (e.g., P. ginseng, P. quinquefolius, P. notoginseng, and P. japonicus) and different parts (e.g., root, leaf, and flower). This work was designed to develop a pseudo-targeted metabolomics approach to discover ginsenoside markers facilitating the precise authentication of ginseng and its use in compound formulation products (CFPs). Versatile mass spectrometry experiments on the QTrap mass spectrometer achieved classified characterization of the neutral, malonyl, and oleanolic acid-type ginsenosides, with 567 components characterized. A pseudo-targeted metabolomics approach by multiple reaction monitoring (MRM) of 262 ion pairs could assist to establish key identification points for 12 ginseng species. The simultaneous detection of 14 markers enabled the identification of ginseng from 15 ginseng-containing CFPs. The pseudo-targeted metabolomics strategy enabled better performance in differentiating among multiple ginseng, compared with the full-scan high-resolution mass spectrometry approach.
Collapse
Affiliation(s)
- Xiaoyan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Jia Lou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Yadan Zou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Meiyu Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| | - Zheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617, China
| | - Dean Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai201203, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin301617, China
| |
Collapse
|
10
|
Cotrim GDS, Silva DMD, Graça JPD, Oliveira Junior AD, Castro CD, Zocolo GJ, Lannes LS, Hoffmann-Campo CB. Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability. PHYTOCHEMISTRY 2023; 205:113472. [PMID: 36270412 DOI: 10.1016/j.phytochem.2022.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Potassium (K+) has vital physiological and metabolic functions in plants and its availability can impact tolerance to biotic and abiotic stress conditions. Limited studies have investigated the effect of K+ fertilization on soybean metabolism. Using integrated omics, ionomics and metabolomics, we investigated the field-grown Glycine max (soybean) response, after four K+ soil fertilization rates. Soybean leaf and pod tissue (valves and immature seeds) extracts were analysed by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Multivariate analyses (PCA-X&Y e O2PLS-DA) showed that 51 compounds of 19 metabolic pathways were regulated in response to K+ availability. Under very low potassium availability, soybean plants accumulated of Ca2+, Mg2+, Fe2+, Cu2+, and B in young and old leaves. Potassium fertilization upregulated carbohydrate, galactolipid, and flavonol glycoside biosynthesis in leaves and pod valves, while K+ deficient pod tissues showed increasing amino acids, oligosaccharides, benzoic acid derivatives, and isoflavones contents. Severely K+ deficient soils elicited isoflavones, coumestans, pterocarpans, and soyasaponins in trifoliate leaves, likely associated to oxidative and photodynamic stress status. Additionally, results demonstrate that L-asparagine content is higher in potassium deficient tissues, suggesting this compound as a biomarker of K+ deficiency in soybean plants. These results demonstrate that potassium soil fertilization did not linearly contribute to changes in specialised constitutive metabolites of soybean. Altogether, this work provides a reference for improving the understanding of soybean metabolism as dependent on K+ availability.
Collapse
Affiliation(s)
- Gustavo Dos Santos Cotrim
- São Paulo State University - UNESP, 15385-000, Ilha Solteira, SP, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil.
| | - Deivid Metzker da Silva
- Santa Catarina Federal University - UFSC, 88040-900, Florianópolis, SC, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | - José Perez da Graça
- Maringá State University - UEM, 87020-900, Maringá, PR, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | | | - Cesar de Castro
- Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | - Guilherme Julião Zocolo
- Brazilian Agricultural Research Corporation - Embrapa Agroindústria Tropical, 60511-110, Fortaleza, CE, Brazil
| | | | | |
Collapse
|
11
|
Liu Z, Moore R, Gao Y, Chen P, Yu L, Zhang M, Sun J. Comparison of Phytochemical Profiles of Wild and Cultivated American Ginseng Using Metabolomics by Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010009. [PMID: 36615206 PMCID: PMC9821851 DOI: 10.3390/molecules28010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
American ginseng (Panax quinquefolius L.) has been recognized as a valuable herb medicine, and ginsenosides are the most important components responsible for the health-beneficial effects. This study investigated the secondary metabolites responsible for the differentiation of wild and cultivated American ginsengs with ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based metabolomic approach. An in-house ginsenoside library was developed to facilitate data processing and metabolite identification. Data visualization methods, such as heatmaps and volcano plots, were utilized to extract discriminated ion features. The results suggested that the ginsenoside profiles of wild and cultivated ginsengs were significantly different. The octillol (OT)-type ginsenosides were present in greater abundance and diversity in wild American ginsengs; however, a wider distribution of the protopanaxadiol (PPD)-and oleanolic acid (OA)-type ginsenosides were found in cultivated American ginseng. Based on the tentative identification and semi-quantification, the amounts of five ginsenosides (i.e., notoginsenoside H, glucoginsenoside Rf, notoginsenoside R1, pseudoginsenoside RT2, and ginsenoside Rc) were 2.3-54.5 fold greater in wild ginseng in comparison to those in their cultivated counterparts, and the content of six ginsenosides (chicusetsusaponin IVa, malonylginsenoside Rd, pseudoginsenoside Rc1, malonylfloralginsenoside Rd6, Ginsenoside Rd, and malonylginsenoside Rb1) was 2.6-14.4 fold greater in cultivated ginseng compared to wild ginseng. The results suggested that the in-house metabolite library can significantly reduce the complexity of the data processing for ginseng samples, and UHPLC-HRMS is effective and robust for identifying characteristic components (marker compounds) for distinguishing wild and cultivated American ginseng.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Roderick Moore
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Ying Gao
- School of Agriculture, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
- Correspondence: (M.Z.); (J.S.)
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (M.Z.); (J.S.)
| |
Collapse
|
12
|
Wang Z, Sun X, Zhao Y, Ga L, Li Q, Li Q, Wang X, Yang C. Qualitative and quantitative analysis of the bioactive components of "ginseng-polygala" drug pair against PC12 cell injury based on UHPLC-QTOF-MS and HPLC. Front Pharmacol 2022; 13:949757. [PMID: 36569314 PMCID: PMC9780267 DOI: 10.3389/fphar.2022.949757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Aβ25-35-induced PC12 cells were used as the in vitro injury model to evaluate the effects on PC12 cells after intervention with the "ginseng-polygala" drug pair. The results showed that the drug pair could significantly increase cell activity and reduce the level of reactive oxygen species and the concentration of inflammatory factors to improve the Alzheimer's disease treatment process. Furthermore, to rapidly identify and classify complicated bioactive components of the drug pair, a liquid chromatography with quadrupole time-of-flight mass spectrometry method combined with a molecular network strategy was established. With this strategy, 40 constituents were preliminarily identified and a database of the compounds was successfully established. Among them, 12 compounds of different categories were accurately identified by comparison with reference substances. The content of the aforementioned active components was simultaneously determined by HPLC to control the quality of compatible medicinal materials, and the verification results of the analytical method met the content determination requirements. The results revealed that after compatibility, the content change of the components is not the simple addition of quantity but the comprehensive effect of the two medicines. In conclusion, this study could provide a generally applicable strategy for pharmacological activity, structural identification, and content determination in traditional Chinese medicine and its compatibility.
Collapse
|
13
|
Yang F, Chen B, Jiang M, Wang H, Hu Y, Wang H, Xu X, Gao X, Yang W. Integrating Enhanced Profiling and Chemometrics to Unveil the Potential Markers for Differentiating among the Leaves of Panax ginseng, P. quinquefolius, and P. notoginseng by Ultra-High Performance Liquid Chromatography/Ion Mobility-Quadrupole Time-of-Flight Mass Spectrometry. Molecules 2022; 27:5549. [PMID: 36080314 PMCID: PMC9458027 DOI: 10.3390/molecules27175549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/22/2022] Open
Abstract
The leaves of Panax species (e.g., Panax ginseng-PGL, P. quinquefolius-PQL, and P. notoginseng-PNL) can serve as a source for healthcare products. Comprehensive characterization and unveiling of the metabolomic difference among PGL, PQL, and PNL are critical to ensure their correct use. For this purpose, enhanced profiling and chemometrics were integrated to probe into the ginsenoside markers for PGL/PQL/PNL by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS). A hybrid scan approach (HDMSE-HDDDA) was established achieving the dimension-enhanced metabolic profiling, with 342 saponins identified or tentatively characterized from PGL/PQL/PNL. Multivariate statistical analysis (33 batches of leaf samples) could unveil 42 marker saponins, and the characteristic ginsenosides diagnostic for differentiating among PGL/PQL/PNL were primarily established. Compared with the single DDA or DIA, the HDMSE-HDDDA hybrid scan approach could balance between the metabolome coverage and spectral reliability, leading to high-definition MS spectra and the additional collision-cross section (CCS) useful to differentiate isomers.
Collapse
Affiliation(s)
- Feifei Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Boxue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Meiting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Huimin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China
| |
Collapse
|
14
|
Qu D, Huo XH, Li ZM, Hua M, Lu YS, Chen JB, Li SS, Wen LK, Sun YS. Sediment formation and analysis of the main chemical components of aqueous extracts from different parts of ginseng roots. Food Chem 2022; 379:132146. [DOI: 10.1016/j.foodchem.2022.132146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 11/04/2022]
|
15
|
Li L, Liu Y, Yu H, Li Z, Lin H, Wu F, Tan L, Wang C, Li P, Liu J. Comprehensive phytochemicals analysis and anti-myocardial ischemia activity of total saponins of American ginseng berry. J Food Biochem 2022; 46:e14042. [PMID: 34981530 DOI: 10.1111/jfbc.14042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022]
Abstract
American ginseng berry (AGB) is a new medicinal source. Total saponins of American ginseng berry (TSAGB) are the main active ingredients. The effects and active saponins of TSAGB on myocardial ischemia (MI) rats were evaluated for the first time. First, there were 69 saponins identified or tentatively characterized by Ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS/MS) combined with UNIFI platform, among which, about 28 saponins were first identified in AGB. Second, MI model was established by ligating left coronary artery. It has been demonstrated that TSAGB could prevent the ST-segment elevation, reduce myocardial infarct size and levels of aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), and elevate the superoxide dismutase (SOD) level. Finally, network pharmacology combined with molecular docking to screen out four active saponins (ginsenoside Re, Rb3 , Rg3 , and PF11 ) and five key targets (SOD1, LDHA, CKB, GOT2, and ROS1) closely related to MI. PRACTICAL APPLICATIONS: This study enriches the chemical composition of TSAGB, and provides a basis for clarifying the pharmacological substances for anti-myocardial ischemia. TSAGB might be a potential anti-myocardial ischemia agent. The effect might be related to alleviating oxidative stress.
Collapse
Affiliation(s)
- Le Li
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Fulin Wu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China.,Research Centre of Natural Drugs, Jilin University, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin Uni, Changchun, China.,Research Centre of Natural Drugs, Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhu L, Xu L, Dou D, Huang L. The distinct of chemical profiles of mountainous forest cultivated ginseng and garden ginseng based on ginsenosides and oligosaccharides. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Yang S, Liu X, He J, Liu M. Insight into Seasonal Change of Phytochemicals, Antioxidant, and Anti-Aging Activities of Root Bark of Paeonia suffruticosa (Cortex Moutan) Combined with Multivariate Statistical Analysis. Molecules 2021; 26:6102. [PMID: 34684685 PMCID: PMC8538470 DOI: 10.3390/molecules26206102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Chemical compositions, antioxidants, and anti-aging activities of Cortex Moutan (CM), from different collection periods and different producing areas, were measured and compared in order to obtain excellent CM extracts. The bioactivities of CM extracts were examined by an in vitro antioxidant method and a UVB irradiated human dermal fibroblast (HDF) model. Phytochemical properties were obtained from ultra-fast liquid chromatography quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF-MS) prior to the multivariate statistical analysis. As for the results, the extracts of Heze CM (HZCM) and Luoyang CM (LYCM) collected in June had better in vitro antioxidant activities, significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduced the content of malondialdehyde (MDA), compared to other CM extracts. HZCM and LYCM extracts could upregulate the relative expression of SOD and GSH-Px mRNA. The extract of HZCM collected in June could significantly repress the production of matrix metalloproteinase 1 (MMP-1) and improve the production of procollagen type I (PCOL)-I in UVB irradiated HDF. In total, 50 compounds, including 17 monoterpenoids, 19 flavonoids, 13 phenols, and 1 amino acid were identified or tentatively identified in the CM extracts. Gallic acid, p-hydroxybenzoic acid, oxypaeoniflorin, paeoniflorin, 1,2,3,4,6-O-pentagalloyl glucose, and paeonol were predominant compounds in the CM extracts. Taken together, CM collected from April to September had better antioxidant and anti-aging effects for external usage.
Collapse
Affiliation(s)
- Shicong Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China;
| | - Xiaoyan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Jingyu He
- Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
18
|
Jiao Y, Si Y, Li L, Wang C, Lin H, Liu J, Liu Y, Liu J, Li P, Li Z. Comprehensive phytochemical profiling of American ginseng in Jilin province of China based on ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4787. [PMID: 34725896 DOI: 10.1002/jms.4787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
American ginseng (AG), the underground part of Panax quinquefolium L., is composed of four morphological regions, including main root (MR), lateral root (LR), fibrous root (FR), and rhizome (RH). In the clinical, MR is the main medicinal region, other regions are rarely attention. Aiming at revealing the chemical composition of AG and making better use of AG, screening analysis and metabolomic analysis were both performed to profile MR, LR, FR, and RH. First, in the systematical screening analysis, a total of 134 compounds (including 122 shared components) with various structural patterns were identified and tentatively characterized. The results indicated that the phytochemicals with various structural types were rich in MR, LR, FR, and RH. Second, 6, 4, 8, and 11 chemical markers were identified from MR, LR, FR, and RH, respectively. Seven triterpene saponins (protopanaxatriol, quinquenoside R1 , ginsenoside Rc, Rk1 , Rg1 , Re, and vinaginsenoside R1 ) might be used for rapid differentiation of four morphological regions. This comprehensive profile study of metabolites illustrated the similarities and differences of phytochemicals in four morphological regions of AG. The results could be used for the quality control of AG and furnish a basis for the further development and utilization of AG sources.
Collapse
Affiliation(s)
- Yufeng Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yu Si
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Research Center of Natural Drug, Jilin University, Changchun, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
19
|
177 Saponins, Including 11 New Compounds in Wild Ginseng Tentatively Identified via HPLC-IT-TOF-MS n, and Differences among Wild Ginseng, Ginseng under Forest, and Cultivated Ginseng. Molecules 2021; 26:molecules26113371. [PMID: 34199646 PMCID: PMC8199768 DOI: 10.3390/molecules26113371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022] Open
Abstract
Wild ginseng (W-GS), ginseng under forest (F-GS, planted in mountain forest and growing in natural environment), and cultivated ginseng (C-GS) were compared via HPLC-DAD and HPLC-IT-TOF-MSn. A total of 199 saponins, including 16 potential new compounds, were tentatively identified from 100 mg W-GS (177 saponins in W-GS with 11 new compounds), F-GS (56 saponins with 1 new compound), and C-GS (60 saponins with 6 new compounds). There were 21 saponins detected from all the W-GS, F-GS, and C-GS. Fifty saponins were only detected from W-GS, including 23 saponins found in ginseng for the first time. Contents of ginsenosides Re (12.36–13.91 mg/g), Rh1 (7.46–7.65 mg/g), Rd (12.94–12.98 mg/g), and the total contents (50.52–55.51 mg/g) of Rg1, Re, Rf, Rb1, Rg2, Rh1, and Rd in W-GS were remarkably higher than those in F-GS (Re 1.22–3.50 mg/g, Rh1 0.15–1.49 mg/g, Rd 0.19–1.49 mg/g, total 5.69–18.74 mg/g), and C-GS (Re 0.30–3.45 mg/g, Rh1 0.05–3.42 mg/g, Rd 0.17–1.68 mg/g, total 2.99–19.55 mg/g). Contents of Re and Rf were significantly higher in F-GS than those in C-GS (p < 0.05). Using the contents of Re, Rf, or Rb1, approximately a half number of cultivated ginseng samples could be identified from ginseng under forest. Contents of Rg1, Re, Rg2, Rh1, as well as the total contents of the seven ginsenosides were highest in ginseng older than 15 years, middle–high in ginseng between 10 to 15 years old, and lowest in ginseng younger than 10 years. Contents of Rg1, Re, Rf, Rb1, Rg2, and the total of seven ginsenosides were significantly related to the growing ages of ginseng (p < 0.10). Similarities of chromatographic fingerprints to W-GS were significantly higher (p < 0.05) for F-GS (median: 0.824) than C-GS (median: 0.745). A characteristic peak pattern in fingerprint was also discovered for distinguishing three types of ginseng. Conclusively, wild ginseng was remarkably superior to ginseng under forest and cultivated ginseng, with ginseng under forest slightly closer to wild ginseng than cultivated ginseng. The differences among wild ginseng, ginseng under forest, and cultivated ginseng in saponin compositions and contents of ginsenosides were mainly attributed to their growing ages.
Collapse
|
20
|
Tsuchida S, Hattori T, Sawada A, Ogata K, Watanabe J, Ushida K. Fecal metabolite analysis of Japanese macaques in Yakushima by LC-MS/MS and LC-QTOF-MS. J Vet Med Sci 2021; 83:1012-1015. [PMID: 33952783 PMCID: PMC8267200 DOI: 10.1292/jvms.21-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed a comprehensive fecal metabolite analysis using LC-MS/MS and LC-QTOF-MS
approaches as a preliminary study. Feces of Japanese macaques on Yakushima Island were
collected from five monkeys at two separate locations. Using the former methodology, 59
substances such as free amino acids, nucleotides, nucleosides and nucleic acid bases, and
organic acids in the citrate cycle were quantitatively detected and successfully
differentiated in two different monkey groups by the concentrations of nucleic acid
metabolites and free amino acids. In the latter, around 12,000 substances were detected
both by positive and negative mode in each sample. Differences in signal intensities were
observed between two monkey groups in the concentrations of plant secondary metabolites
such as cyanogenic glycosides, flavonoids, and phenolics.
Collapse
Affiliation(s)
- Sayaka Tsuchida
- Chubu University Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan.,Present address: Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | | | - Akiko Sawada
- Chubu University Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan.,Present address: Kyoto University Primate Research Institute, Kanrin 41-2, Inuyama, Aichi 484-8506, Japan
| | | | | | - Kazunari Ushida
- Chubu University Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan.,Present address: Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
21
|
Li S, Wang P, Yang W, Zhao C, Zhang L, Zhang J, Qin Y, Xu H, Huang L. Characterization of the Components and Pharmacological Effects of Mountain-Cultivated Ginseng and Garden Ginseng Based on the Integrative Pharmacology Strategy. Front Pharmacol 2021; 12:659954. [PMID: 33981239 PMCID: PMC8108004 DOI: 10.3389/fphar.2021.659954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Panax ginseng C. A. Mey (PGCAM) is a herbaceous perennial belonging to the Araliaceae family, mainly including Mountain-Cultivated Ginseng (MCG) and Garden Ginseng (GG) on the market. We aimed to establish a rapid, accurate and effective method to distinguish 15-year-old MCG and GG using ultra-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry (UPLC-QTOF-MS/MS), and also explored the pharmacological mechanisms of the main components using the Integrative Pharmacology-based Network Computational Research Platform of Traditional Chinese Medicine (TCMIP V2.0; http://www.tcmip.cn/). Altogether, 23 potential quality markers were characterized to distinguish 15-year-old MCG and GG, including ginsenosides Ra2, Rg1, and Ra1, and malonyl-ginsenoside Ra3, etc. The contents of 19 constituents (mainly protopanaxadiol-type) were higher in MCG compared with that in GG, and four constituents (mainly carbohydrate compounds) were higher in GG. The 105 putative targets corresponding to 23 potential quality markers were mainly involved in 30 pathways, which could be divided into 10 models, such as immune regulation, systems (metabolic, nervous, cardiovascular, reproductive), blood-pressure regulation, as well as antitumor, antiaging, antibacterial and anti-inflammatory effects. Furthermore, the potential quality markers of MCG and GG could inhibit the proliferation of breast cancer by regulating the mRNA expression of PSA, S6K, MDM2, and P53 genes by acting on AR, MTOR, PI3K and other targets. The Integrative Pharmacology Strategy may provide an efficient way to identify chemical constituents and explore the pharmacological actions of TCM formulations.
Collapse
Affiliation(s)
- Sen Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Wenzhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luoqi Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingbo Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuewen Qin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Pei H, Su W, Gui M, Dou M, Zhang Y, Wang C, Lu D. Comparative Analysis of Chemical Constituents in Different Parts of Lotus by UPLC and QToF-MS. Molecules 2021; 26:molecules26071855. [PMID: 33806084 PMCID: PMC8036816 DOI: 10.3390/molecules26071855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Six parts of lotus (seeds, leaves, plumule, stamens, receptacles and rhizome nodes) are herbal medicines that are listed in the Chinese Pharmacopoeia. Their indications and functions have been confirmed by a long history of clinical practice. To fully understand the material basis of clinical applications, UPLC-QToF-MS combined with the UNIFI platform and multivariate statistical analysis was used in this study. As a result, a total of 171 compounds were detected and characterized from the six parts, and 23 robust biomarkers were discovered. The method can be used as a standard protocol for the direct identification and prediction of the six parts of lotus. Meanwhile, these discoveries are valuable for improving the quality control method of herbal medicines. Most importantly, this was the first time that alkaloids were detected in the stamen, and terpenoids were detected in the cored seed. The stamen is a noteworthy part because it contains the greatest diversity of flavonoids and terpenoids, but research on the stamen is rather limited.
Collapse
|
23
|
Comprehensive Investigation on Ginsenosides in Different Parts of a Garden-Cultivated Ginseng Root and Rhizome. Molecules 2021; 26:molecules26061696. [PMID: 33803599 PMCID: PMC8003075 DOI: 10.3390/molecules26061696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Ginseng is widely used as herb or food. Different parts of ginseng have diverse usages. However, the comprehensive analysis on the ginsenosides in different parts of ginseng root is scarce. Methods: An ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) combined with UNIFI informatics platform and ultra-high-performance liquid chromatography-charged aerosol detection (UHPLC-CAD) were employed to evaluate the different parts of cultivated ginseng root. Results: 105 ginsenosides including 16 new compounds were identified or tentatively characterized. 22 potential chemical markers were identified, 20, 17, and 19 for main root (MR) and fibrous root (FR), main root (MR) and branch root (BR), and main root (MR) and rhizome (RH), respectively. The relative contents of Re, Rb1, 20(R)-Rh1, Rd, and Rf were highest in FR. The relative content of Rg1 was highest in RH. The total relative content of pharmacopoeia indicators Rg1, Re, and Rb1 was highest in FR. Conclusion: The differences among these parts were the compositions and relative contents of ginsenosides. Under our research conditions, the peak area ratio of Rg1 and Re could distinguish the MR and FR samples. Fibrous roots showed rich ingredients and high ginsenosides contents which should be further utilized.
Collapse
|
24
|
Liu Y, Wang Z, Wang C, Si H, Yu H, Li L, Fu S, Tan L, Li P, Liu J, Zhao Y. Comprehensive phytochemical analysis and sedative-hypnotic activity of two Acanthopanax species leaves. Food Funct 2021; 12:2292-2311. [PMID: 33605281 DOI: 10.1039/d0fo02814b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acanthopanax senticosus leaves (SCL) and Acanthopanax sessiliflorus leaves (SFL), which are usually made into functional teas, possess similar pharmacological activities. With the aim of revealing their chemical compositions and evaluating their sedative-hypnotic effects, comprehensive metabolite profiling analysis based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) and high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) as well as bioassay studies in mice were performed for the first time. Firstly, a total of 75 compounds (including 69 shared components) were identified or briefly characterized. Results indicated that the leaves of the two species were both rich in phytochemicals and contained similar structural types. Secondly, 20 and 7 chemical markers were identified from SCL and SFL, respectively. Five oleanane-type triterpene saponins (ciwujianoside C1, C3, D2, E and saniculoside N) and two lupine-type triterpene saponins (1-deoxychiisanoside and 24-hydroxychiisanoside) may be used for rapid identification of SCL and SFL. Thirdly, the contents of rutin, hederacoside D, ciwujianoside B, -C3, -E and ursolic acid in SCL (0.308%, 0.024%, 0.042%, 0.131%, 0.038%, and 0.255%, respectively) were higher than in SFL (0.067%, 0.005%, 0.012%, 0.015%, 0.002%, and 0.087%, respectively). Fourthly, an in vivo bioassay verified that both SCL and SFL could inhibit autonomous activity, shorten sleep latency and prolong sleep duration in a dose-dependent manner. To a certain degree, SCL showed a higher and more stable effect. The hypnotic effect could be inhibited by flumazenil (FLU). The two leaves not only had an obvious antagonism action of p-chlorophenoxyacetic acid (pCPA) but also showed a synergistic hypnotic effect with 5-hydroxytryptophan (5-HTP). The beneficial bioactivity may be mediated by 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA). Finally, network pharmacology analysis showed that the undifferentiated and differentiated compounds were the material basis for the similar and the different activities of two leaves. Some typical chemical markers (such as saniculoside N, hederacoside D, ciwujianoside C3, -E and ursolic acid, 24-hydroxychiisanoside and 1-deoxyisochiisanoside) were the potential active compounds and could be used as quality markers in the future. The present study furnished a basis for the further development and utilization of the leaves of these two Acanthopanax species.
Collapse
Affiliation(s)
- Yunhe Liu
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Zhongyao Wang
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Caixia Wang
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Hanrui Si
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Hui Yu
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Le Li
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Shuzheng Fu
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Luying Tan
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Pingya Li
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
25
|
Zhu L, Luan X, Yuan Y, Dou D, Huang L. The characteristics of ginsenosides and oligosaccharides in mountain- and garden-cultivated ginseng. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1491-1498. [PMID: 32844459 DOI: 10.1002/jsfa.10762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The present study aimed to explore the chemical characteristics of mountainous forest cultivated ginseng (MFCG) and garden ginseng (GG) with respect to their ginsenosides and oligosaccharides. METHODS A high-performance liquid chromatography with diode-array detection-evaporative light-scattering detection technique was adopted to investigate the ginseosides and oligosaccharides of GG and MFCG. RESULTS The features of ginsenosides showed Rg1/Re in different parts of GG and MFCG: main root > lateral root > fibrous root, as well as Rg1/Re in the main root: MFCG > GG, indicating that the Rg1/Re is related to age of the ginseng. In most cases, Rg1/Re < 1 in entire GG and Rg1/Re > 1 in entire MFCG. In addition, the ratio of protopanaxadiol/protopanaxatriol in main root of GG is approximately 1 and, in the main roots of MFCG, the ratio is approximately 2 and, furthermore, Ro/Rb1 of MFCG is lower than that of GG. Analysis of oligosaccharides showed that GG mainly contained sucrose and MFCG mainly contained sucrose and maltose, and the ratio of sucrose to maltose was at least more than 4:1 in GG and less than 4:1 in MFCG in most cases, indicating the characteristics of oligosaccharides of MFCG are primarily affected by its growing environment. The results also showed that ginsenoside Re is most probably the biosynthetic precursor of ginsenoside Rg1 (i.e. Re was synthesized first and then transformed to Rg1 in vivo). CONCLUSION The characteristics of Rg1/Re and higher maltose can be regarded as one of the characteristics of high quality MFCG, and these characteristics are related to a higher age and the cultivation environment of ginseng. The formation mechanism of these characteristics for GG and MFGG is also discussed. As far as we know, the present study is the first to determine the difference of Rg1/Re and oligosaccharides between MFCG and GG and this provides a reference for the quality control criterion of GG and MFCG. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianlian Zhu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiaoning Luan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ying Yuan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Zhao L, Guo R, Cao N, Lin Y, Yang W, Pei S, Ma X, Zhang Y, Li Y, Song Z, Du W, Xiao X, Liu C. An Integrative Pharmacology-Based Pattern to Uncover the Pharmacological Mechanism of Ginsenoside H Dripping Pills in the Treatment of Depression. Front Pharmacol 2021; 11:590457. [PMID: 33658934 PMCID: PMC7917282 DOI: 10.3389/fphar.2020.590457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives: To evaluate the pharmacodynamical effects and pharmacological mechanism of Ginsenoside H dripping pills (GH) in chronic unpredictable mild stress (CUMS) model rats. Methods: First, the CUMS-induced rat model was established to assess the anti-depressant effects of GH (28, 56, and 112 mg/kg) by the changes of the behavioral indexes (sucrose preference, crossing score, rearing score) and biochemical indexes (serotonin, dopamine, norepinephrine) in Hippocampus. Then, the components of GH were identified by ultra-performance liquid chromatography-iron trap-time of flight-mass spectrometry (UPLC/IT-TOF MS). After network pharmacology analysis, the active ingredients of GH were further screened out based on OB and DL, and the PPI network of putative targets of active ingredients of GH and depression candidate targets was established based on STRING database. The PPI network was analyzed topologically to obtain key targets, so as to predict the potential pharmacological mechanism of GH acting on depression. Finally, some major target proteins involved in the predictive signaling pathway were validated experimentally. Results: The establishment of CUMS depression model was successful and GH has antidepressant effects, and the middle dose of GH (56 mg/kg) showed the best inhibitory effects on rats with depressant-like behavior induced by CUMS. Twenty-eight chemical components of GH were identified by UPLC/IT-TOF MS. Subsequently, 20(S)-ginsenoside Rh2 was selected as active ingredient and the PPI network of the 43 putative targets of 20(S)-ginsenoside Rh2 containing in GH and the 230 depression candidate targets, was established based on STRING database, and 47 major targets were extracted. Further network pharmacological analysis indicated that the cAMP signaling pathway may be potential pharmacological mechanism regulated by GH acting on depression. Among the cAMP signaling pathway, the major target proteins, namely, cAMP, PKA, CREB, p-CREB, BDNF, were used to verify in the CUMS model rats. The results showed that GH could activate the cAMP-PKA-CREB-BDNF signaling pathway to exert antidepressant effects. Conclusions: An integrative pharmacology-based pattern was used to uncover that GH could increase the contents of DA, NE and 5-HT, activate cAMP-PKA-CREB-BDNF signaling pathway exert antidepressant effects.
Collapse
Affiliation(s)
- Libin Zhao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Zhendong Research Institute, Shanxi Zhendong Pharmaceutical Co., Ltd, Beijing, China
| | - Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ningning Cao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingxian Lin
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjing Yang
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, TCM Research Center, Tianjin Tasly Pharmaceutical CO., LTD., Tianjin, China
| | - Shuai Pei
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Ma
- Shandong Huayu University of Technology, Shandong, China
| | - Yu Zhang
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Song
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, TCM Research Center, Tianjin Tasly Pharmaceutical CO., LTD., Tianjin, China
| | - Wuxun Du
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
27
|
Xu XF, Qu WJ, Jia Z, Han T, Liu MN, Bai YY, Wang M, Lin RC, Hua Q, Li XR. Effect of cultivation ages on anti-inflammatory activity of a new type of red ginseng. Biomed Pharmacother 2021; 136:111280. [PMID: 33485063 DOI: 10.1016/j.biopha.2021.111280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Ginseng has been widely applied in clinical practice, but the cultivation age cannot be ignored as it influences the quality of ginseng and its products. In this work, different cultivation ages of fresh ginseng (FG) from four to seven years were analysed by UPLC-Q-TOF-MS/MS. Principal component analysis and supervised orthogonal partial least squared discrimination analysis, which belong to the normal method of multivariate statistical analysis, were applied to discover the characteristic components of FG at different cultivation ages. The components of new type of red ginseng (NRG) derived from FG at different cultivation ages were compared by HPLC analysis. The pharmacological anti-inflammatory activity was evaluated by ELISA and qPCR. The result showed that the characteristic components of both 6- and 7-year-old ginseng were ginsenoside Rb1, mal-ginsenoside Rb1, ginsenoside Rc, mal-ginsenoside Rc, mal-ginsenoside Rb1 isomer, and mal-ginsenoside Rb2. Moreover, the characteristic components of both 4- and 5-year-old ginseng were ADP-glucose and 3-hydroxyhexanoyl CoA. In addition, 6-year-old NRG has higher rare ginsenosides than 4-year-old NRG, which possesses great anti-inflammatory activity in vitro. The results reveal the ginsenoside transformation law of NRG processing and suggest that the cultivation age of FG influences the content of ginsenosides in NRG. Therefore, 6-year-old ginseng is more suitable for red ginseng processing and clinical use.
Collapse
Affiliation(s)
- Xin-Fang Xu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Wen-Jia Qu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Zhe Jia
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Ting Han
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Meng-Nan Liu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Yu-Ying Bai
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Min Wang
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Rui-Chao Lin
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| | - Xiang-Ri Li
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
28
|
Guo M, Shao S, Wang D, Zhao D, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2020; 12:494-518. [PMID: 33331377 DOI: 10.1039/d0fo01896a] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Panax ginseng C. A. Meyer (P. ginseng) has a long history of medicinal use and can treat a variety of diseases. P. ginseng contains a variety of active ingredients, such as saponins, polypeptides, volatile oils, and polysaccharides. Among them, saponins have always been considered as the main components responsible for its pharmacological activities. However, more and more studies have shown that polysaccharides play an indispensable role in the medicinal value of ginseng. Modern biological and medical studies have found that ginseng polysaccharides have complex structural characteristics and diverse biological activities, such as immune regulation, anti-tumor, antioxidant, hypoglycemic, and anti-radiation functions, among others. Additionally, the structural characteristics of ginseng polysaccharides are closely related to their activity. In this review, the research background, extraction, purification, structural characteristics, and biological activities of ginseng polysaccharides from different parts of P. ginseng (roots, flowers stems and leaves, and berries) under different growth conditions (artificially cultivated ginseng, mountain ginseng, and wild ginseng) are summarized. The structural characteristics of purified polysaccharides were reviewed. Meanwhile, their biological activities were introduced, and some possible mechanisms were listed. Furthermore, the structure-activity relationship of polysaccharides was discussed. Some research perspectives for the study of ginseng polysaccharides were also provided.
Collapse
Affiliation(s)
- Mingkun Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | |
Collapse
|
29
|
Yang Y, Yang Y, Qiu H, Ju Z, Shi Y, Wang Z, Yang L. Localization of constituents for determining the age and parts of ginseng through ultraperfomance liquid chromatography quadrupole/time of flight-mass spectrometry combined with desorption electrospray ionization mass spectrometry imaging. J Pharm Biomed Anal 2020; 193:113722. [PMID: 33171337 DOI: 10.1016/j.jpba.2020.113722] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Ginseng has been used for prevention and treatment of disease for thousands of years in China and many other Asian countries. Phytochemical studies have indicated that ginsenosides, polysaccharides, alkaloids, and phenolic acids are the active constituents of ginseng. Main and branch roots of ginseng exhibit distinct bioactive behavior. Furthermore, the bioactive behavior of ginseng depends on its age. Traditional analysis is complex preparation and provides inadequate of chemical information of the original distribution of analytes. Therefore, in this study, ultraperformance liquid chromatography quadrupole/time of flight-mass spectrometry (UPLC-QTOF MS) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) combined with orthogonal partial least squares discriminant analysis were used to discriminate ginseng in different age and parts of ginseng, and profiled distribution of selected markers. The results indicated that UPLC-QTOF-MS and DESI-MSI could be used to determine the parts and age of ginseng. Fifteen variables including five of protopanaxatriol (PPT), four of protopanaxadiol (PPD), and six of other types were assumed as markers for different parts of ginseng. Moreover, four variables of PPT, four of PPD, and ten of other types were used to determine the age of ginseng samples. An analysis of localization of markers indicated that malonyl ginsenoside, including malonyl-ginsenoside Rb1, Rb2, Rc, and Rd was mainly distributed in the corks. Neutral ginsenoside Rg1, yesanchinoisde D, and chikusetsusaponin Iva were mainly distributed in the cork and phloem. Non-ginsenoside castanoside H, 20(S)-protopanaxatriol, unknown 2, saponin III and cistanoside C were distributed in all tissues. Ethyloleate, unknown 1 and monolinolein were distributed in the cork.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingbo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Kanion Pharmaceutical Co. Ltd., Lianyungang, 222001, China
| | - Hao Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanchao Shi
- Waters Corporation Shanghai Science & Technology Co. Ltd., Shanghai 201206, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
30
|
Liu P, Wang L, Du Q, Du H. Chemotype classification and biomarker screening of male Eucommia ulmoides Oliv. flower core collections using UPLC-QTOF/MS-based non-targeted metabolomics. PeerJ 2020; 8:e9786. [PMID: 32884862 PMCID: PMC7444510 DOI: 10.7717/peerj.9786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/31/2020] [Indexed: 01/27/2023] Open
Abstract
Background In the Chinese health care industry, male Eucommia ulmoides Oliv. flowers are newly approved as a raw material of functional food. Core collections have been constructed from conserved germplasm resources based on phenotypic traits and molecular markers. However, little is known about these collections’ phytochemical properties. This study explored the chemical composition of male E. ulmoides flowers, in order to provide guidance in the quality control, sustainable cultivation, and directional breeding of this tree species. Methods We assessed the male flowers from 22 core collections using ultra-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) non-targeted metabolomics, and analyzed them using multivariate statistical methods including principal component analysis (PCA), hierarchical cluster analysis (HCA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Results We annotated a total of 451 and 325 metabolites in ESI+ and ESI− modes, respectively, by aligning the mass fragments of the secondary mass spectra with those in the database. Four chemotypes were well established using the ESI+ metabolomics data. Of the 29 screened biomarkers, 21, 6, 19, and 5 markers corresponded to chemotypes I, II, III, and IV, respectively. More than half of the markers belonged to flavonoid and amino acid derivative classes. Conclusion Non-targeted metabolomics is a suitable approach to the chemotype classification and biomarker screening of male E. ulmoides flower core collections. We first evaluated the metabolite profiles and compositional variations of male E. ulmoides flowers in representative core collections before establishing possible chemotypes and significant biomarkers denoting the variations. We used genetic variations to infer the metabolite compositional variations of male E. ulmoides flower core collections instead of using the geographical origins of the germplasm resources. The newly proposed biomarkers sufficiently classified the chemotypes to be applied for germplasm resource evaluation.
Collapse
Affiliation(s)
- Panfeng Liu
- Paulownia Research & Development Center of China, National Forestry and Grassland Administration, Zhengzhou, Henan, China.,Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou, Henan, China.,Non-timber Forestry Research & Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Lu Wang
- Paulownia Research & Development Center of China, National Forestry and Grassland Administration, Zhengzhou, Henan, China.,Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou, Henan, China.,Non-timber Forestry Research & Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Qingxin Du
- Paulownia Research & Development Center of China, National Forestry and Grassland Administration, Zhengzhou, Henan, China.,Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou, Henan, China.,Non-timber Forestry Research & Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| | - Hongyan Du
- Paulownia Research & Development Center of China, National Forestry and Grassland Administration, Zhengzhou, Henan, China.,Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou, Henan, China.,Non-timber Forestry Research & Development Center, Chinese Academy of Forestry, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Yue J, Zuo Z, Huang H, Wang Y. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit Rev Anal Chem 2020; 51:373-398. [PMID: 32166968 DOI: 10.1080/10408347.2020.1736506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genus Panax, as worldwide medicinal plants, has a medical history for thousands of years. Most of the entire genus are traditional ethnobotanical medicine in China, Myanmar, Thailand, Vietnam and Laos, which have given rise to international attention and use. This paper reviewed more than 210 articles and related books on the research of Panax medicinal plants and their Chinese patent medicines published in the last 30 years. The purpose was to review and summarize the species classification, geographical distribution, and ethnic minorities medicinal records of the genus Panax, and further to review the analytical tools and data analysis methods for the authentication and quality assessment of Panax medicinal materials and Chinese patent medicines. Five main technologies applied in the identification and evaluation of Panax have been introduced and summarized. Chromatography was the most widely used one. Further research and development of molecular identification technology had the potential to become a mainstream identification technology. In addition, some novel, controversial, and worthy methods including electronic noses, electronic eyes, and DNA barcoding were also introduced. At the same time, more than 80% of the researches were carried out by a combination of chemometric pattern-recognition technologies and multi-analysis technologies. All the technologies and methods applied can provide strong support and guarantee for the identification and evaluation of genus Panax, and also conduce to excellent reference value for the development and in-depth research of new technologies in Panax.
Collapse
Affiliation(s)
- Jiaqi Yue
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hengyu Huang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
32
|
Yang N, Wang H, Lin H, Liu J, Zhou B, Chen X, Wang C, Liu J, Li P. Comprehensive metabolomics analysis based on UPLC-Q/TOF-MS E and the anti-COPD effect of different parts of Celastrus orbiculatus Thunb. RSC Adv 2020; 10:8396-8420. [PMID: 35497836 PMCID: PMC9049960 DOI: 10.1039/c9ra09965d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 11/26/2022] Open
Abstract
The root, stem and leaf of Celastrus orbiculatus Thunb. (COT) have all been used as Chinese folk medicine. Aiming at revealing the secondary metabolites and screening the anti-COPD effect of COT, the comprehensive phytochemical and bioassay studies were performed. Based on the ultra-high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MSE), the screening analysis of components in COT was conducted with the UNIFI platform, the metabolomics of the three parts were analyzed with multivariate statistical analysis. Cigarette smoke extract (CSE)-stimulated inflammatory model in A549 cells was used to investigate the biological effect of the three parts. A total of 120 compounds were identified or tentatively characterized from COT. Metabolomics analysis showed that the three parts of COT were differentiated, and there were 13, 8 and 5 potential chemical markers discovered from root, stem and leaf, respectively. Five robust chemical markers with high responses could be used for further quality control in different parts of COT. The root, stem and leaf of COT could evidently reduce the levels of pro-inflammatory factors in a dose-dependent way within a certain concentration range. The stem part had a stronger anti-COPD effect than root and leaf parts. This study clarified the structural diversity of secondary metabolites and the various patterns in different parts of COT, and provided a theoretical basis for further utilization and development of COT.
Collapse
Affiliation(s)
- Na Yang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Han Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Xiaoling Chen
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 Jilin China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 Jilin China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University Fujin Road 126 Changchun 130021 Jilin China +86-431-85619803
| |
Collapse
|
33
|
Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z. Phytochemical analysis of Panax species: a review. J Ginseng Res 2020; 45:1-21. [PMID: 33437152 PMCID: PMC7790905 DOI: 10.1016/j.jgr.2019.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.
Collapse
Affiliation(s)
- Yuangui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Zhengcai Ju
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yingbo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Yanhai Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China.,Shanghai R&D Center for Standardization of Chinese Medicines, China
| |
Collapse
|
34
|
Zhu H, Liu J, Lin H, Zhang Y, Yang N, Zhou B, Wang Z, Chen-Yu Hsu A, Liu J, Li P. UPLC-QTOF-MS-guided isolation of anti-COPD ginsenosides from wild ginseng. RSC Adv 2019; 9:38658-38668. [PMID: 35540186 PMCID: PMC9075943 DOI: 10.1039/c9ra06635g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/21/2019] [Indexed: 12/04/2022] Open
Abstract
Four previously undescribed ginsenosides, along with five known analogues were isolated from wild ginseng by a UPLC-QTOF-MS-guided fractionation procedure. Their structures were elucidated on the basis of spectroscopic and spectrometric data (1D and 2D NMR, HR-ESI-MS). The isolated compounds could significantly inhibit the cigarette smoke extract (CSE)-induced inflammatory reaction in A549 cells. The HDAC2 pathway might be involved in the protective effect against the CSE-mediated inflammatory response in A549 cells.
Collapse
Affiliation(s)
- Hailin Zhu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Ying Zhang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
- The First Hospital of Jilin University Changchun 130021 Jilin China
| | - Na Yang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Zhongyao Wang
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle Newcastle NSW Australia
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
- Research Center of Natural Drug, Jilin University Changchun 130021 Jilin China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University Fujin Road 1266 Changchun 130021 Jilin China +86-431-85619803
| |
Collapse
|
35
|
Rapid Screening of Forskolin-Type Diterpenoids of Blumea aromatica DC Using Ultra-High-Performance Liquid Chromatography Tandem Quadrupole Time-of-Flight Mass Spectrometry Based on the Mass Defect Filtering Approach. Molecules 2019; 24:molecules24173073. [PMID: 31450838 PMCID: PMC6749246 DOI: 10.3390/molecules24173073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
The discovery of new active compounds of natural products tends to be increasingly more challenging due to chemical complexity and unpredictable matrices. Forskolin is an active natural labdane-type diterpenoid ingredient widely used worldwide for the treatment of glaucoma, heart failure, hypertension, diabetes, and asthma, and is expected to be a promising anticancer, anti-inflammation, and anti-HIV agent. In recent years, demand for forskolin in the medicine market has increased dramatically. However, natural forskolin originates exclusively from traditional Indian herb medicine Coleus forskohlii (Willd.) Briq. In a previous study, we isolated a series of diterpenoids including an 8,13-epoxy-14ene labdane carbon skeleton from Blumea aromatica DC. In order to identify alternative plant resources, a novel and effective strategy was proposed for the screening of potential forskolin-type diterpenoids (FSKD) compounds obtained from B. aromatica, using the mass defect filtering (MDF) strategy via ultra-high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) approach. Within a narrow, well-defined mass defect range, the strategy developed could significantly improve the detection efficiency of selected FSKD compounds by filtering out certain major or moderate interference compounds. Additionally, the MS/MS cleavage behavior and the characteristic diagnostic ions of the FSKD compounds were proposed to be used in aiding structural identification of the filtration compounds. As a result, a total of 38 FSKD of B. aromatica were filtered out and tentatively identified. To the best of our knowledge, it was the first time that these forskolin-type diterpenoids were identified in B. aromatica, which significantly expands our understanding of the chemical constituents of Blumea species, and allows B. aromatica to be used as a potential alternative plant resource that contains these forskolin-type active compounds. The strategy proposed was proven efficient and reliable for the discovery of novel compounds of herbal extracts.
Collapse
|
36
|
Zhang C, Zuo T, Wang X, Wang H, Hu Y, Li Z, Li W, Jia L, Qian Y, Yang W, Yu H. Integration of Data-Dependent Acquisition (DDA) and Data-Independent High-Definition MS E (HDMS E) for the Comprehensive Profiling and Characterization of Multicomponents from Panax japonicus by UHPLC/IM-QTOF-MS. Molecules 2019; 24:E2708. [PMID: 31349632 PMCID: PMC6695638 DOI: 10.3390/molecules24152708] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The complexity of herbal matrix necessitates the development of powerful analytical strategies to enable comprehensive multicomponent characterization. In this work, targeting the multicomponents from Panax japonicus C.A. Meyer, both data dependent acquisition (DDA) and data-independent high-definition MSE (HDMSE) in the negative electrospray ionization mode were used to extend the coverage of untargeted metabolites characterization by ultra-high-performance liquid chromatography (UHPLC) coupled to a VionTM IM-QTOF (ion-mobility/quadrupole time-of-flight) high-resolution mass spectrometer. Efficient chromatographic separation was achieved by using a BEH Shield RP18 column. Optimized mass-dependent ramp collision energy of DDA enabled more balanced MS/MS fragmentation for mono- to penta-glycosidic ginsenosides. An in-house ginsenoside database containing 504 known ginsenosides and 60 reference compounds was established and incorporated into UNIFITM, by which efficient and automated peak annotation was accomplished. By streamlined data processing workflows, we could identify or tentatively characterize 178 saponins from P. japonicus, of which 75 may have not been isolated from the Panax genus. Amongst them, 168 ginsenosides were characterized based on the DDA data, while 10 ones were newly identified from the HDMSE data, which indicated their complementary role. Conclusively, the in-depth deconvolution and characterization of multicomponents from P. japonicus were achieved, and the approaches we developed can be an example for comprehensive chemical basis elucidation of traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Chunxia Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Tiantian Zuo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoyan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hongda Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ying Hu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zheng Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Weiwei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Li Jia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuexin Qian
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wenzhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Heshui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
37
|
Yoon D, Choi BR, Ma S, Lee JW, Jo IH, Lee YS, Kim GS, Kim S, Lee DY. Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC-QTOF/MS, and GC × GC-TOF/MS. Molecules 2019; 24:molecules24132381. [PMID: 31252608 PMCID: PMC6651322 DOI: 10.3390/molecules24132381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
(1) Background: The ability to determine the age of ginseng is very important because the price of ginseng depends on the cultivation period. Since morphological observation is subjective, a new scientific and systematic method for determining the age of ginseng is required. (2) Methods: Three techniques were used for a metabolomics approach. High-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy was used to analyze powdered ginseng samples without extraction. Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and gas chromatography quadrupole time-of-fight mass spectrometry (GC-TOF/MS) were used to analyze the extracts of 4-, 5-, and 6-year-old ginseng. (3) Results: A metabolomics approach has the potential to discriminate the age of ginseng. Among the primary metabolites detected from NMR spectroscopy, the levels of fumarate and choline showed moderate prediction with an area under the curve (AUC) value of more than 0.7. As a result of UPLC-QTOF/MS-based profiling, 61 metabolites referring to the VIP (variable importance in the projection) score contributed to discriminating the age of ginseng. The results of GC×GC-TOF/MS showed clear discrimination of 4-, 5-, and 6-year-old ginseng using orthogonal partial least-squares discriminant analysis (OPLS-DA) to 100% of the discrimination rate. The results of receiver operating characteristic (ROC) analysis, 16 metabolites between 4- and 5-year-old ginseng, and 18 metabolites between 5- and 6-year-old ginseng contributed to age discrimination in all regions. (4) Conclusions: These results showed that metabolic profiling and multivariate statistical analyses can distinguish the age of ginseng. Especially, it is meaningful that ginseng samples from different areas had the same metabolites for age discrimination. In future studies, it will be necessary to identify the unknown variables and to collaboratively study with other fields the biochemistry of aging in ginseng.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Seohee Ma
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jae Won Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea.
| |
Collapse
|
38
|
Jia L, Zuo T, Zhang C, Li W, Wang H, Hu Y, Wang X, Qian Y, Yang W, Yu H. Simultaneous Profiling and Holistic Comparison of the Metabolomes among the Flower Buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMS E-Based Metabolomics Analysis. Molecules 2019; 24:molecules24112188. [PMID: 31212627 PMCID: PMC6600391 DOI: 10.3390/molecules24112188] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/04/2023] Open
Abstract
The flower buds of three Panax species (PGF: flower bud of P. ginseng; PQF: flower bud of P. quinquefolius; PNF: flower bud of P. notoginseng), widely consumed as healthcare products, are easily confused particularly in the extracts or traditional Chinese medicine (TCM) formulae. We are aimed to develop an untargeted metabolomics approach, by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) to unveil the chemical markers diagnostic for the differentiation of PGF, PQF, and PNF. Key parameters affecting chromatographic separation and MS detection were optimized in sequence. Forty-two batches of flower bud samples were analyzed in negative high-definition MSE (HDMSE; enabling three-dimensional separations). Efficient metabolomics data processing was performed by Progenesis QI (Waters, Milford, MA, USA), while pattern-recognition chemometrics was applied for species classification and potential markers discovery. Reference compounds comparison, analysis of both HDMSE and targeted MS/MS data, and retrieval of an in-house ginsenoside library, were simultaneously utilized for the identification of discovered potential markers. Satisfactory conditions for metabolite profiling were achieved on a BEH Shield RP18 column and Vion™ IMS-QTOF instrument (Waters; by setting the capillary voltage of 1.0 kV and the cone of voltage 20 V) within 37 min. A total of 32 components were identified as the potential markers, of which Rb3, Ra1, isomer of m-Rc/m-Rb2/m-Rb3, isomer of Ra1/Ra2, Rb1, and isomer of Ra3, were the most important for differentiating among PGF, PQF, and PNF. Conclusively, UHPLC/IM-QTOF-MS-based metabolomics is a powerful tool for the authentication of TCM at the metabolome level.
Collapse
Affiliation(s)
- Li Jia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Tiantian Zuo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Chunxia Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Weiwei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Hongda Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Ying Hu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Xiaoyan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yuexin Qian
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Wenzhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Heshui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
39
|
Lin H, Zhu H, Tan J, Wang C, Dong Q, Wu F, Wang H, Liu J, Li P, Liu J. Comprehensive Investigation on Metabolites of Wild-Simulated American Ginseng Root Based on Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5801-5819. [PMID: 31050418 DOI: 10.1021/acs.jafc.9b01581] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aiming to evaluate the similarities and differences of the phytochemicals in different morphological regions of wild-simulated American ginseng (WsAG) root, the comprehensive metabolite profiling of main root (MR), branch root (BR), rhizome (RH), adventitious root (AR), and fibrous root (FR) was performed on the basis of ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for the first time. First, in the screening analysis, a total of 128 shared compounds were identified or tentatively characterized. The results showed that these five parts were all rich in phytochemicals and contained similar structure types. Second, in the untargeted metabolomic study, it was found that there indeed existed differences between the MR&BR group, RH&AR group, and FR part when considering the contents of every ingredient. A total of 31 (12, 7, and 12 for MR&BR, RH&AR, and FR, respectively) potential chemical markers enabling the differentiation were discovered. This comprehensive phytochemical profile study revealed the structural diversity of secondary metabolites and the similar/different patterns in five morphological regions of WsAG root. It could provide chemical evidence for the rational application of different parts of WsAG root.
Collapse
|
40
|
Lin H, Zhu H, Tan J, Wang H, Dong Q, Wu F, Liu Y, Li P, Liu J. Non-Targeted Metabolomic Analysis of Methanolic Extracts of Wild-Simulated and Field-Grown American Ginseng. Molecules 2019; 24:molecules24061053. [PMID: 30889792 PMCID: PMC6470646 DOI: 10.3390/molecules24061053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Aiming at revealing the structural diversity of secondary metabolites and the different patterns in wild-simulated American ginseng (WsAG) and field-grown American ginseng (FgAG), a comprehensive and unique phytochemical profile study was carried out. In the screening analysis, a total of 121 shared compounds were characterized in FgAG and WsAG, respectively. The results showed that both of these two kinds of American ginseng were rich in natural components, and were similar in terms of the kinds of compound they contained. Furthermore, in non-targeted metabolomic analysis, when taking the contents of the constituents into account, it was found that there indeed existed quite a difference between FgAG and WsAG, and 22 robust known biomarkers enabling the differentiation were discovered. For WsAG, there were 12 potential biomarkers including two ocotillol-type saponins, two steroids, six damarane-type saponins, one oleanane-type saponins and one other compound. On the other hand, for FgAG, there were 10 potential biomarkers including two organic acids, six damarane-type saponins, one oleanane-type saponin, and one ursane. In a word, this study illustrated the similarities and differences between FgAG and WsAG, and provides a basis for explaining the effect of different growth environments on secondary metabolites.
Collapse
Affiliation(s)
- Hongqiang Lin
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Hailin Zhu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jing Tan
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Han Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Qinghai Dong
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Fulin Wu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Yunhe Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
41
|
Comparative Analysis of Chemical Constituents of Moringa oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules 2019; 24:molecules24050942. [PMID: 30866537 PMCID: PMC6429208 DOI: 10.3390/molecules24050942] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
With the aim to discuss the similarities and differences of phytochemicals in Moringa oleifera leaves collected from China (CML) and India (IML) in mind, comparative ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS) analysis was performed in this study. A screening analysis based on a UNIFI platform was first carried out to discuss the similarities. Next, untargeted metabolomic analysis based on multivariate statistical analysis was performed to discover the differences. As a result, a total of 122 components, containing 118 shared constituents, were characterized from CML and IML. The structure types included flavonoids, alkaloids, glyosides, organic acids and organic acid esters, iridoids, lignans, and steroids, etc. For CML, 121 compounds were characterized; among these, 18 potential biomarkers with higher contents enabled differentiation from IML. For IML, 119 compounds were characterized; among these, 12 potential biomarkers with higher contents enabled differentiation from CML. It could be concluded that both CML and IML are rich in phytochemicals and that CML is similar to IML in the kinds of the compounds it contains, except for the significant differences in the contents of some compounds. This comprehensive phytochemical profile study provides a basis for explaining the effect of different growth environments on secondary metabolites and exists as a reference for further research into or applications of CML in China.
Collapse
|