1
|
Li C, Sun S, Kong H, Xie X, Liang G, Zhang Y, Wang H, Li J. A dual-locked cyclopeptide-siRNA conjugate for tumor-specific gene silencing. RSC Chem Biol 2025; 6:73-80. [PMID: 39634054 PMCID: PMC11612639 DOI: 10.1039/d4cb00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Strategies allowing tumor-selective siRNA delivery while minimizing off-tumor gene silencing effects are highly demanded to advance cancer gene therapy, which however still remain challenging. We herein report a dual-locking bioconjugation approach to address this challenge. A dual-locked cyclopeptide-siRNA conjugate (DPRC) was designed to simultaneously endow siRNA with tumor-targeting properties and tumor-biomarker/visible-light dually controllable action. The DPRC consisted of a programmed death-ligand 1 (PD-L1)-targeting cyclopeptide as a tumor-homing ligand and B-cell lymphoma-2 (Bcl-2)-targeting siRNA as a payload. They were conjugated via a tandem-responsive cleavable linker containing a photocleavable coumarin moiety quenched by naphthylamide through a disulfide linkage. Owing to the interaction between cell-membrane PD-L1 and the cyclopeptide, the DPRC was efficiently taken up by PD-L1-positive cancer cells. Notably, the internalized DPRC could only release and restore the gene silencing activity of siBcl-2 upon GSH-mediated disulfide bond breakage followed by visible light irradiation on the coumarin moiety to induce photo-cleavage. The released siBcl-2 further silenced the expression of anti-apoptotic Bcl-2 to suppress cancer cell growth. We demonstrated the tumor-targeting and dual-locked action of siRNA by the DPRC in both two-dimensional and three-dimensional cancer cell cultures. This study thus presents a novel strategy for precise tumor-specific gene silencing by siRNA.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Shuaishuai Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University Nanjing 211189 China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| |
Collapse
|
2
|
Castillo Cruz B, Chinapen Barletta S, Ortiz Muñoz BG, Benitez-Reyes AS, Amalbert Perez OA, Cardona Amador AC, Vivas-Mejia PE, Barletta GL. Effect of Cyclodextrins Formulated in Liposomes and Gold and Selenium Nanoparticles on siRNA Stability in Cell Culture Medium. Pharmaceuticals (Basel) 2024; 17:1344. [PMID: 39458985 PMCID: PMC11510567 DOI: 10.3390/ph17101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome's fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and therefore the effectiveness of the carrier. We have previously reported that β-cyclodextrins formulated in liposomes help increase the stability of siRNAs in cell culture medium. Here, we continued that study to include α, γ, methyl-β-cyclodextrins and β-cyclodextrin-modified gold and selenium nanoparticles. METHODS We used Isothermal Titration Calorimetry to study the binding thermodynamics of siRNAs to the cyclodextrin-modified nanoparticles and to screen for the best adamantane derivative to modify the siRNA fragments, and we used gel electrophoresis to study the stabilization effect of siRNA by cyclodextrins and the nanoparticles. RESULTS We found that only β- and methyl-β-cyclodextrins increased siRNA serum stability. Cyclodextrin-modified selenium nanoparticles also stabilize siRNA fragments in serum, and siRNAs chemically modified with an adamantane moiety (which forms inclusion complexes with the cyclodextrin-modified-nanoparticles) show a strong stabilization effect. CONCLUSIONS β-cyclodextrins are good additives to stabilize siRNA in cell culture medium, and the thermodynamic data we generated of the interaction between cyclodextrins and adamantane analogs (widely used in drug delivery studies), should serve as a guide for future studies where cyclodextrins are sought for the delivery and solvation of small organic molecules.
Collapse
Affiliation(s)
- Betzaida Castillo Cruz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Sandra Chinapen Barletta
- Department of Physiology/Pathology, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico;
| | - Bryan G. Ortiz Muñoz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Adriana S. Benitez-Reyes
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Omar A. Amalbert Perez
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Alexander C. Cardona Amador
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Pablo E. Vivas-Mejia
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 0035, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Gabriel L. Barletta
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| |
Collapse
|
3
|
Chen S, Mao Q, Cheng H, Tai W. RNA-Binding Small Molecules in Drug Discovery and Delivery: An Overview from Fundamentals. J Med Chem 2024; 67:16002-16017. [PMID: 39287926 DOI: 10.1021/acs.jmedchem.4c01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
RNA molecules, similar to proteins, fold into complex structures to confer diverse functions in cells. The intertwining of functions with RNA structures offers a new therapeutic opportunity for small molecules to bind and manipulate disease-relevant RNA pathways, thus creating a therapeutic realm of RNA-binding small molecules. The ongoing interest in RNA targeting and subsequent screening campaigns have led to the identification of numerous compounds that can regulate RNAs from splicing, degradation to malfunctions, with therapeutic benefits for a variety of diseases. Moreover, along with the rise of RNA-based therapeutics, RNA-binding small molecules have expanded their application to the modification, regulation, and delivery of RNA drugs, leading to the burgeoning interest in this field. This Perspective overviews the emerging roles of RNA-binding small molecules in drug discovery and delivery, covering aspects from their action fundamentals to therapeutic applications, which may inspire researchers to advance the field.
Collapse
Affiliation(s)
- Siyi Chen
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qi Mao
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
4
|
Cochran M, Arias D, Burke R, Chu D, Erdogan G, Hood M, Kovach P, Kwon HW, Chen Y, Moon M, Miller CD, Huang H, Levin A, Doppalapudi VR. Structure-Activity Relationship of Antibody-Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody-siRNA Conjugates for Drug Development. J Med Chem 2024; 67:14852-14867. [PMID: 39197831 PMCID: PMC11403602 DOI: 10.1021/acs.jmedchem.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Antibody-oligonucleotide conjugates are a promising class of therapeutics for extrahepatic delivery of small interfering ribonucleic acids (siRNAs). These conjugates can be optimized for improved delivery and mRNA knockdown (KD) through understanding of structure-activity relationships. In this study, we systematically examined factors including antibody isotype, siRNA chemistry, linkers, conjugation chemistry, PEGylation, and drug-to-antibody ratios (DARs) for their impact on bioconjugation, pharmacokinetics (PK), siRNA delivery, and bioactivity. Conjugation site (cysteine, lysine, and Asn297 glycan) and DAR proved critical for optimal conjugate PK and siRNA delivery. SiRNA chemistry including 2' sugar modifications and positioning of phosphorothioates were found to be critical for delivery and duration of action. By utilizing cleavable and noncleavable linkers, we demonstrated the impact of linkers on PK and mRNA KD. To achieve optimal properties of antibody-siRNA conjugates, a careful selection of siRNA chemistry, DAR, conjugation sites, linkers, and antibody isotype is necessary.
Collapse
Affiliation(s)
- Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Danny Arias
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Rob Burke
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - David Chu
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Gulin Erdogan
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Michael Hood
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Philip Kovach
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Hae Won Kwon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Yanling Chen
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Michael Moon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Christopher D Miller
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Arthur Levin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| | - Venkata Ramana Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125. San Diego, California 92121, United States
| |
Collapse
|
5
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
6
|
Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupický D. Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404608. [PMID: 38842816 PMCID: PMC11384239 DOI: 10.1002/adma.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The recent success of gene therapy during the COVID-19 pandemic has underscored the importance of effective and safe delivery systems. Complementing lipid-based delivery systems, polymers present a promising alternative for gene delivery. Significant advances have been made in the recent past, with multiple clinical trials progressing beyond phase I and several companies actively working on polymeric delivery systems which provides assurance that polymeric carriers can soon achieve clinical translation. The massive advantage of structural tunability and vast chemical space of polymers is being actively leveraged to mitigate shortcomings of traditional polycationic polymers and improve the translatability of delivery systems. Tailored polymeric approaches for diverse nucleic acids and for specific subcellular targets are now being designed to improve therapeutic efficacy. This review describes the recent advances in polymer design for improved gene delivery by polyplexes and covalent polymer-nucleic acid conjugates. The review also offers a brief note on novel computational techniques for improved polymer design. The review concludes with an overview of the current state of polymeric gene therapies in the clinic as well as future directions on their translation to the clinic.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ashish Das
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
7
|
Jin Y, Wang X, Kromer AP, Müller JT, Zimmermann C, Xu Z, Hartschuh A, Adams F, Merkel OM. Role of Hydrophobic Modification in Spermine-Based Poly(β-amino ester)s for siRNA Delivery and Their Spray-Dried Powders for Inhalation and Improved Storage. Biomacromolecules 2024; 25:4177-4191. [PMID: 38866384 PMCID: PMC11238323 DOI: 10.1021/acs.biomac.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
After RNAi was first discovered over 20 years ago, siRNA-based therapeutics are finally becoming reality. However, the delivery of siRNA has remained a challenge. In our previous research, we found that spermine-based poly(β-amino ester)s are very promising for siRNA delivery. However, the role of hydrophobic modification in siRNA delivery of spermine-based poly(β-amino ester)s is not fully understood yet. In the current work, we synthesized spermine-based poly(β-amino ester)s with different percentages of oleylamine side chains, named P(SpOABAE). The chemical structures of the polymers were characterized by 1H NMR. The polymers showed efficient siRNA encapsulation determined by SYBR Gold assays. The hydrodynamic diameters of the P(SpOABAE) polyplexes from charge ratio N/P 1 to 20 were 30-100 nm except for aggregation phenomena observed at N/P 3. Morphology of the polyplexes was visualized by atomic force microscopy, and cellular uptake was determined by flow cytometry in H1299 cells, where all the polyplexes showed significantly higher cellular uptake than hyperbranched polyethylenimine (25 kDa). The most hydrophobic P(SpOABAE) polyplexes were able to achieve more than 90% GFP knockdown in H1299/eGFP cells. The fact that gene silencing efficacy increased with hydrophobicity but cellular uptake was affected by both charge and hydrophobic interactions highlights the importance of endosomal escape. For pulmonary administration and improved storage stability, the polyplexes were spray-dried. Results confirmed the maintained siRNA activity after storage for 3 months at room temperature, indicating potential for dry powder inhalation.
Collapse
Affiliation(s)
- Yao Jin
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Xiaoxuan Wang
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Adrian P.E. Kromer
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Joschka T. Müller
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Christoph Zimmermann
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Zehua Xu
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstr.
5-13, 81377 Munich, Germany
| | - Achim Hartschuh
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstr.
5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Ludwig-Maximilians-Universität
München, 80799 München, Germany
| | - Friederike Adams
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia M. Merkel
- Department
of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Ludwig-Maximilians-Universität
München, 80799 München, Germany
| |
Collapse
|
8
|
Valatabar N, Oroojalian F, Kazemzadeh M, Mokhtarzadeh AA, Safaralizadeh R, Sahebkar A. Recent advances in gene delivery nanoplatforms based on spherical nucleic acids. J Nanobiotechnology 2024; 22:386. [PMID: 38951806 PMCID: PMC11218236 DOI: 10.1186/s12951-024-02648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Gene therapy is a therapeutic option for mitigating diseases that do not respond well to pharmacological therapy. This type of therapy allows for correcting altered and defective genes by transferring nucleic acids to target cells. Notably, achieving a desirable outcome is possible by successfully delivering genetic materials into the cell. In-vivo gene transfer strategies use two major classes of vectors, namely viral and nonviral. Both of these systems have distinct pros and cons, and the choice of a delivery system depends on therapeutic objectives and other considerations. Safe and efficient gene transfer is the main feature of any delivery system. Spherical nucleic acids (SNAs) are nanotechnology-based gene delivery systems (i.e., non-viral vectors). They are three-dimensional structures consisting of a hollow or solid spherical core nanoparticle that is functionalized with a dense and highly organized layer of oligonucleotides. The unique structural features of SNAs confer them a high potency in internalization into various types of tissue and cells, a high stability against nucleases, and efficay in penetrating through various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier). SNAs also show negligible toxicity and trigger minimal immune response reactions. During the last two decades, all these favorable physicochemical and biological attributes have made them attractive vehicles for drug and nucleic acid delivery. This article discusses the unique structural properties, types of SNAs, and also optimization mechanisms of SNAs. We also focus on recent advances in the synthesis of gene delivery nanoplatforms based on the SNAs.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mina Kazemzadeh
- Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Belgrad J, Tang Q, Hildebrand S, Summers A, Sapp E, Echeverria D, O’Reilly D, Luu E, Bramato B, Allen S, Cooper D, Alterman J, Yamada K, Aronin N, DiFiglia M, Khvorova A. A programmable dual-targeting siRNA scaffold supports potent two-gene modulation in the central nervous system. Nucleic Acids Res 2024; 52:6099-6113. [PMID: 38726879 PMCID: PMC11194107 DOI: 10.1093/nar/gkae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Sam Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital; Charlestown, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Dan O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Sarah Allen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
- Department of Medicine, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital; Charlestown, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School; Worcester, MA, USA
| |
Collapse
|
10
|
García-Fernández D, Gutiérrez-Gálvez L, Vázquez Sulleiro M, Garrido M, López-Diego D, Luna M, Pérez EM, García-Mendiola T, Lorenzo E. A "signal off-on" fluorescence bioassay based on 2D-MoS 2-tetrahedral DNA bioconjugate for rapid virus detection. Talanta 2024; 270:125497. [PMID: 38142611 DOI: 10.1016/j.talanta.2023.125497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
In this work we present the preparation of a 2D molybdenum disulphide nanosheets (2D-MoS2) and tetrahedral DNA nanostructures (TDNs) bioconjugate, and its application to the development of a bioassay for rapid and easy virus detection. The bioconjugate has been prepared by using TDNs carrying the capture probe labelled with 6-carboxyfluoresceine (6-FAM). As case of study to assess the utility of the assay developed, we have chosen the SARS-CoV-2 virus. Hence, as probe we have used a DNA sequence complementary to a region of the SARS-CoV-2 ORF1ab gene (TDN-ORF-FAM). This 6-FAM labelled capture probe is located on the top vertex of the tetrahedral DNA nanostructure, the three left vertices of TDNs have a thiol group. These TDNs are bounded to 2D-MoS2 surface through the three thiol groups, allowing the capture probe to be oriented to favour the biorecognition reaction with the analyte. This biorecognition resulting platform has finally been challenged to the detection of the SARS-CoV-2 ORF1ab gene sequence as the target model by measuring fluorescence before and after the hybridization event with a detection limit of 19.7fM. Furthermore, due to high sensitivity of the proposed methodology, it has been applied to directly detect the virus in nasopharyngeal samples of infected patients without the need of any amplification step. The developed bioassay has a wide range of applicability since it can be applied to the detection of any pathogen by changing the probe corresponding to the target sequence. Thus, a novel, hands-on strategy for rapid pathogen detection has proposed and has a high potential application value in the early diagnosis of infections causes by virus or bacteria.
Collapse
Affiliation(s)
- Daniel García-Fernández
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Marina Garrido
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - David López-Diego
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), 28760, Tres Cantos, Madrid, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), 28760, Tres Cantos, Madrid, Spain
| | - Emilio M Pérez
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Zhang Y, Wu ZY. Gene therapy for monogenic disorders: challenges, strategies, and perspectives. J Genet Genomics 2024; 51:133-143. [PMID: 37586590 DOI: 10.1016/j.jgg.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
Monogenic disorders refer to a group of human diseases caused by mutations in single genes. While disease-modifying therapies have offered some relief from symptoms and delayed progression for some monogenic diseases, most of these diseases still lack effective treatments. In recent decades, gene therapy has emerged as a promising therapeutic strategy for genetic disorders. Researchers have developed various gene manipulation tools and gene delivery systems to treat monogenic diseases. Despite this progress, concerns about inefficient delivery, persistent expression, immunogenicity, toxicity, capacity limitation, genomic integration, and limited tissue specificity still need to be addressed. This review gives an overview of commonly used gene therapy and delivery tools, along with the challenges they face and potential strategies to counter them.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
12
|
Smidt JM, Lykke L, Stidsen CE, Pristovšek N, Gothelf K. Synthesis of peptide-siRNA conjugates via internal sulfonylphosphoramidate modifications and evaluation of their in vitro activity. Nucleic Acids Res 2024; 52:49-58. [PMID: 37971296 PMCID: PMC10783514 DOI: 10.1093/nar/gkad1015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Conjugates of therapeutic oligonucleotides (ONs) including peptide conjugates, provide a potential solution to the major challenge of specific tissue delivery faced by this class of drugs. Conjugations are often positioned terminal at the ONs, although internal placement of other chemical modifications are known to be of critical importance. The introduction of internal conjugation handles in chemically modified ONs require highly specialized and expensive nucleoside phosphoramidites. Here, we present a method for synthesizing a library of peptide-siRNA conjugates by conjugation at internal phosphorous positions via sulfonylphosphoramidate modifications incorporated into the sense strand. The sulfonylphosphoramidate modification offers benefits as it can be directly incorporated into chemically modified ONs by simply changing the oxidation step during synthesis, and furthermore holds the potential to create multifunctionalized therapeutic ONs. We have developed a workflow using a novel pH-controlled amine-to-amine linker that yields peptide-siRNA conjugates linked via amide bonds, and we have synthesized conjugates between GLP1 peptides and a HPRT1 siRNA as a model system. The in vitro activity of the conjugates was tested by GLP1R activity and knockdown of the HPRT1 gene. We found that conjugation near the 3'-end is more favorable than certain central internal positions and different internal conjugation strategies were compared.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Lennart Lykke
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Carsten Enggaard Stidsen
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Nuša Pristovšek
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Singh P, Singh M, Singh B, Sharma K, Kumar N, Singh D, Klair HS, Mastana S. Implications of siRNA Therapy in Bone Health: Silencing Communicates. Biomedicines 2024; 12:90. [PMID: 38255196 PMCID: PMC10813040 DOI: 10.3390/biomedicines12010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The global statistics of bone disorders, skeletal defects, and fractures are frightening. Several therapeutic strategies are being used to fix them; however, RNAi-based siRNA therapy is starting to prove to be a promising approach for the prevention of bone disorders because of its advanced capabilities to deliver siRNA or siRNA drug conjugate to the target tissue. Despite its 'bench-to-bedside' usefulness and approval by food and drug administration for five siRNA-based therapeutic medicines: Patisiran, Vutrisiran, Inclisiran, Lumasiran, and Givosiran, its use for the other diseases still remains to be resolved. By correcting the complications and complexities involved in siRNA delivery for its sustained release, better absorption, and toxicity-free activity, siRNA therapy can be harnessed as an experimental tool for the prevention of complex and undruggable diseases with a personalized medicine approach. The present review summarizes the findings of notable research to address the implications of siRNA in bone health for the restoration of bone mass, recovery of bone loss, and recuperation of bone fractures.
Collapse
Affiliation(s)
- Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Monica Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Baani Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Kirti Sharma
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Nitin Kumar
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Deepinder Singh
- Vardhman Mahavir Health Care, Urban Estate, Ph-II, Patiala 147002, Punjab, India
| | | | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
14
|
Coles AH. siRNA goes after diseases of the bone. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102051. [PMID: 37916226 PMCID: PMC10616371 DOI: 10.1016/j.omtn.2023.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Affiliation(s)
- Andrew H. Coles
- AbbVie Bioresearch Center, 100 Research Dr, Worcester, MA 01605, USA
| |
Collapse
|
15
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
16
|
Lee JW, Choi J, Kim EH, Choi J, Kim SH, Yang Y. Design of siRNA Bioconjugates for Efficient Control of Cancer-Associated Membrane Receptors. ACS OMEGA 2023; 8:36435-36448. [PMID: 37810687 PMCID: PMC10552107 DOI: 10.1021/acsomega.3c05395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Research on siRNA delivery has seen tremendous growth over the past few decades. As one of the major delivery strategies, siRNA bioconjugates offer the potential to enhance and extend the pharmacological properties of siRNAs while minimizing toxicity. In this paper, we suggest the development of a siRNA conjugate platform with peptides and proteins that are ligands of target receptors for cancer treatment. The siRNA bioconjugates target and block the receptor membrane proteins, enter the cells through receptor-mediated endocytosis, and inhibit the expression of that same target membrane receptor, thereby doubly controlling the function of the membrane proteins. The three kinds of bioconjugates targeting CD47, PD-L1, and EGFR were synthesized via two different copper-free click chemistry reactions. Results showed the cellular uptake of each conjugate, reduction of target gene expression, and efficient functional control of receptor proteins. This platform provides an effective approach for regulating membrane proteins in various diseases beyond cancer.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jiwoong Choi
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department
of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiwon Choi
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department
of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sun Hwa Kim
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
17
|
Kumari A, Kaur A, Aggarwal G. The emerging potential of siRNA nanotherapeutics in treatment of arthritis. Asian J Pharm Sci 2023; 18:100845. [PMID: 37881798 PMCID: PMC10594572 DOI: 10.1016/j.ajps.2023.100845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 10/27/2023] Open
Abstract
RNA interference (RNAi) using small interfering RNA (siRNA) has shown potential as a therapeutic option for the treatment of arthritis by silencing specific genes. However, siRNA delivery faces several challenges, including stability, targeting, off-target effects, endosomal escape, immune response activation, intravascular degradation, and renal clearance. A variety of nanotherapeutics like lipidic nanoparticles, liposomes, polymeric nanoparticles, and solid lipid nanoparticles have been developed to improve siRNA cellular uptake, protect it from degradation, and enhance its therapeutic efficacy. Researchers are also investigating chemical modifications and bioconjugation to reduce its immunogenicity. This review discusses the potential of siRNA nanotherapeutics as a therapeutic option for various immune-mediated diseases, including rheumatoid arthritis, osteoarthritis, etc. siRNA nanotherapeutics have shown an upsurge of interest and the future looks promising for such interdisciplinary approach-based modalities that combine the principles of molecular biology, nanotechnology, and formulation sciences.
Collapse
Affiliation(s)
- Anjali Kumari
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Amanpreet Kaur
- Centre for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research, New Delhi 110017, India
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Geeta Aggarwal
- Centre for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research, New Delhi 110017, India
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| |
Collapse
|
18
|
Khan S, Rehman U, Parveen N, Kumar S, Baboota S, Ali J. siRNA therapeutics: insights, challenges, remedies and future prospects. Expert Opin Drug Deliv 2023; 20:1167-1187. [PMID: 37642354 DOI: 10.1080/17425247.2023.2251890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Among conventional and novel therapeutic approaches, the siRNA strategy stands out for treating disease by silencing the gene responsible for the corresponding disorder. Gene silencing is supposedly intended to target any disease-causing gene, and therefore, several attempts and investments were made to exploit siRNA gene therapy and advance it into clinical settings. Despite the remarkable beneficial prospects, the applicability of siRNA therapeutics is very challenging due to various pathophysiological barriers that hamper its target reach, which is the cytosol, and execution of gene silencing action. AREAS COVERED The present review provides insights into the field of siRNA therapeutics, significant in vivo hurdles that mitigate the target accessibility of siRNA, and remedies to overcome these siRNA delivery challenges. Nonetheless, the current review also highlights the on-going clinical trials and the regulatory aspects of siRNA modalities. EXPERT OPINION The siRNAs have the potential to reach previously untreated target sites and silence the concerned gene owing to their modification as polymeric or lipidic nanoparticles, conjugates, and the application of advanced drug delivery strategies. With such mounting research attempts to improve the delivery of siRNA to target tissue, we might shortly witness revolutionary therapeutic outcomes, new approvals, and clinical implications.
Collapse
Affiliation(s)
- Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Abosalha AK, Ahmad W, Boyajian J, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opin Drug Discov 2023; 18:149-161. [PMID: 36514963 DOI: 10.1080/17460441.2022.2155630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION RNA interference (RNAi) using small interfering RNA (siRNA) is a promising strategy to control many genetic disorders by targeting the mRNA of underlying genes and degrade it. However, the delivery of siRNA to targeted organs is highly restricted by several intracellular and extracellular barriers. AREAS COVERED This review discusses various design strategies developed to overcome siRNA delivery obstacles. The applied techniques involve chemical modification, bioconjugation to specific ligands, and carrier-mediated strategies. Nanotechnology-based systems like liposomes, niosomes, solid lipid nanoparticles (SLNs), dendrimers, and polymeric nanoparticles (PNs) are also discussed. EXPERT OPINION Although the mechanism of siRNA as a gene silencer is well-established, only a few products are available as therapeutics. There is a great need to develop and establish siRNA delivery systems that protects siRNAs and delivers them efficiently to the desired sitesare efficient and capable of targeted delivery. Several diseases are reported to be controlled by siRNA at their early stages. However, their targeted delivery is a daunting challenge.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada.,Pharmaceutical Technology department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Almarghalani DA, Shah ZA. Progress on siRNA-based gene therapy targeting secondary injury after intracerebral hemorrhage. Gene Ther 2023; 30:1-7. [PMID: 34754099 PMCID: PMC10927018 DOI: 10.1038/s41434-021-00304-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening condition with a high mortality rate. For survivors, quality of life is determined by primary and secondary phases of injury. The prospects for injury repair and recovery after ICH are highly dependent on the extent of secondary injury. Currently, no effective treatments are available to prevent secondary injury or its long-term effects. One promising strategy that has recently garnered attention is gene therapy, in particular, small interfering RNAs (siRNA), which silence specific genes responsible for destructive effects after hemorrhage. Gene therapy as a potential treatment for ICH is being actively researched in animal studies. However, there are many barriers to the systemic delivery of siRNA-based therapy, as the use of naked siRNA has limitations. Recently, the Food and Drug Administration approved two siRNA-based therapies, and several are undergoing Phase 3 clinical trials. In this review, we describe the advancements in siRNA-based gene therapy for ICH and also summarize its advantages and disadvantages.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
21
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
22
|
Zhang L, Yan JJ, Wang HY, Li MQ, Wang XX, Fan L, Wang YS. A Trojan horse biomimetic delivery system using mesenchymal stem cells for HIF-1α siRNA-loaded nanoparticles on retinal pigment epithelial cells under hypoxia environment. Int J Ophthalmol 2022; 15:1743-1751. [PMID: 36404976 PMCID: PMC9631181 DOI: 10.18240/ijo.2022.11.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022] Open
Abstract
AIM To demonstrate the feasibility of mesenchymal stem cell (MSC)-mediated nano drug delivery, which was characterized by the "Trojan horse"-like transport of hypoxia-inducible factor-1α small interfering RNA (HIF-1α siRNA) between MSCs and retinal pigment epithelial cells (RPE) under hypoxia environment. METHODS Plasmid and lentivirus targeting the human HIF-1α gene were designed and constructed. HIF-1α siRNA was encapsulated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) through the water-in-oil-in-water (w/o/w) multiple emulsion technique. The effect of PLGA-NPs uptake on the expression of HIF-1α mRNA was tested in RPE cells by real-time quantitative polymerase chain reaction (qPCR) and additional transfected conditions were used as control, including lentivirus group, nude plasmid group and blank PLGA group. MSCs were transfected with the NPs and the transfection efficacy was evaluated by flow cytometry. Transwell co-culture system of transfected MSCs and RPE cells was constructed under hypoxia environment. The effects of MSC-loaded HIF-1α siRNA PLGA-NPs on proliferation, apoptosis, and migration of RPE cells were then evaluated. The effect of transfected MSCs on HIF-1α expression of RPE cells was analyzed by using qPCR at the time points 24h, 3d, and 7d. RESULTS The average diameter of PLGA-NPs loaded with HIF siRNA was 314.1 nm and the zeta potential was -0.36 mV. The transfection efficiency of PLGA-NPs was 67.3%±5.2% into MSCs by using flow cytometry. Compared with the lentivirus group, the PLGA-NPs loaded with HIF-1α siRNA can effectively reduce the expression of HIF-1α mRNA up to 7d in RPE (0.63±0.05 at 7d, P<0.001). In the Transwell co-culture system of transfected MSCs and RPE, the abilities of proliferation (2.34±0.17, 2.40±0.28, 2.47±0.24 at 48h, F=0.23, P=0.80), apoptosis (14.83%±2.43%, 12.94%±2.19%, 12.39%±3.21%; F=0.70, P=0.53) and migration (124.5±7.78, 119.5±5.32, 130±9.89, F=1.33, P=0.33) of the RPE cells had no differences between MSC-loaded HIF-1α siRNA PLGA-NPs and other groups. The inhibition of PLGA on the HIF-1α mRNA expression in RPE cells could continue until the 7th day, the level of HIF-1α mRNA was lower than that of other groups (F=171.98, P<0.001). CONCLUSION The delivery of PLGA-NPs loaded with HIF-1α siRNA carried by MSCs is found to be beneficial temporally for HIF-1α mRNA inhibition in RPE cells under hypoxia environment. The MSC-based bio-mimetic delivery of HIF-1α siRNA nanoparticles is a potential method for therapy against choroidal neovascularization.
Collapse
Affiliation(s)
- Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Jie-Jing Yan
- Department of Ophthalmology, Xijing Hospital, Xi'an 710032, Shaanxi Province, China,Ophthalmology Department, Xi'an No.1 Hospital, the First Affiliated Hospital of Northwest University, Xi'an 710002, Shaanxi Province, China
| | - Hai-Yan Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Mu-Qiong Li
- Department of Pharmaceutical Chemistry and Analysis School of Pharmacy Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xi-Xi Wang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis School of Pharmacy Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Xijing Hospital, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
23
|
Lee JW, Choi J, Choi Y, Kim K, Yang Y, Kim SH, Yoon HY, Kwon IC. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. J Control Release 2022; 351:713-726. [DOI: 10.1016/j.jconrel.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
|
24
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Abosalha AK, Boyajian J, Ahmad W, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. Clinical pharmacology of siRNA therapeutics: current status and future prospects. Expert Rev Clin Pharmacol 2022; 15:1327-1341. [PMID: 36251525 DOI: 10.1080/17512433.2022.2136166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately twenty years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
26
|
Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
28
|
Shiohama Y, Fujita R, Sonokawa M, Hisano M, Kotake Y, Krstic-Demonacos M, Demonacos C, Kashiwazaki G, Kitayama T, Fujii M. Elimination of Off-Target Effect by Chemical Modification of 5′-End of Small Interfering RNA. Nucleic Acid Ther 2022; 32:438-447. [DOI: 10.1089/nat.2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yasuo Shiohama
- Environmental and Biological Information Group, Tropical Biosphere Research Centre, University of the Ryukyus, Nishihara, Japan
| | - Ryosuke Fujita
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Maika Sonokawa
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Masaaki Hisano
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Yojiro Kotake
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| | - Marija Krstic-Demonacos
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Constantinos Demonacos
- Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, School of Health Science, University of Manchester, Manchester, United Kingdom
| | - Gengo Kashiwazaki
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Takashi Kitayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Masayuki Fujii
- Department of Biological & Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Iizuka, Japan
| |
Collapse
|
29
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
30
|
Li MX, Weng JW, Ho ES, Chow SF, Tsang CK. Brain delivering RNA-based therapeutic strategies by targeting mTOR pathway for axon regeneration after central nervous system injury. Neural Regen Res 2022; 17:2157-2165. [PMID: 35259823 PMCID: PMC9083176 DOI: 10.4103/1673-5374.335830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the central nervous system (CNS) such as stroke, brain, and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration. The brain has a surprising intrinsic capability of recovering itself after injury. However, the hostile extrinsic microenvironment significantly hinders axon regeneration. Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration. Particularly, substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin (mTOR) signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries. In this review, we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury. Importantly, we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog (PTEN). Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway, we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose, and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination. To specifically tackle the blood-brain barrier issue, we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology. We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.
Collapse
Affiliation(s)
- Ming-Xi Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Wen Weng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric S Ho
- Department of Biology and Department of Computer Science, Lafayette College, Easton, PA, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
31
|
The Effect of Dicer Knockout on RNA Interference Using Various Dicer Substrate Small Interfering RNA (DsiRNA) Structures. Genes (Basel) 2022; 13:genes13030436. [PMID: 35327991 PMCID: PMC8952432 DOI: 10.3390/genes13030436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Small interfering RNAs (siRNAs) are artificial molecules used to silence genes of interest through the RNA interference (RNAi) pathway, mediated by the endoribonuclease Dicer. Dicer-substrate small interfering RNAs (DsiRNAs) are an alternative to conventional 21-mer siRNAs, with an increased effectiveness of up to 100-fold compared to traditional 21-mer designs. DsiRNAs have a novel asymmetric design that allows them to be processed by Dicer into the desired conventional siRNAs. DsiRNAs are a useful tool for sequence-specific gene silencing, but the molecular mechanism underlying their increased efficacy is not precisely understood. In this study, to gain a deeper understanding of Dicer function in DsiRNAs, we designed nicked DsiRNAs with and without tetra-loops to target a specific mRNA sequence, established a Dicer knockout in the HCT116 cell line, and analyzed the efficacy of various DsiRNAs on RNAi-mediated gene silencing activity. The gene silencing activity of all DsiRNAs was reduced in Dicer knockout cells. We demonstrated that tetra-looped DsiRNAs exhibited increased efficacy for gene silencing, which was mediated by Dicer protein. Thus, this study improves our understanding of Dicer function, a key component of RNAi silencing, which will inform RNAi research and applications.
Collapse
|
32
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
33
|
Castillo Cruz B, Flores Colón M, Rabelo Fernandez RJ, Vivas-Mejia PE, Barletta GL. A Fresh Look at the Potential of Cyclodextrins for Improving the Delivery of siRNA Encapsulated in Liposome Nanocarriers. ACS OMEGA 2022; 7:3731-3737. [PMID: 35128281 PMCID: PMC8812098 DOI: 10.1021/acsomega.1c06436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Liposomes are among the most effective vehicles to deliver siRNAs to cells, both in vitro and in vivo. However, despite numerous efforts to improve the potential of liposomes, siRNAs begin to leach out of liposomes as soon as they are formulated. This decreases the value of liposomes for drug delivery purposes significantly, masking their true potential. In this study, we examine the effect of β-cyclodextrins on the retention time and transfection efficiency of siRNAs formulated in a liposome. Cyclodextrins have been widely studied as solvating agents and drug delivery vectors mainly because these cyclic nontoxic glucose structures can bind several molecules of different physicochemical characteristics, through H-bonding or by forming inclusion complexes. These properties, although beneficial for most applications, have resulted in some contradictory results published in the literature, whereas cyclodextrins have been found to destabilize a liposome's membrane. Here, we present a systematic study, which shows that β-cyclodextrin binds, possibly via hydrogen bonding, with siRNA and DOPC liposomes, resulting in increased siRNA serum stability and in vitro siRNA's transfection efficiency when formulated together.
Collapse
Affiliation(s)
- Betzaida Castillo Cruz
- Department
of Chemistry, University of Puerto Rico, Humacao Campus, Humacao 00791, Puerto
Rico
| | - Marienid Flores Colón
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
- Department
of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico
| | - Robert J. Rabelo Fernandez
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00927, Puerto Rico
| | - Pablo E. Vivas-Mejia
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
- Department
of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico
| | - Gabriel L. Barletta
- Department
of Chemistry, University of Puerto Rico, Humacao Campus, Humacao 00791, Puerto
Rico
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
| |
Collapse
|
34
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
35
|
Abstract
In this introductory chapter, we first define cell-penetrating peptides (CPPs), give short overview of CPP history and discuss several aspects of CPP classification. Next section is devoted to the mechanism of CPP penetration into the cells, where direct and endocytic internalization of CPP is explained. Kinetics of internalization is discussed more extensively, since this topic is not discussed in other chapters of this book. At the end of this section some features of the thermodynamics of CPP interaction with the membrane is also presented. Finally, we present different cargoes that can be transferred into the cells by CPPs and briefly discuss the effect of cargo on the rate and efficiency of penetration into the cells.
Collapse
Affiliation(s)
- Matjaž Zorko
- Medical Faculty, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia.
| | - Ülo Langel
- Department of Biochemistry and Biophysics, University of Stockholm, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
36
|
Zhou X, Pan Y, Yu L, Wu J, Li Z, Li H, Guan Z, Tang X, Yang Z. Feasibility of cRGD conjugation at 5'-antisense strand of siRNA by phosphodiester linkage extension. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:603-612. [PMID: 34589281 PMCID: PMC8463321 DOI: 10.1016/j.omtn.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Small interfering RNAs (siRNAs) are widely studied for their highly specific gene silencing activity. However, obstacles remain to the clinical application of siRNAs. Attaching conjugates to siRNAs can improve their stability and broaden their application, and most functional conjugates of siRNAs locate at the 3'-terminus of the sense or antisense strand. In this work, we found that conjugating a group at the 5'-terminus of the antisense strand via phosphodiester was practicable, especially when the group was a flexible moiety such as an alkyl linker. When conjugating a bulky ligand, such as cRGD, the length of the 5'-phosphodiester linker between the ligand and the 5'-terminus of the antisense strand was the key in terms of RNA interference (RNAi). With a relative longer linker, the conjugates showed potency similar to siRNA. A highly efficient transfection system composed of a neutral cytidinyl lipid (DNCA) and a gemini-like cationic lipid (CLD) was employed to deliver siRNAs or their conjugates. The cRGD conjugates showed superior targeting delivery and antitumor efficacy in vivo and also selective cellular uptake in vitro. This unity of encapsulation and conjugation strategy may provide potential strategies for siRNA-based gene therapy.
Collapse
Affiliation(s)
- Xinyang Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- People’s Public Security University of China, Beijing 100038, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Jing Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zheng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huantong Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
37
|
Jin Y, Chifodya K, Han G, Jiang W, Chen Y, Shi Y, Xu Q, Xi Y, Wang J, Zhou J, Zhang H, Ding Y. High-density lipoprotein in Alzheimer's disease: From potential biomarkers to therapeutics. J Control Release 2021; 338:56-70. [PMID: 34391838 DOI: 10.1016/j.jconrel.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The inverse correlation between high-density lipoprotein (HDL) levels in vivo and the risk of Alzheimer's disease (AD) has become an inspiration for HDL-inspired AD therapy, including plain HDL and various intelligent HDL-based drug delivery systems. In this review, we will focus on the two endogenous HDL subtypes in the central nervous system (CNS), apolipoprotein E-based HDL (apoE-HDL) and apolipoprotein A-I-based HDL (apoA-I-HDL), especially their influence on AD pathophysiology to reveal HDL's potential as biomarkers for risk prediction, and summarize the relevant therapeutic mechanisms to propose possible treatment strategies. We will emphasize the latest advances of HDL as therapeutics (plain HDL and HDL-based drug delivery systems) to discuss the potential for AD therapy and review innovative techniques in the preparation of HDL-based nanoplatforms to provide a basis for the rational design and future development of anti-AD drugs.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Kudzai Chifodya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiao Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yilong Xi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, Nanjing 210009, China.
| |
Collapse
|
38
|
Kwak G, Kim H, Park J, Kim EH, Jang H, Han G, Wang SY, Yang Y, Chan Kwon I, Kim SH. A Trojan-Horse Strategy by In Situ Piggybacking onto Endogenous Albumin for Tumor-Specific Neutralization of Oncogenic MicroRNA. ACS NANO 2021; 15:11369-11384. [PMID: 34191497 DOI: 10.1021/acsnano.1c00799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs), a recently discovered class of noncoding RNAs, play pivotal roles in regulating fundamental biological processes by suppressing the expression of target genes. Aberrant miRNA expression is commonly correlated with human diseases, including cancers. Anti-miRNA oligonucleotides provide an innovative therapeutic strategy for silencing disease-associated miRNAs. However, the clinical application of anti-miRNA therapy has been limited by formulation challenges and physiological delivery barriers. Here, to provide the safe and effective tumor-targeted delivery of anti-miRNAs, we designed carrier-free maleimide-functionalized anti-miRNAs (MI-Anti-miRNAs) that enable "piggybacking" onto albumin in vivo. These functionalized MI-Anti-miRNAs covalently bind to cysteine-34 of endogenous albumin within minutes. In addition to resulting in a markedly extended blood circulation lifetime, this strategy allows MI-Anti-miRNAs to "hitchhike" to the tumor site. Importantly, in situ-generated albumin-Anti-miRNAs are capable of intracellularly internalizing highly negatively charged anti-miRNA molecules and knocking down target miRNAs. In particular, MI-Anti-miRNAs that targeted miRNA-21, which is involved in tumor initiation, progression, invasion, and metastasis in several types of cancer, successfully repressed miRNA-21 activity, resulting in a superior antitumor activity in both solid and metastatic tumor models without causing systemic toxicity. This endogenous albumin-piggybacking approach using MI-Anti-miRNAs provides a simple and broadly applicable platform strategy for the systemic delivery of anti-miRNA therapeutics.
Collapse
Affiliation(s)
- Gijung Kwak
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jooho Park
- Department of Biomedical & Health Science, Konkuk University, 268 Chungwon-daero, Chungju 27478, Republic of Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hochung Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sun Young Wang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- KIST-DFCI On-Site-Lab, Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
39
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
40
|
Grijalvo S, Ocampo SM, Perales JC, Eritja R. Preparation of Lipid-Conjugated siRNA Oligonucleotides for Enhanced Gene Inhibition in Mammalian Cells. Methods Mol Biol 2021; 2282:119-136. [PMID: 33928573 DOI: 10.1007/978-1-0716-1298-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleic acid conjugates are promising drugs for treating gene-related diseases. Conjugating specific units like lipids, cell-penetrating peptides, polymers, antibodies, and aptamers either at the 3'- or 5'-termini of a siRNA duplex molecule has resulted in a plethora of siRNA bioconjugates with improved stabilities in bloodstream and better pharmacokinetic values than unmodified siRNAs. In this sense, lipid-siRNA conjugates have attracted a remarkable interest for their potential value in facilitating cellular uptake. In this chapter, we describe a series of protocols involving the synthesis of siRNA oligonucleotides carrying either neutral or cationic lipids at the 3'- and 5'-termini. The resulting lipid-siRNA conjugates are aimed to be used as exogenous effectors for inhibiting gene expression by RNA interference. A protocol for the formulation of lipid siRNA using sonication in the presence of serum is described yielding interesting transfection properties for cell culture without the use of transfecting agents.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Barcelona, Spain. .,Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Research Council (CSIC), Barcelona, Spain.
| | - Sandra M Ocampo
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Barcelona, Spain.,Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Research Council (CSIC), Barcelona, Spain.,Department of Physiologic Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Carlos Perales
- Department of Physiologic Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ramon Eritja
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Barcelona, Spain. .,Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Research Council (CSIC), Barcelona, Spain.
| |
Collapse
|
41
|
Ligand conjugate SAR and enhanced delivery in NHP. Mol Ther 2021; 29:2910-2919. [PMID: 34091052 PMCID: PMC8531135 DOI: 10.1016/j.ymthe.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
N-Acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) are a leading RNA interference (RNAi) platform allowing targeted inhibition of disease-causing genes in hepatocytes. More than a decade of development has recently resulted in the first approvals for this class of drugs. While substantial effort has been made to improve nucleic acid modification patterns for better payload stability and efficacy, relatively little attention has been given to the GalNAc targeting ligand. In addition, the lack of an intrinsic endosomal release mechanism has limited potency. Here, we report a stepwise analysis of the structure activity relationships (SAR) of the components comprising these targeting ligands. We show that there is relatively little difference in biological performance between bi-, tri-, and tetravalent ligand structures while identifying other features that affect their biological activity more significantly. Further, we demonstrate that subcutaneous co-administration of a GalNAc-functionalized, pH responsive endosomal release agent markedly improved the activity and duration of effect for siRNA conjugates, without compromising tolerability, in non-human primates. These findings could address a significant bottleneck for future siRNA ligand conjugate development.
Collapse
|
42
|
Johnson MB, Chandler M, Afonin KA. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Deliv Rev 2021; 173:427-438. [PMID: 33857556 PMCID: PMC8178219 DOI: 10.1016/j.addr.2021.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
43
|
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. NANO TODAY 2021; 38:101119. [PMID: 34267794 PMCID: PMC8276870 DOI: 10.1016/j.nantod.2021.101119] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
44
|
Della Pelle G, Kostevšek N. Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers. Int J Mol Sci 2021; 22:5264. [PMID: 34067699 PMCID: PMC8156122 DOI: 10.3390/ijms22105264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has the potential to become a staple of 21st-century medicine. However, to overcome the limitations of existing gene-delivery therapies, that is, poor stability and inefficient and delivery and accumulation of nucleic acids (NAs), safe drug-delivery systems (DDSs) allowing the prolonged circulation and expression of the administered genes in vivo are needed. In this review article, the development of DDSs over the past 70 years is briefly described. Since synthetic DDSs can be recognized and eliminated as foreign substances by the immune system, new approaches must be found. Using the body's own cells as DDSs is a unique and exciting strategy and can be used in a completely new way to overcome the critical limitations of existing drug-delivery approaches. Among the different circulatory cells, red blood cells (RBCs) are the most abundant and thus can be isolated in sufficiently large quantities to decrease the complexity and cost of the treatment compared to other cell-based carriers. Therefore, in the second part, this article describes 70 years of research on the development of RBCs as DDSs, covering the most important RBC properties and loading methods. In the third part, it focuses on RBCs as the NA delivery system with advantages and drawbacks discussed to decide whether they are suitable for NA delivery in vivo.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
45
|
Distribution and biotransformation of therapeutic antisense oligonucleotides and conjugates. Drug Discov Today 2021; 26:2244-2258. [PMID: 33862193 DOI: 10.1016/j.drudis.2021.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Drug properties of antisense oligonucleotides (ASOs) differ significantly from those of traditional small-molecule therapeutics. In this review, we focus on ASO disposition, mainly as characterized by distribution and biotransformation, of nonconjugated and conjugated ASOs. We introduce ASO chemistry to allow the following in-depth discussion on bioanalytical methods and determination of distribution and elimination kinetics at low concentrations over extended periods of time. The resulting quantitative data on the parent oligonucleotide, and the identification and quantification of formed metabolites define the disposition. Proper quantitative understanding of disposition is pivotal for nonclinical to clinical predictions, supports communication with health agencies, and increases the probability of delivering optimal ASO therapy to patients.
Collapse
|
46
|
Cox KO, Wang BX. Long QT syndrome type 2: mechanism-based therapies. Future Cardiol 2021; 17:1453-1463. [PMID: 33739161 DOI: 10.2217/fca-2020-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long QT syndrome type 2 is a life-threatening disorder of cardiac electrophysiology. It can lead to sudden cardiac death as a result of QT prolongation and can remain undetected until it presents clinically in the form of life-threatening cardiac arrythmias. Current treatment relies on symptom management largely through the use of β-adrenergic blockade and presently no mechanism-based therapies exist to treat the dysfunction in the hERG channels responsible for the rapid delayed rectifier K+ current which is the pathological source of long QT syndrome type 2. We review the pathophysiology, diagnosis and current management of this life-threatening condition and also analyze some promising potential mechanism-based therapies.
Collapse
Affiliation(s)
- Kofi Oliver Cox
- Department of Medicine, St George's, University of London, London, UK
| | | |
Collapse
|
47
|
Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci 2021; 274:119337. [PMID: 33713664 DOI: 10.1016/j.lfs.2021.119337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
RNA interference (RNAi) represents a promising therapeutic method that uses siRNA for cancer treatment. Although the RNAi technique has been increasingly used for clinical trials, systemic siRNA delivery into targeted cells is still challenging. The barriers impeding siRNA therapeutics delivery and impacting the treatment outcome must overcome with negligible systemic toxicity for a desirable and successful delivery of siRNA to MDR cancer cells. Nano delivery strategies have been investigated for nanocarrier functionalization, cancer immunotherapy and cancer targeting. Lipid nanoparticles (LNPs), dynamic polyconjugates (DPC™), GalNAc-siRNA conjugates, exosome and RBC systems have shown potential for efficient delivery of siRNA to cancer cells. Delivery of siRNA to tumor cells, immune cells to regulate T cell functions for immunotherapy are promising approaches.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Sara Aly Attia
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
48
|
Gangopadhyay S, Nikam RR, Gore KR. Folate Receptor-Mediated siRNA Delivery: Recent Developments and Future Directions for RNAi Therapeutics. Nucleic Acid Ther 2021; 31:245-270. [PMID: 33595381 DOI: 10.1089/nat.2020.0882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference (RNAi), a gene regulatory process mediated by small interfering RNAs (siRNAs), has made remarkable progress as a potential therapeutic agent against various diseases. However, RNAi is associated with fundamental challenges such as poor systemic delivery and susceptibility to the nucleases. Targeting ligand-bound delivery vehicles has improved the accumulation of drug at the target site, which has resulted in high transfection efficiency and enhanced gene silencing. Recently, folate receptor (FR)-mediated targeted delivery of siRNAs has garnered attention due to their enhanced cellular uptake and high transfection efficiency toward tumor cells. Folic acid (FA), due to its small size, low immunogenicity, high in vivo stability, and high binding affinity toward FRs, has attracted much attention for targeted siRNA delivery. FRs are overexpressed in a large number of tumors, including ovarian, breast, kidney, and lung cancer cells. In this review, we discuss recent advances in FA-mediated siRNA delivery to treat cancers and inflammatory diseases. This review summarizes various FA-conjugated nanoparticle systems reported so far in the literature, including liposome, silica, metal, graphene, dendrimers, chitosan, organic copolymers, and RNA nanoparticles. This review will help in the design and development of potential delivery vehicles for siRNA drug targeting to tumor cells using an FR-mediated approach.
Collapse
Affiliation(s)
- Sumit Gangopadhyay
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rahul R Nikam
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
49
|
Varley AJ, Desaulniers JP. Chemical strategies for strand selection in short-interfering RNAs. RSC Adv 2021; 11:2415-2426. [PMID: 35424193 PMCID: PMC8693850 DOI: 10.1039/d0ra07747j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Therapeutic small interfering RNAs (siRNAs) are double stranded RNAs capable of potent and specific gene silencing through activation of the RNA interference (RNAi) pathway. The potential of siRNA drugs has recently been highlighted by the approval of multiple siRNA therapeutics. These successes relied heavily on chemically modified nucleic acids and their impact on stability, delivery, potency, and off-target effects. Despite remarkable progress, clinical trials still face failure due to off-target effects such as off-target gene dysregulation. Each siRNA strand can downregulate numerous gene targets while also contributing towards saturation of the RNAi machinery, leading to the upregulation of miRNA-repressed genes. Eliminating sense strand uptake effectively reduces off-target gene silencing and helps limit the disruption to endogenous regulatory mechanisms. Therefore, our understanding of strand selection has a direct impact on the success of future siRNA therapeutics. In this review, the approaches used to improve strand uptake are discussed and effective methods are summarized.
Collapse
Affiliation(s)
- Andrew J Varley
- Faculty of Science, University of Ontario Institute of Technology Oshawa Ontario L1G 0C5 Canada +1 905 721 3304 +1 905 721 8668 (ext. 3621)
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology Oshawa Ontario L1G 0C5 Canada +1 905 721 3304 +1 905 721 8668 (ext. 3621)
| |
Collapse
|
50
|
Holm A, Løvendorf MB, Kauppinen S. Development of siRNA Therapeutics for the Treatment of Liver Diseases. Methods Mol Biol 2021; 2282:57-75. [PMID: 33928570 DOI: 10.1007/978-1-0716-1298-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Small interfering RNA (siRNA)-based therapeutics holds the promise to treat a wide range of human diseases that are currently incurable using conventional therapies. Most siRNA therapeutic efforts to date have focused on the treatment of liver diseases due to major breakthroughs in the development of efficient strategies for delivering siRNA drugs to the liver. Indeed, the development of lipid nanoparticle-formulated and GalNAc-conjugated siRNA therapeutics has resulted in recent FDA approvals of the first siRNA-based drugs, patisiran for the treatment of hereditary transthyretin amyloidosis and givosiran for the treatment of acute hepatic porphyria, respectively. Here, we describe the current strategies for delivering siRNA drugs to the liver and summarize recent advances in clinical development of siRNA therapeutics for the treatment of liver diseases.
Collapse
Affiliation(s)
- Anja Holm
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| |
Collapse
|