1
|
Ramadan DR, Osman HA, Madhy SA, Teleb M, Darwish AI, Abu-Serie MM, Haiba NS, Khattab SN, Khalil HH. A tailored 4G s-triazine-based dendrimer vehicle for quercetin endowed with MMP-2/9 inhibition and VEGF downregulation for targeting breast cancer progression and liver metastasis. RSC Adv 2025; 15:10426-10441. [PMID: 40182507 PMCID: PMC11967334 DOI: 10.1039/d5ra01588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Motivated by our recent research progress on the exploitation of s-triazine dendritic platforms as bioactive carriers for well-known anticancer agents and/or targeting ligands, we set out to synthesize new rationally designed dendrimers endowed with MMP-2/9 inhibition potential for halting both breast and liver cancer progression with reduced off-target side effects. New three and four generation s-triazine based dendrimers were developed to incorporate potential ZBGs (Zinc Binding Groups) and carboxyl terminal groups to facilitate direct conjugation of anti-cancer drugs (quercetin) and/or targeting ligands (lactobionic acid) through a biodegradable ester bond. Compared to free quercetin (QUR), MTT assay revealed that all the quercetin-coupled dendrimers displayed better anticancer potential (IC50 = 12.690-29.316, 4.137-29.090 μM) against MCF-7 and HepG-2 cancer cells, respectively within their safe doses (EC100 = 134.35-78.44 μM). Conjugation of lactobionic acid and PEG boosted the anticancer potency against both treated cells, improved apoptosis and down regulated MMP-9 and VEGF gene expression levels in both treated cancer cells. Generally, the more branched G4 dendrimer conjugates exhibited a superior overall anticancer performance compared to their respective G3 analogues, except for their MMP-9 inhibition where G3 conjugate appeared to be more potent and more selective than its G4 analogue.
Collapse
Affiliation(s)
- Doaa R Ramadan
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Heba A Osman
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - A I Darwish
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Alexandria Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|
2
|
Kalantar M, Kalanther I, Kumar S, Buxton EK, Raeeszadeh-Sarmazdeh M. Determining key residues of engineered scFv antibody variants with improved MMP-9 binding using deep sequencing and machine learning. Comput Struct Biotechnol J 2024; 23:3759-3770. [PMID: 39525083 PMCID: PMC11550764 DOI: 10.1016/j.csbj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Given the crucial role of specific matrix metalloproteinases (MMPs) in the extracellular matrix, an imbalance in the regulation of activation of matrix metalloproteinase-9 (MMP-9) zymogen and inhibition of the enzyme can result in various diseases, such as cancer, neurodegenerative, and gynecological diseases. Thus, developing novel therapeutics that target MMP-9 with single-chain antibody fragments (scFvs) is a promising approach. We used fluorescent-activated cell sorting (FACS) to screen a synthetic scFv antibody library displayed on yeast for enhanced binding to MMP-9. The screened scFv mutants demonstrated improved binding to MMP-9 compared to the natural inhibitor of MMPs, tissue inhibitor of metalloproteinases (TIMPs). To identify the molecular determinants of these engineered scFv variants that affect binding to MMP-9, we used next-generation DNA sequencing and computational protein structure analysis. Additionally, a deep-learning language model was trained on the screened scFv library of variants to predict the binding affinities of scFv variants based on their CDR-H3 sequences.
Collapse
Affiliation(s)
- Masoud Kalantar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | | | - Sachin Kumar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA
| | | | | |
Collapse
|
3
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Wszołek A, Gutowska I. Is Fluoride Blameless?-The Influence of Fluorine Compounds on the Invasiveness of the Human Glioma-like Cell Line U-87. Int J Mol Sci 2024; 25:12773. [PMID: 39684484 DOI: 10.3390/ijms252312773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma remains one of the most treatment-resistant and malignant human cancers. Given the documented harmful effects of fluoride on the developing central nervous system and the rising incidence of brain tumors, especially among children, it is pertinent to explore the role of environmental toxins, including fluoride compounds, in the context of brain cancer. This study represents the first investigation into the influence of fluoride on mechanisms related to the invasiveness of human glioblastoma cells. We examined the effects of sodium fluoride (NaF) exposure on the migratory and invasive abilities of the U-87 human glioblastoma cell line, assessing levels of metalloproteinases MMP-2 and MMP-9 secreted by these cells. Additionally, the activation of metabolic pathways associated with invasiveness, including AKT and NF-κB, was analyzed. Our results suggest that the effects induced by NaF at physiologically high concentrations (0.1-10 µM) in U-87 glioblastoma cells may promote a pro-invasive phenotype.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agata Wszołek
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Rotenberg N, Feldman M, Shirian J, Hockla A, Radisky ES, Shifman JM. Engineered TIMP2 with narrow MMP-9 specificity is an effective inhibitor of invasion and proliferation of triple-negative breast cancer cells. J Biol Chem 2024; 300:107867. [PMID: 39419285 PMCID: PMC11609464 DOI: 10.1016/j.jbc.2024.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases that degrade extracellular matrix proteins, functioning in various physiological processes such as tissue remodeling, embryogenesis, and morphogenesis. Dysregulation of these enzymes is linked to multiple diseases. Specific inhibition of particular MMPs is crucial for anti-MMP drug development as some MMPs have shown antidisease properties. In this study, we aimed to design a highly specific inhibitor of MMP-9, that plays a crucial role in cell invasion and metastasis, using tissue inhibitor of metalloproteinases 2 (TIMP2s), an endogenous broad-family MMP inhibitor, as a prototype. In our earlier work, we were able to narrow down the specificity of the N-terminal domain of TIMP2 (N-TIMP2) toward MMP-9, yet at the expense of lowering its affinity to MMP-9. In this study, a library of N-TIMP2 mutants based on previous design with randomized additional positions was sorted for binding to MMP-9 using yeast surface display. Two selected N-TIMP2 mutants were expressed, purified, and their inhibitory activity against a panel of MMPs was measured. The best engineered N-TIMP2 mutant (REY) exhibited a 2-fold higher affinity to MMP-9 than that of the WT N-TIMP2, and 6- to 1.1 x 104-fold increase in binding specificity toward MMP-9 compared to five alternative MMPs. Moreover, REY demonstrated a significant increase in inhibition of cell invasion and proliferation compared to the WT N-TIMP2 in MDA-MB-231 breast cancer cells. Therefore, our engineered N-TIMP2 mutant emerges as a promising candidate for future therapeutic development, offering precise targeting of MMP-9 in MMP-9-driven diseases.
Collapse
Affiliation(s)
- Naama Rotenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark Feldman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason Shirian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Golombek S, Doll I, Kaufmann L, Lescan M, Schlensak C, Avci-Adali M. A Novel Strategy for the Treatment of Aneurysms: Inhibition of MMP-9 Activity through the Delivery of TIMP-1 Encoding Synthetic mRNA into Arteries. Int J Mol Sci 2024; 25:6599. [PMID: 38928311 PMCID: PMC11203431 DOI: 10.3390/ijms25126599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aneurysms pose life-threatening risks due to the dilatation of the arteries and carry a high risk of rupture. Despite continuous research efforts, there are still no satisfactory or clinically effective pharmaceutical treatments for this condition. Accelerated inflammatory processes during aneurysm development lead to increased levels of matrix metalloproteinases (MMPs) and destabilization of the vessel wall through the degradation of the structural components of the extracellular matrix (ECM), mainly collagen and elastin. Tissue inhibitors of metalloproteinases (TIMPs) directly regulate MMP activity and consequently inhibit ECM proteolysis. In this work, the synthesis of TIMP-1 protein was increased by the exogenous delivery of synthetic TIMP-1 encoding mRNA into aortic vessel tissue in an attempt to inhibit MMP-9. In vitro, TIMP-1 mRNA transfection resulted in significantly increased TIMP-1 protein expression in various cells. The functionality of the expressed protein was evaluated in an appropriate ex vivo aortic vessel model. Decreased MMP-9 activity was detected using in situ zymography 24 h and 48 h post microinjection of 5 µg TIMP-1 mRNA into the aortic vessel wall. These results suggest that TIMP-1 mRNA administration is a promising approach for the treatment of aneurysms.
Collapse
Affiliation(s)
| | | | | | | | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
| |
Collapse
|
6
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Abstract
Abstract
Matrix metalloproteinase-2 (MMP-2) is a gelatinase and is involved in multiple steps of the metastatic cascade. More than a decade ago an increased expression of MMP-2 in tumour cells or higher serum levels was reported to be a prognostic biomarker for a lower disease-free and overall survival rate. In recent years new evidence has indicated that MMP-2 has an important role in the tumour ecosystem. It is one of the many players in the onco-sphere, involved in interacting between tumour cells, host cells and the microenvironment. It plays a role in the dissemination of tumour cells, the epithelial–mesenchymal and mesenchymal–epithelial transitions, the formation of the pre-metastatic and metastatic niches, dormancy of tumour cells and modulating the immune system. The aim of this review is to highlight these multiple roles in the metastatic cascade and how many signalling pathways can up or down-regulate MMP-2 activity in the different stages of cancer progression and the effect of MMP-2 on the onco-sphere. Research in head and neck cancer is used as an example of these processes. The use of non-specific MMP inhibitors has been unsuccessful showing only limited benefits and associated with high toxicity as such that none have progressed past Phase III trials. Preclinical trials are undergoing using antibodies directed against specific matrix metalloproteinases, these targeted therapies may be potentially less toxic to the patients.
Collapse
Affiliation(s)
- Nigel P. Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine , University Finis Terrae , Santiago , Chile
- Department of Haematology , Hospital de Carabineros de Chile , Santiago , Chile
| |
Collapse
|
8
|
Xia XD, Gill G, Lin H, Roth DM, Gu HM, Wang XJ, Su FY, Alabi A, Alexiou M, Zhang Z, Wang GQ, Graf D, Zhang DW. Global, but not chondrocyte-specific, MT1-MMP deficiency in adult mice causes inflammatory arthritis. Matrix Biol 2023; 122:10-17. [PMID: 37598898 DOI: 10.1016/j.matbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Membrane-type I metalloproteinase (MT1-MMP/MMP14) plays a key role in various pathophysiological processes, indicating an unaddressed need for a targeted therapeutic approach. However, mice genetically deficient in Mmp14 show severe defects in development and growth. To investigate the possibility of MT1-MMP inhibition as a safe treatment in adults, we generated global Mmp14 tamoxifen-induced conditional knockout (Mmp14kd) mice and found that MT1-MMP deficiency in adult mice resulted in severe inflammatory arthritis. Mmp14kd mice started to show noticeably swollen joints two weeks after tamoxifen administration, which progressed rapidly. Mmp14kd mice reached a humane endpoint 6 to 8 weeks after tamoxifen administration due to severe arthritis. Plasma TNF-α levels were also significantly increased in Mmp14kd mice. Detailed analysis revealed chondrocyte hypertrophy, synovial fibrosis, and subchondral bone remodeling in the joints of Mmp14kd mice. However, global conditional knockout of MT1-MMP in adult mice did not affect body weight, blood glucose, or plasma cholesterol and triglyceride levels. Furthermore, we observed substantial expression of MT1-MMP in the articular cartilage of patients with osteoarthritis. We then developed chondrocyte-specific Mmp14 tamoxifen-induced conditional knockout (Mmp14chkd) mice. Chondrocyte MT1-MMP deficiency in adult mice also caused apparent chondrocyte hypertrophy. However, Mmp14chkd mice did not exhibit synovial hyperplasia or noticeable arthritis, suggesting that chondrocyte MT1-MMP is not solely responsible for the onset of severe arthritis observed in Mmp14kd mice. Our findings also suggest that highly cell-type specific inhibition of MT1-MMP is required for its potential therapeutic use.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China; Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Govind Gill
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Haiming Lin
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Daniela M Roth
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiang-Jiang Wang
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Feng-Yi Su
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Adekunle Alabi
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Alexiou
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ziyang Zhang
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gui-Qing Wang
- Department of Orthopedics, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China.
| | - Daniel Graf
- Department of Dentistry & Dental Hygiene, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Da-Wei Zhang
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Bonadio A, Oguche S, Lavy T, Kleifeld O, Shifman J. Computational design of matrix metalloprotenaise-9 (MMP-9) resistant to auto-cleavage. Biochem J 2023; 480:1097-1107. [PMID: 37401540 PMCID: PMC10422929 DOI: 10.1042/bcj20230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is an endopeptidase that remodels the extracellular matrix. MMP-9 has been implicated in several diseases including neurodegeneration, arthritis, cardiovascular diseases, fibrosis and several types of cancer, resulting in a high demand for MMP-9 inhibitors for therapeutic purposes. For such drug design efforts, large amounts of MMP-9 are required. Yet, the catalytic domain of MMP-9 (MMP-9Cat) is an intrinsically unstable enzyme that tends to auto-cleave within minutes, making it difficult to use in drug design experiments and other biophysical studies. We set our goal to design MMP-9Cat variant that is active but stable to auto-cleavage. For this purpose, we first identified potential auto-cleavage sites on MMP-9Cat using mass spectroscopy and then eliminated the auto-cleavage site by predicting mutations that minimize auto-cleavage potential without reducing enzyme stability. Four computationally designed MMP-9Cat variants were experimentally constructed and evaluated for auto-cleavage and enzyme activity. Our best variant, Des2, with 2 mutations, was as active as the wild-type enzyme but did not exhibit auto-cleavage after 7 days of incubation at 37°C. This MMP-9Cat variant, with an identical with MMP-9Cat WT active site, is an ideal candidate for drug design experiments targeting MMP-9 and enzyme crystallization experiments. The developed strategy for MMP-9CAT stabilization could be applied to redesign other proteases to improve their stability for various biotechnological applications.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Solomon Oguche
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Julia Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Bonadio A, Wenig BL, Hockla A, Radisky ES, Shifman JM. Designed Loop Extension Followed by Combinatorial Screening Confers High Specificity to a Broad Matrix MetalloproteinaseInhibitor. J Mol Biol 2023; 435:168095. [PMID: 37068580 PMCID: PMC10312305 DOI: 10.1016/j.jmb.2023.168095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Matrix metalloproteinases (MMPs) are key drivers of various diseases, including cancer. Development of probes and drugs capable of selectively inhibiting the individual members of the large MMP family remains a persistent challenge. The inhibitory N-terminal domain of tissue inhibitor of metalloproteinases-2 (N-TIMP2), a natural broad MMP inhibitor, can provide a scaffold for protein engineering to create more selective MMP inhibitors. Here, we pursued a unique approach harnessing both computational design and combinatorial screening to confer high binding specificity toward a target MMP in preference to an anti-target MMP. We designed a loop extension of N-TIMP2 to allow new interactions with the non-conserved MMP surface and generated an efficient focused library for yeast surface display, which was then screened for high binding to the target MMP-14 and low binding to anti-target MMP-3. Deep sequencing analysis identified the most promising variants, which were expressed, purified, and tested for selectivity of inhibition. Our best N-TIMP2 variant exhibited 29 pM binding affinity to MMP-14 and 2.4 µM affinity to MMP-3, revealing 7500-fold greater specificity than WT N-TIMP2. High-confidence structural models were obtained by including NGS data in the AlphaFold multiple sequence alignment. The modeling together with experimental mutagenesis validated our design predictions, demonstrating that the loop extension packs tightly against non-conserved residues on MMP-14 and clashes with MMP-3. This study demonstrates how introduction of loop extensions in a manner guided by target protein conservation data and loop design can offer an attractive strategy to achieve specificity in design of protein ligands.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Bernhard L Wenig
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA; Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
11
|
Bonadio A, Oguche S, Lavy T, Kleifeld O, Shifman J. Computational design of Matrix Metalloprotenaise-9 (MMP-9) resistant to auto-cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536383. [PMID: 37090502 PMCID: PMC10120622 DOI: 10.1101/2023.04.11.536383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is an endopeptidase that remodels the extracellular matrix and has been implicated as a major driver in cancer metastasis. Hence, there is a high demand for MMP-9 inhibitors for therapeutic purposes. For such drug design efforts, large amounts of MMP-9 are required. Yet, the catalytic domain of MMP-9 (MMP-9 Cat ) is an intrinsically unstable enzyme that tends to auto-cleave within minutes, making it difficult to use in drug design experiments and other biophysical studies. We set our goal to design MMP-9 Cat variant that is active but stable to autocleavage. For this purpose, we first identified potential autocleavage sites on MMP-9 Cat using mass spectroscopy and then eliminated the autocleavage site by predicting mutations that minimize autocleavage potential without reducing enzyme stability. Four computationally designed MMP-9 Cat variants were experimentally constructed and evaluated for auto-cleavage and enzyme activity. Our best variant, Des2, with 2 mutations, was as active as the wild-type enzyme but did not exhibit auto-cleavage after seven days of incubation at 37°C. This MMP-9 Cat variant, with an identical to MMP- 9 Cat WT active site, is an ideal candidate for drug design experiments targeting MMP-9 and enzyme crystallization experiments. The developed strategy for MMP-9 CAT stabilization could be applied to redesign of other proteases to improve their stability for various biotechnological applications.
Collapse
Affiliation(s)
- Alessandro Bonadio
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Solomon Oguche
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Tali Lavy
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa, Israel
| | - Julia Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
12
|
Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 2023; 12:1108695. [PMID: 36741729 PMCID: PMC9897057 DOI: 10.3389/fonc.2022.1108695] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in tumorigenesis. They were initially recognized to promote tumor progression by remodeling the extracellular matrix through their proteolytic activity. However, accumulating evidence has revealed that some MMPs have protective roles in cancer progression, and the same MMP can exert opposing roles depending on the cell type in which it is expressed or the stage of cancer. Moreover, studies have shown that MMPs are involved in cancer progression through their roles in other biological processes such as cell signaling and immune regulation, independent of their catalytic activity. Despite the prognostic significance of tumoral or stromal expression of MMPs in breast cancer, their roles and molecular mechanisms in breast cancer progression remain unclear. As the failures of early clinical trials with broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity, substantial efforts have been made to develop highly selective MMP inhibitors. Some recently developed MMP inhibitory monoclonal antibodies demonstrated promising anti-tumor effects in preclinical models of breast cancer. Importantly, anti-tumor effects of these antibodies were associated with the modulation of tumor immune microenvironment, suggesting that the use of MMP inhibitors in combination with immunotherapy can improve the efficacy of immunotherapy in HER2-positive or triple-negative breast cancer. In this review, the current understanding of the roles of tumoral or stromal MMPs in breast cancer is summarized, and recent advances in the development of highly selective MMP inhibitors are discussed.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea,BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea,*Correspondence: Mi Jeong Kwon,
| |
Collapse
|
13
|
Jing M, Chen X, Qiu H, He W, Zhou Y, Li D, Wang D, Jiao Y, Liu A. Insights into the immunomodulatory regulation of matrix metalloproteinase at the maternal-fetal interface during early pregnancy and pregnancy-related diseases. Front Immunol 2023; 13:1067661. [PMID: 36700222 PMCID: PMC9869165 DOI: 10.3389/fimmu.2022.1067661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Trophoblast immune cell interactions are central events in the immune microenvironment at the maternal-fetal interface. Their abnormalities are potential causes of various pregnancy complications, including pre-eclampsia and recurrent spontaneous abortion. Matrix metalloproteinase (MMP) is highly homologous, zinc(II)-containing metalloproteinase involved in altered uterine hemodynamics, closely associated with uterine vascular remodeling. However, the interactions between MMP and the immune microenvironment remain unclear. Here we discuss the key roles and potential interplay of MMP with the immune microenvironment in the embryo implantation process and pregnancy-related diseases, which may contribute to understanding the establishment and maintenance of normal pregnancy and providing new therapeutic strategies. Recent studies have shown that several tissue inhibitors of metalloproteinases (TIMPs) effectively prevent invasive vascular disease by modulating the activity of MMP. We summarize the main findings of these studies and suggest the possibility of TIMPs as emerging biomarkers and potential therapeutic targets for a range of complications induced by abnormalities in the immune microenvironment at the maternal-fetal interface. MMP and TIMPs are promising targets for developing new immunotherapies to treat pregnancy-related diseases caused by immune imbalance.
Collapse
Affiliation(s)
- Mengyu Jing
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Hongxia Qiu
- Department of Obstetrics, Hangzhou Fuyang Women And Children Hospital, Fuyang, China
| | - Weihua He
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Dan Li
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Dimin Wang
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Yonghui Jiao
- Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,Key Laboratory of reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China,Department of Reproduction, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China,*Correspondence: Yonghui Jiao, ; Dimin Wang, ; Aixia Liu,
| |
Collapse
|
14
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
15
|
Haiba N, Khalil HH, Bergas A, Abu-Serie MM, Khattab SN, Teleb M. First-in-Class Star-Shaped Triazine Dendrimers Endowed with MMP-9 Inhibition and VEGF Suppression Capacity: Design, Synthesis, and Anticancer Evaluation. ACS OMEGA 2022; 7:21131-21144. [PMID: 35755386 PMCID: PMC9219090 DOI: 10.1021/acsomega.2c01949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 06/12/2023]
Abstract
Off-target side effects are major challenges hindering the clinical success of matrix metalloproteinase (MMP) inhibitors. Various targeting strategies revitalized MMP research to eliminate this drawback. Herein, we developed s-triazine-based dendrimeric architecture not only amenable to tumor targeting but also decorated with pharmacophoric entities to endow MMP-9 inhibition for halting cancer progression. The design rationale utilized hydrazide branching chains as well as carboxylic and hydroxamic acid termini as Zn-binding groups to confer substantial MMP inhibitory potential. The carboxylic acids are tetherable to tumor targeting ligands and other cargo payloads as synergistic drugs via biodegradable linkages. The synthesized series were screened for cytotoxicity against normal fibroblasts (Wi-38) and two selected cancers (MDA-MB 231 and Caco-2) via MTT assay. The most active hexacarboxylic acid dendrimer 8a was more potent and safer than Dox against MDA-MB 231 and Caco-2 cells. It intrinsically inhibited MMP-9 with selectivity over MMP-2. Docking simulations demonstrated that the extended carboxylic acid termini of 8a could possibly chelate the active site Zn of MMP-9 and form hydrogen-bonding interactions with the ligand essential backbone Tyr423. In addition, it suppressed the correlated oncogenic mediators VEGF and cyclin D, upregulated p21 expression, induced apoptosis (>75%), and inhibited the tumor cell migration (∼84%) in the treated cancer cells. Thus, up to our knowledge, it is the first triazine-based MMP-9 inhibitor dendrimer endowed with VEGF suppression potential that can be employed as a bioactive carrier.
Collapse
Affiliation(s)
- Nesreen
S. Haiba
- Department
of Physics and Chemistry, Faculty of Education, Alexandria University, Alexandria 21321, Egypt
| | - Hosam H. Khalil
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Ahmed Bergas
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Marwa M. Abu-Serie
- Medical
Biotechnology Department, Genetic Engineering and Biotechnology Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Sherine N. Khattab
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed Teleb
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
16
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
17
|
Pérez de la Lastra JM, Baca-González V, González-Acosta S, Asensio-Calavia P, Otazo-Pérez A, Morales-delaNuez A. Antibodies targeting enzyme inhibition as potential tools for research and drug development. Biomol Concepts 2021; 12:215-232. [PMID: 35104929 DOI: 10.1515/bmc-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
Antibodies have transformed biomedical research and are now being used for different experimental applications. Generally, the interaction of enzymes with their specific antibodies can lead to a reduction in their enzymatic activity. The effect of the antibody is dependent on its narrow i.e. the regions of the enzyme to which it is directed. The mechanism of this inhibition is rarely a direct combination of the antibodies with the catalytic site, but is rather due to steric hindrance, barring the substrate access to the active site. In several systems, however, the interaction with the antibody induces conformational changes on the enzyme that can either inhibit or enhance its catalytic activity. The extent of enzyme inhibition or enhancement is, therefore, a reflection of the nature and distribution of the various antigenic determinants on the enzyme molecule. Currently, the mode of action of many enzymes has been elucidated at the molecular level. We here review the molecular mechanisms and recent trends by which antibodies inhibit the catalytic activity of enzymes and provide examples of how specific antibodies can be useful for the neutralization of biologically active molecules.
Collapse
Affiliation(s)
- José Manuel Pérez de la Lastra
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Victoria Baca-González
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Sergio González-Acosta
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| |
Collapse
|
18
|
Laulund AS, Schwartz FA, Christophersen L, Høiby N, Svendsen JSM, Stensen W, Thomsen K, Cavanagh JP, Moser C. Lactoferricin inspired peptide AMC-109 augments the effect of ciprofloxacin against Pseudomonas aeruginosa biofilm in chronic murine wounds. J Glob Antimicrob Resist 2021; 29:185-193. [PMID: 34954415 DOI: 10.1016/j.jgar.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The pathophysiology of chronic wounds is characterized by prolonged inflammation, low mitogenic-activity, high protease-/low inhibitor-activity, microbiota changes and biofilm formation, in combination with the etiology of the original insult. One strategy to promote healing is to terminate the parasitism-like-relationship between the biofilm-growing-pathogen and the host response. The antimicrobial peptide AMC-109 is a potential treatment with low resistance-potential and broad-spectrum coverage with rapid bactericidal effect. Our purpose was to investigate if adjunctive AMC-109 could augment the ciprofloxacin effect in a chronic Pseudomonas aeruginosa wound model. METHODS Third-degree-burns were inflicted on 33BALB/c mice. P.Aeruginosa embedded in seaweed alginate was injected under the eschar to mimic a biofilm. Mice were randomized to receive AMC-109, combined AMC-109 and ciprofloxacin, ciprofloxacin or placebo for 5 days followed by sample collection. RESULTS Lower bacterial load was seen in the double treated group when compared to both monotherapy groups (AMC-109, p=0.008 and ciprofloxacin, p=0.03). To evaluate the innate host response, quantification of cytokines and growth factors were performed. The pro-inflammatory response was dampened in the double-treated mice, compared to the mono-ciprofloxacin-treated group (p=0.0009). A lower mobilization of neutrophils from the bone marrow was indicated by reduced granulocyte-colony-stimulating factor in all treatment groups compared to the placebo group. Improved tissue-remodeling was indicated by the highest level of tissue inhibitor of metalloproteases and low metalloprotease level in the double-treated group. CONCLUSIONS AMC-109 revealed adjunctive anti-pseudomonas abilities augmenting the antimicrobial effect of ciprofloxacin in this wound model. The study indicates a potential role for AMC-109 in treating chronic wounds with complicating biofilm infections.
Collapse
Affiliation(s)
- Anne Sofie Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100, Copenhagen, Denmark, phone +4593999557
| | | | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet and Department of Immunology and Microbiology (ISIM), University of Copenhagen
| | - John Sigurd Mjøen Svendsen
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Jorunn Pauline Cavanagh
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| |
Collapse
|
19
|
Ke J, Ye J, Li M, Zhu Z. The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target. Biomolecules 2021; 11:1739. [PMID: 34827737 PMCID: PMC8615881 DOI: 10.3390/biom11111739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is a condition that is influenced by hormones and involves stroma and glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding, and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some of which not only affect the process of cell invasion but also participate in other physiological and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted molecules and their expression can be regulated by numerous factors such as estrogen, oxidative stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs may become effective biomarkers of endometriosis in the future. In the present review, we summarize the current literature on MMPs regarding their classification, function, and potential value for endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.
Collapse
Affiliation(s)
- Junya Ke
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiangfeng Ye
- Division of Obstetrics and Gynecology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
20
|
Khalil HH, Osman HA, Teleb M, Darwish AI, Abu-Serie MM, Khattab SN, Haiba NS. Engineered s-Triazine-Based Dendrimer-Honokiol Conjugates as Targeted MMP-2/9 Inhibitors for Halting Hepatocellular Carcinoma. ChemMedChem 2021; 16:3701-3719. [PMID: 34547831 DOI: 10.1002/cmdc.202100465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Despite the advances in developing MMP-2/9 inhibitors, off-target side effects and pharmacokinetics problems remain major challenges hindering their clinical success in cancer therapy. However, recent targeting strategies have clearly revitalized MMP research. Herein, we introduce new s-triazine-based dendrimers endowed with intrinsic MMP-2/9 inhibitory potential and tetherable to hepatocellular carcinoma-specific targeting ligands and anticancer agents via biodegradable linkages for targeted therapy. The designed dendrimeric platform was built with potential zinc-binding branching linkers (hydrazides) and termini (carboxylic acids and hydrazides) to confer potency against MMP-2/9. Preliminary cytotoxicity screening and MMP-2/9 inhibition assay of the free dendrimers revealed promising potency (MMP-9; IC50 =0.35-0.57 μM, MMP-2; IC50 =0.39-0.77 μM) within their safe doses (EC100 =94.15-42.75 μM). The hydrazide dendrimer was comparable to NNGH and superior to the carboxylic acid analogue. MTT assay showed that the free dendrimers were superior to the reference anticancer agent honokiol. Their anticancer potency was enhanced by HK conjugation, targeting ligands installation and PEGylation as exemplified by the hydrazide dendrimer conjugate (TPG3 -NH2 )-SuHK-FA-SuPEG (Huh-7; IC50 =5.54 μM, HepG-2; IC50 =10.07 μM) being 4 folds more active than HK, followed by the carboxylic acid conjugate (TPG3 -OH)-HK-LA-PEG (Huh-7; IC50 =14.97, HepG-2; IC50 =21.29 μM). This was consistent with apoptosis studies.
Collapse
Affiliation(s)
- Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Heba A Osman
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - A I Darwish
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry Faculty of Education, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
21
|
Production of a Soluble Recombinant Antibody Fragment against MMP9 Using Escherichia coli. ACTA ACUST UNITED AC 2021; 57:medicina57090981. [PMID: 34577904 PMCID: PMC8468072 DOI: 10.3390/medicina57090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinase 9 (MMP9) is involved in several aspects of the pathology of cancer, including invasion, metastasis, and angiogenesis. In this study, we expressed a recombinant scFv-type anti-MMP9 antibody in soluble form using Escherichia coli, purified it, and confirmed its antigen-binding ability. The convenient, rapid, inexpressive system used in this study for producing recombinant antibody fragments needs only five days, and thus can be used for the efficient production of scFv against MMP9, which can be used in a range of applications and industrial fields, including diagnosis and treatment of inflammatory and cancer-related diseases.
Collapse
|
22
|
McMahon M, Ye S, Pedrina J, Dlugolenski D, Stambas J. Extracellular Matrix Enzymes and Immune Cell Biology. Front Mol Biosci 2021; 8:703868. [PMID: 34527702 PMCID: PMC8436118 DOI: 10.3389/fmolb.2021.703868] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Remodelling of the extracellular matrix (ECM) by ECM metalloproteinases is increasingly being associated with regulation of immune cell function. ECM metalloproteinases, including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs) and ADAMs with Thombospondin-1 motifs (ADAMTS) play a vital role in pathogen defence and have been shown to influence migration of immune cells. This review provides a current summary of the role of ECM enzymes in immune cell migration and function and discusses opportunities and limitations for development of diagnostic and therapeutic strategies targeting metalloproteinase expression and activity in the context of infectious disease.
Collapse
Affiliation(s)
- Meagan McMahon
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Siying Ye
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jess Pedrina
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Daniel Dlugolenski
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - John Stambas
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
23
|
A CDR-based approach to generate covalent inhibitory antibody for human rhinovirus protease. Bioorg Med Chem 2021; 42:116219. [PMID: 34077853 DOI: 10.1016/j.bmc.2021.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022]
Abstract
Covalent target modulation with small molecules has been emerging as a promising strategy for drug discovery. However, covalent inhibitory antibody remains unexplored due to the lack of efficient strategies to engineer antibody with desired bioactivity. Herein, we developed an intracellular selection method to generate covalent inhibitory antibody against human rhinovirus 14 (HRV14) 3C protease through unnatural amino acid mutagenesis along the heavy chain complementarity-determining region 3 (CDR-H3). A library of antibody mutants was thus constructed and screened in vivo through co-expression with the target protease. Using this screening strategy, six covalent antibodies with proximity-enabled bioactivity were identified, which were shown to covalently target HRV14-3C protease with high inhibitory potency and exquisite selectivity. Compared to structure-based rational design, this library-based screening method provides a simple and efficient way for the discovery and engineering of covalent antibody for enzyme inhibition.
Collapse
|
24
|
Jeong HJ, Kim EJ, Kim JK, Kim YG, Lee CS, Ko BJ, Kim BG. Expression of soluble recombinant human matrix metalloproteinase 9 and generation of its monoclonal antibody. Protein Expr Purif 2021; 187:105931. [PMID: 34197919 DOI: 10.1016/j.pep.2021.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
We have successfully produced a recombinant human matrix metalloproteinase 9 (hMMP9) antigen with high yield and purity and used it to generate a hybridoma cell-culture-based monoclonal anti-hMMP9 antibody. We selected the most effective antibody for binding antigens and successfully identified its nucleotide sequence. The entire antigen and antibody developmental procedures described herein can be a practical approach for producing large amounts of monoclonal antibodies against hMMP9 and other antigens of interest. Additionally, the nucleotide sequence information of the anti-hMMP9 monoclonal antibody revealed herein will be useful for the generation of recombinant antibodies or antibody fragments against hMMP9.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea.
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
| | - Joo-Kyung Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, South Korea
| | - Byung-Gee Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Neutrophil, Extracellular Matrix Components, and Their Interlinked Action in Promoting Secondary Pathogenesis After Spinal Cord Injury. Mol Neurobiol 2021; 58:4652-4665. [PMID: 34159551 DOI: 10.1007/s12035-021-02443-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Secondary pathogenesis following primary mechanical damage to the spinal cord is believed to be the ultimate reason for the limitation of currently available therapies. Precisely, the complex cascade of secondary events-mediated scar formation is the sole hurdle in the recovery process due to its inhibitory effect on axonal regeneration, plasticity, and remyelination. Neutrophils initiate this secondary injury along with other extracellular matrix components such as matrix metalloproteinase (MMPs), and chondroitin sulfate proteoglycans (CSPGs). Together, they mediate inflammation, necrosis, apoptosis, lesion, and scar formation at the injury site. Activated neutrophil releases several proteases, cytokines, and chemokines that cause complete tissue destruction. Thus, neutrophil activation and infiltration in the acute phase of injury act as a roadmap for inducing tissue destruction. MMPs, are extracellular proteolytic enzymes that degrade the ECM proteins, increases vascular permeability, and are predominantly released by neutrophils. These MMPs, in turn, cleave NG2 proteoglycan, a subtype of CSPG, into the active form. This active or shed form is involved in both the fibrotic as well as glial scar formation. Since neutrophils and ECM components are closely associated with each other in pathological conditions. Herein, we emphasize the interaction of neutrophils and their influence on ECM protein expression during the acute and chronic phases to identify a promising targets for designing a therapeutic approach in spinal cord injury.
Collapse
|
26
|
Waller V, Pruschy M. Combined Radiochemotherapy: Metalloproteinases Revisited. Front Oncol 2021; 11:676583. [PMID: 34055644 PMCID: PMC8155607 DOI: 10.3389/fonc.2021.676583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022] Open
Abstract
Besides cytotoxic DNA damage irradiation of tumor cells triggers multiple intra- and intercellular signaling processes, that are part of a multilayered, treatment-induced stress response at the unicellular and tumor pathophysiological level. These processes are intertwined with intrinsic and acquired resistance mechanisms to the toxic effects of ionizing radiation and thereby co-determine the tumor response to radiotherapy. Proteolysis of structural elements and bioactive signaling moieties represents a major class of posttranslational modifications regulating intra- and intercellular communication. Plasma membrane-located and secreted metalloproteinases comprise a family of metal-, usually zinc-, dependent endopeptidases and sheddases with a broad variety of substrates including components of the extracellular matrix, cyto- and chemokines, growth and pro-angiogenic factors. Thereby, metalloproteinases play an important role in matrix remodeling and auto- and paracrine intercellular communication regulating tumor growth, angiogenesis, immune cell infiltration, tumor cell dissemination, and subsequently the response to cancer treatment. While metalloproteinases have long been identified as promising target structures for anti-cancer agents, previous pharmaceutical approaches mostly failed due to unwanted side effects related to the structural similarities among the multiple family members. Nevertheless, targeting of metalloproteinases still represents an interesting rationale alone and in combination with other treatment modalities. Here, we will give an overview on the role of metalloproteinases in the irradiated tumor microenvironment and discuss the therapeutic potential of using more specific metalloproteinase inhibitors in combination with radiotherapy.
Collapse
Affiliation(s)
- Verena Waller
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 2021; 288:7162-7182. [PMID: 33405316 DOI: 10.1111/febs.15701] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammad A M Ali
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York-Binghamton, NY, USA
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
29
|
Fischer T, Riedl R. Challenges with matrix metalloproteinase inhibition and future drug discovery avenues. Expert Opin Drug Discov 2020; 16:75-88. [PMID: 32921161 DOI: 10.1080/17460441.2020.1819235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Matrix metalloproteinases have been in the scope of pharmaceutical drug discovery for decades as promising targets for drug development. Until present, no modulator of the enzyme class survived clinical trials, all failing for various reasons. Nevertheless, the target family did not lose its attractiveness and there is ever more evidence that MMP modulators are likely to overcome the hurdles and result in successful clinical therapies. AREAS COVERED This review provides an overview of past efforts that were taken in the development of MMP inhibitors and insight into promising strategies that might enable drug discovery in the field in the future. Small molecule inhibitors as well as biomolecules are reviewed. EXPERT OPINION Despite the lack of successful clinical trials in the past, there is ongoing research in the field of MMP modulation, proving the target class has not lost its appeal to pharmaceutical research. With ever-growing insights from different scientific fields that shed light on previously unknown correlations, it is now time to use synergies deriving from biological knowledge, chemical structure generation, and clinical application to reach the ultimate goal of bringing MMP derived drugs on a broad front for the benefit of patients into therapeutic use.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| |
Collapse
|
30
|
Kaczorowska A, Miękus N, Stefanowicz J, Adamkiewicz-Drożyńska E. Selected Matrix Metalloproteinases (MMP-2, MMP-7) and Their Inhibitor (TIMP-2) in Adult and Pediatric Cancer. Diagnostics (Basel) 2020; 10:diagnostics10080547. [PMID: 32751899 PMCID: PMC7460349 DOI: 10.3390/diagnostics10080547] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) consists of numerous biologically relevant elements. One of the most important components of the TME is the extracellular matrix (ECM). The compounds of the ECM create a network that provides structural and biochemical support to surrounding cells. The most important substances involved in the regulation of the ECM degradation process are matrix metalloproteinases (MMPs) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). The disruption of the physiological balance between MMP activation and deactivation could lead to progression of various diseases such as cardiovascular disease, cancer, fibrosis arthritis, chronic tissue ulcers, pathologies of the nervous system (such as stroke and Alzheimer's disease), periodontitis, and atheroma. MMP-TIMP imbalance results in matrix proteolysis associated with various pathological processes such as tumor invasion. The present review discusses the involvement of two MMPs, MMP-2 and MMP-7, in cancer pathogenesis. These two MMPs have been proven in several studies, conducted mostly on adults, to make an important contribution to cancer development and progression. In the current review, several studies that indicate the importance of MMP-TIMP balance determination for the pediatric population are also highlighted. The authors of this review believe that carrying out biochemical and clinical studies focused on metalloproteinases and their inhibitors in tumors in children will be of great relevance for future patient diagnosis, determination of a prognosis, and monitoring of therapy.
Collapse
Affiliation(s)
- Aleksandra Kaczorowska
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-952 Gdańsk, Poland; (A.K.); (E.A.-D.)
- University Clinical Centre, 7 Debinki Street, 80-952 Gdansk, Poland
| | - Natalia Miękus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Joanna Stefanowicz
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-952 Gdańsk, Poland; (A.K.); (E.A.-D.)
- University Clinical Centre, 7 Debinki Street, 80-952 Gdansk, Poland
- Faculty of Health Sciences, Medical University of Gdańsk, Maria Sklodowska-Curie Street 3a, 80-210 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-349-28-08
| | - Elżbieta Adamkiewicz-Drożyńska
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-952 Gdańsk, Poland; (A.K.); (E.A.-D.)
- University Clinical Centre, 7 Debinki Street, 80-952 Gdansk, Poland
| |
Collapse
|
31
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
32
|
The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther 2020; 207:107465. [DOI: 10.1016/j.pharmthera.2019.107465] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
|
33
|
Characterization of Matrix Metalloprotease-9 Gene from Nile tilapia ( Oreochromis niloticus) and Its High-Level Expression Induced by the Streptococcus agalactiae Challenge. Biomolecules 2020; 10:biom10010076. [PMID: 31947787 PMCID: PMC7023376 DOI: 10.3390/biom10010076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The bacterial diseases of tilapia caused by Streptococcus agalactiae have resulted in the high mortality and huge economic loss in the tilapia industry. Matrix metalloproteinase-9 (MMP-9) may play an important role in fighting infection. However, the role of MMP-9 in Nile tilapia against S. agalactiae is still unclear. In this work, MMP-9 cDNA of Nile tilapia (NtMMP-9) has been cloned and characterized. NtMMP-9 has 2043 bp and encodes a putative protein of 680 amino acids. NtMMP-9 contains the conserved domains interacting with decorin and inhibitors via binding forces compared to those in other teleosts. Quantitative real-time-polymerase chain reaction (qPCR) analysis reveals that NtMMP-9 distinctly upregulated following S. agalactiae infection in a tissue- and time-dependent response pattern, and the tissues, including liver, spleen, and intestines, are the major organs against a S. agalactiae infection. Besides, the proteolytic activity of NtMMP-9 is also confirmed by heterologous expression and zymography, which proves the active function of NtMMP-9 interacting with other factors. The findings indicate that NtMMP-9 was involved in immune responses against the bacterial challenge at the transcriptional level. Further work will focus on the molecular mechanisms of NtMMP-9 to respond and modulate the signaling pathways in Nile tilapia against S. agalactiae invasion and the development of NtMMP-9-related predictive biomarkers or vaccines for preventing bacterial infection in the tilapia industry.
Collapse
|
34
|
Austin M, Burschowsky D, Chan DT, Jenkinson L, Haynes S, Diamandakis A, Seewooruthun C, Addyman A, Fiedler S, Ryman S, Whitehouse J, Slater LH, Hadjinicolaou AV, Gileadi U, Gowans E, Shibata Y, Barnard M, Kaserer T, Sharma P, Luheshi NM, Wilkinson RW, Vaughan TJ, Holt SV, Cerundolo V, Carr MD, Groves MAT. Structural and functional characterization of C0021158, a high-affinity monoclonal antibody that inhibits Arginase 2 function via a novel non-competitive mechanism of action. MAbs 2020; 12:1801230. [PMID: 32880207 PMCID: PMC7531564 DOI: 10.1080/19420862.2020.1801230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Arginase 2 (ARG2) is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine. The dysregulated expression of ARG2 within specific tumor microenvironments generates an immunosuppressive niche that effectively renders the tumor 'invisible' to the host's immune system. Increased ARG2 expression leads to a concomitant depletion of local L-arginine levels, which in turn leads to suppression of anti-tumor T-cell-mediated immune responses. Here we describe the isolation and characterization of a high affinity antibody (C0021158) that inhibits ARG2 enzymatic function completely, effectively restoring T-cell proliferation in vitro. Enzyme kinetic studies confirmed that C0021158 exhibits a noncompetitive mechanism of action, inhibiting ARG2 independently of L-arginine concentrations. To elucidate C0021158's inhibitory mechanism at a structural level, the co-crystal structure of the Fab in complex with trimeric ARG2 was solved. C0021158's epitope was consequently mapped to an area some distance from the enzyme's substrate binding cleft, indicating an allosteric mechanism was being employed. Following C0021158 binding, distinct regions of ARG2 undergo major conformational changes. Notably, the backbone structure of a surface-exposed loop is completely rearranged, leading to the formation of a new short helix structure at the Fab-ARG2 interface. Moreover, this large-scale structural remodeling at ARG2's epitope translates into more subtle changes within the enzyme's active site. An arginine residue at position 39 is reoriented inwards, sterically impeding the binding of L-arginine. Arg39 is also predicted to alter the pKA of a key catalytic histidine residue at position 160, further attenuating ARG2's enzymatic function. In silico molecular docking simulations predict that L-arginine is unable to bind effectively when antibody is bound, a prediction supported by isothermal calorimetry experiments using an L-arginine mimetic. Specifically, targeting ARG2 in the tumor microenvironment through the application of C0021158, potentially in combination with standard chemotherapy regimens or alternate immunotherapies, represents a potential new strategy to target immune cold tumors.
Collapse
Affiliation(s)
- Mark Austin
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Daniel Burschowsky
- Leicester Institute of Structural and Chemical Biology and the Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Denice T.Y. Chan
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Lesley Jenkinson
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Stuart Haynes
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Agata Diamandakis
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Chitra Seewooruthun
- Leicester Institute of Structural and Chemical Biology and the Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Alexandra Addyman
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Sebastian Fiedler
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Stephanie Ryman
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Jessica Whitehouse
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Louise H. Slater
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Andreas V. Hadjinicolaou
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ellen Gowans
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Yoko Shibata
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Michelle Barnard
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Teresa Kaserer
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Pooja Sharma
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Nadia M. Luheshi
- Early Oncology Discovery, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Tristan J. Vaughan
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah V. Holt
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mark D. Carr
- Leicester Institute of Structural and Chemical Biology and the Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Maria A. T. Groves
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
35
|
Kumar GB, Nair BG, Perry JJP, Martin DBC. Recent insights into natural product inhibitors of matrix metalloproteinases. MEDCHEMCOMM 2019; 10:2024-2037. [PMID: 32904148 PMCID: PMC7451072 DOI: 10.1039/c9md00165d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Members of the matrix metalloproteinase (MMP) family have biological functions that are central to human health and disease, and MMP inhibitors have been investigated for the treatment of cardiovascular disease, cancer and neurodegenerative disorders. The outcomes of initial clinical trials with the first generation of MMP inhibitors proved disappointing. However, our growing understanding of the complexities of the MMP function in disease, and an increased understanding of MMP protein architecture and control of activity now provide new opportunities and avenues to develop MMP-focused therapies. Natural products that affect MMP activities have been of strong interest as templates for drug discovery, and for their use as chemical tools to help delineate the roles of MMPs that still remain to be defined. Herein, we highlight the most recent discoveries of structurally diverse natural product inhibitors to these proteases.
Collapse
Affiliation(s)
- Geetha B Kumar
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - Bipin G Nair
- School of Biotechnology , Amrita University , Kollam , Kerala , India
| | - J Jefferson P Perry
- School of Biotechnology , Amrita University , Kollam , Kerala , India
- Department of Biochemistry , University of California , Riverside , CA 92521 , USA .
| | - David B C Martin
- Department of Chemistry , University of California , Riverside , CA 92521 , USA
- Department of Chemistry , University of Iowa , Iowa City , IA 52242 , USA .
| |
Collapse
|
36
|
Chuang HM, Chen YS, Harn HJ. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules 2019; 24:molecules24224188. [PMID: 31752262 PMCID: PMC6891433 DOI: 10.3390/molecules24224188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs) are considered to be a potential target of fibrosis treatment because they are the main groups of ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also in the development of various biological processes that show the potential to treat diseases such as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of MMPs might impede typical functions. Here, we evaluated the links between these MMP functions and possible detrimental effects of fibrosis treatment, and also considered possible approaches for further applications.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Yu-Shuan Chen
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Pathology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +03-8561825 (ext. 15615)
| |
Collapse
|