1
|
Nakahara T, Fujimoto S, Jinzaki M. Molecular imaging of cardiovascular disease: Current status and future perspective. J Cardiol 2025:S0914-5087(25)00017-6. [PMID: 39922562 DOI: 10.1016/j.jjcc.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Advancements in knowledge of cardiovascular disease, pharmacology, and chemistry have led to the development of newer radiopharmaceuticals and targets for new and more suitable molecules. Molecular imaging encompasses multiple imaging techniques for identifying the characteristics of key components involved in disease. Despite its limitations in spatial resolution, the affinity for key molecules compensates for disadvantages in diagnosing diseases and elucidating their pathophysiology. This review introduce established molecular tracers involved in clinical practice and emerging tracers already applied in clinical studies, classifying the key component in A: artery, specifically those vulnerable plaque (A-I) inflammatory cells [18F-FDG]; A-II) lipid/fatty acid; A-III) hypoxia; A-IV) angiogenesis; A-V) protease [18F/68Ga-FAPI]; A-VI) thrombus/hemorrhage; A-VII) apoptosis and A-VIII) microcalcification [18F-NaF]) and B: myocardium, including myocardial ischemia, infarction and myocardiopathy (B-I) myocardial ischemia; B-II) myocardial infarction (myocardial damage and fibrosis); B-III) myocarditis and endocarditis; B-IV) sarcoidosis; B-V) amyloidosis; B-VI) metabolism; B-VII) innervation imaging). In addition to cardiovascular-specific tracers tested in animal models, many radiotracers may have been developed in other areas, such as oncology imaging or neuroimaging. While this review does not cover all available tracers, some of them hold potential for future use assessing cardiovascular disease. Advances in molecular biology, pharmaceuticals, and imaging sciences will facilitate the identification of precise disease mechanisms, enabling precise diagnoses, better assessment of disease status, and enhanced therapeutic evaluation in this multi-modality era.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Tummers FHMP, de Koning R, Bazelmans MK, Jansen FW, Blikkendaal MD, van Vlierberghe RLP, Vahrmeijer AL, Hazelbag HM, Kuppen PJK. Immunohistochemical Evaluation of Potential Biomarkers for Targeted Intraoperative Fluorescence Imaging in Endometriosis: Towards Optimizing Surgical Treatment. Reprod Sci 2024; 31:3705-3718. [PMID: 39373851 PMCID: PMC11611954 DOI: 10.1007/s43032-024-01715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Surgical intervention for endometriosis is an important treatment modality, yet incomplete resection resulting from poor visibility of affected tissue and consequently recurrence of disease remains a prevalent challenge. Intra-operative visualization of endometriosis, enabling fluorescence-guided surgery (FGS), could help to optimize surgical treatment. A biomarker, upregulated in endometriosis compared to adjacent tissue, is required to use as a target for FGS. Immunohistochemistry was used to evaluate protein expression of a selection of previously identified potential biomarkers. Ten biomarkers were stained in a large cohort of 84 tissues, both deep and peritoneal endometriosis and tissue without endometriosis, all from patients with confirmed endometriosis. MMP11 and VCAN showed the largest upregulation in endometriosis compared to adjacent tissue and showed a membranous or extracellular staining pattern. MMP11 is a promising target for glandular and stromal visualization, VCAN for stromal visualization only. For both biomarkers, upregulation was high in both peritoneal and deep endometriosis and for patients with and without hormonal medication. Other stained biomarkers showed non-beneficial characteristics based on staining pattern or upregulation. Analysis of all endometriosis samples showed that combined glandular and stromal targeting is expected to result in optimal visualization of endometriosis. Further research is needed to determine whether targeting one biomarker is sufficient for this goal, or if dual targeting is necessary. Development of clinical tracers for VCAN and MMP11 is necessary.
Collapse
Affiliation(s)
| | - Rozemarijn de Koning
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria K Bazelmans
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Willem Jansen
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Mathijs D Blikkendaal
- Endometriose in Balans, Haaglanden Medical Center, The Hague, The Netherlands
- Nederlandse Endometriose Kliniek, Reinier de Graaf Hospital, Delft, The Netherlands
| | | | | | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Almutairy B, Alharthi S, Ziora ZM, Ebrahimi Shahmabadi H. Synthesis, radiolabeling, and biodistribution of 99 m-technetium-labeled zif-8 nanoparticles for targeted imaging applications. 3 Biotech 2024; 14:293. [PMID: 39525365 PMCID: PMC11549264 DOI: 10.1007/s13205-024-04145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the synthesis and radiolabeling of zeolitic imidazolate frameworks (ZIF-8) with the radioisotope technetium-99 m (99mTc) using a solvothermal method in methanol. The methanolic medium facilitated the formation of nanoparticles with favorable characteristics, including a smaller particle size (198 ± 9.8 nm) and a low polydispersity index (PDI = 0.219 ± 0.011). Radiolabeling efficiency (RE%) and radiochemical purity (RCP%) were optimized by employing SnCl2 as a reducing agent, resulting in an RE% of 95.2 ± 1.9% and an RCP% of 96.1 ± 1.7% in triplicate (n = 3) at 65 °C. The nanoparticles exhibited high serum stability, retaining 99.05% of RCP% after 24 h, and demonstrated hemocompatibility, with hemolysis rates below 5% across all tested concentrations. In vitro biocompatibility assessments using NIH-3T3 cells indicated cell viability above 70% at concentrations up to 40 μg/mL. Biodistribution studies in rabbits (n = 6) revealed predominant accumulation in the bladder, with radiotracer uptake in the bladder being 6.3, 7.2, and 36.2 times higher than in the liver, kidneys, and heart (p < 0.0001), respectively, suggesting renal clearance. These results underscore the potential of 99mTc-(ZIF-8) nanoparticles for biomedical applications, particularly in targeted imaging and drug delivery. Future research will focus on improving targeting specificity and enhancing therapeutic efficacy in disease models. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04145-w.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, 11961 Shaqra, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi, 11961 Shaqra, Saudi Arabia
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, 7718175911 Iran
| |
Collapse
|
4
|
Wang ZZ, Wang K, Xu LF, Su C, Gong JS, Shi JS, Ma XD, Xie N, Qian JY. Unlocking the Potential of Collagenases: Structures, Functions, and Emerging Therapeutic Horizons. BIODESIGN RESEARCH 2024; 6:0050. [PMID: 39381623 PMCID: PMC11458858 DOI: 10.34133/bdr.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 10/10/2024] Open
Abstract
Collagenases, a class of enzymes that are specifically responsible for collagen degradation, have garnered substantial attention because of their pivotal roles in tissue repair, remodeling, and medical interventions. This comprehensive review investigates the diversity, structures, and mechanisms of collagenases and highlights their therapeutic potential. First, it provides an overview of the biochemical properties of collagen and highlights its importance in extracellular matrix function. Subsequently, it meticulously analyzes the sources of collagenases and their applications in tissue engineering and food processing. Notably, this review emphasizes the predominant role played by microbial collagenases in commercial settings while discussing their production and screening methods. Furthermore, this study elucidates the methodology employed for determining collagenase activity and underscores the importance of an accurate evaluation for both research purposes and clinical applications. Finally, this review highlights the future research prospects for collagenases, with a particular focus on promoting wound healing and treating scar tissue formation and fibrotic diseases.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Kang Wang
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Ling-Feng Xu
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Xu-Dong Ma
- Cytori Therapeutics LLC., Shanghai 201802, PR China
| | - Nan Xie
- Cytori Therapeutics LLC., Shanghai 201802, PR China
| | - Jian-Ying Qian
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
5
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Sinha K, Parwez S, Mv S, Yadav A, Siddiqi MI, Banerjee D. Machine learning and biological evaluation-based identification of a potential MMP-9 inhibitor, effective against ovarian cancer cells SKOV3. J Biomol Struct Dyn 2024; 42:6823-6841. [PMID: 37504963 DOI: 10.1080/07391102.2023.2240416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
MMP-9, also known as gelatinase B, is a zinc-metalloproteinase family protein that plays a key role in the degradation of the extracellular matrix (ECM). The normal function of MMP-9 includes the breakdown of ECM, a process that aids in normal physiological processes such as embryonic development, angiogenesis, etc. Interruptions in these processes due to the over-expression or downregulation of MMP-9 are reported to cause some pathological conditions like neurodegenerative diseases and cancer. In the present study, an integrated approach for ML-based virtual screening of the Maybridge library was carried out and their biological activity was tested in an attempt to identify novel small molecule scaffolds that can inhibit the activity of MMP-9. The top hits were identified and selected for target-based activity against MMP-9 protein using the kit (Biovision K844). Further, MTT assay was performed in various cancer cell lines such as breast (MCF-7, MDA-MB-231), colorectal (HCT119, DL-D-1), cervical (HeLa), lung (A549) and ovarian cancer (SKOV3). Interestingly, one compound viz., RJF02215 exhibited anti-cancer activity selectively in SKOV3. Wound healing assay and colony formation assay performed on SKOV3 cell line in the presence of RJF02215 confirmed that the compound had a significant inhibitory effect on this cell line. Thus, we have identified a novel molecule that can inhibit MMP-9 activity in vitro and inhibits the proliferation of SKOV3 cells. Novel molecules based on the structure of RJF02215 may become a good value addition for the treatment of ovarian cancer by exhibiting selective MMP-9 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khushboo Sinha
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahana Mv
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ananya Yadav
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyendu Banerjee
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Chen C, Tang F, Zhu M, Wang C, Zhou H, Zhang C, Feng Y. Role of inflammatory mediators in intracranial aneurysms: A review. Clin Neurol Neurosurg 2024; 242:108329. [PMID: 38781806 DOI: 10.1016/j.clineuro.2024.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The formation, growth, and rupture of intracranial aneurysms (IAs) involve hemodynamics, blood pressure, external stimuli, and a series of hormonal changes. In addition, inflammatory response causes the release of a series of inflammatory mediators, such as IL, TNF-α, MCP-1, and MMPs, which directly or indirectly promote the development process of IA. However, the specific role of these inflammatory mediators in the pathophysiological process of IA remains unclear. Recently, several anti-inflammatory, lipid-lowering, hormone-regulating drugs have been found to have a potentially protective effect on reducing IA formation and rupture in the population. These therapeutic mechanisms have not been fully elucidated, but we can look for potential therapeutic targets that may interfere with the formation and breakdown of IA by studying the relevant inflammatory response and the mechanism of IA formation and rupture involved in inflammatory mediators.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Fengjiao Tang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Meng Zhu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Chonghui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao city, China.
| |
Collapse
|
8
|
Huang Y, Yan B, Meng C, Zhang L, Wang C. Matrix metalloproteinases in chronic rhinosinusitis. Expert Rev Clin Immunol 2024; 20:547-558. [PMID: 38251631 DOI: 10.1080/1744666x.2024.2302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are a group of enzymes that are essential in maintaining extracellular matrix (ECM) homeostasis, regulating inflammation and tissue remodeling. In chronic rhinosinusitis (CRS), the overexpression of certain MMPs can contribute to chronic nasal tissue inflammation, ECM remodeling, and tissue repair. AREAS COVERED This review provides a comprehensive overview of the biological characteristics and functions of the MMP family, particularly focusing on the expression and activity of MMPs in patients with CRS, and delves into their role in the pathogenesis of CRS and their potential as therapeutic targets. EXPERT OPINION MMPs are important in tissue remodeling and have been implicated in the pathophysiology of CRS. Previous studies have shown that the expression of MMPs is upregulated in the nasal mucosa of patients with CRS and positively correlates with the severity of CRS. However, there is still a large gap in the research content of MMP in CRS, and the specific expression and pathogenic mechanism of MMP still need to be clarified. The significance and value of the ratio of MMP to tissue inhibitors of metalloproteinase (TIMP) in diseases still need to be demonstrated. Moreover, further studies are needed to assess the efficacy and safety of biologics that target MMPs in patients with CRS.
Collapse
Affiliation(s)
- Yuqing Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
10
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
11
|
Rivera-Pérez C, Ponce González XP, Hernández-Savedra NY. Antimicrobial and anticarcinogenic activity of bioactive peptides derived from abalone viscera (Haliotis fulgens and Haliotis corrugata). Sci Rep 2023; 13:15185. [PMID: 37704667 PMCID: PMC10499822 DOI: 10.1038/s41598-023-41491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Bioactive peptides have been studied in several sources due to their valuable potential in the pharmaceutical and food industries. Abalone viscera, which are normally discarded as byproducts, are a rich source of protein. Thus, the aim of this study was to explore the potential bioactivity of peptides derived from abalone viscera (Haliotis fulgens and Haliotis corrugata) after hydrolysis with a commercial mixture of enzymes. The hydrolysates obtained were fractionated using gel filtration chromatography. The resulting hydrolysate fractions were investigated for their antimicrobial and cytotoxic activities, including the expression of gelatinases mmp-2 and mmp-9 in human prostate cancer cell lines (PC3). Results showed antimicrobial activity for protein fractions of H. corrugata against Proteus mirabilis and Pseudomona aeuroginosa (66.2-116.25 kDa), Bacillus subtilis (6.5-21.5 kDa), and Aspergillus niger (97.4-116.25 kDa), while H. fulgens peptide fractions (200-31 kDa) displayed activity against six bacterial strains, and fractions from 116.25 to 21.5 kDa had effects on the fungus A. niger, Alternaria alternata, and Aspergillus flavus. Additionally, protein fractions displayed cytotoxic activity, inhibiting 30.4-53.8% of PC3 cellular growth. Selected fractions decreased the PMA-induced and not-induced expressions of mmp-2 and mmp-9 in PC3 cells. Abalone viscera, as byproducts, can be used as a potential source of antimicrobial and anticancer peptides.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Pérez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México
| | - Xolotl Paloma Ponce González
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México
| | - Norma Yolanda Hernández-Savedra
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México.
| |
Collapse
|
12
|
Yu Y, Lu S, Liu X, Li Y, Xu J. Identification and analysis of RNA-5-methylcytosine-related key genes in osteoarthritis. BMC Genomics 2023; 24:539. [PMID: 37700248 PMCID: PMC10496305 DOI: 10.1186/s12864-023-09651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND 5-methylcytosine (m5C) modification is widely associated with many biological and pathological processes. However, knowledge of m5C modification in osteoarthritis (OA) remains lacking. Thus, our study aimed to identify common m5C features in OA. RESULTS In the present study, we identified 1395 differentially methylated genes (DMGs) and 1673 differentially expressed genes (DEGs) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) and RNA-sequencing. A co-expression analysis of DMGs and DEGs showed that the expression of 133 genes was significantly affected by m5C methylation. A protein-protein interaction network of the 133 genes was constructed using the STRING database, and the cytoHubba plug-in of Cytoscape was used to hub genes were screen out 11 hub genes, including MMP14, VTN, COL15A1, COL6A2, SPARC, COL5A1, COL6A3, COL6A1, COL8A2, ADAMTS2 and COL7A1. The Pathway enrichment analysis by the ClueGO and CluePedia plugins in Cytoscape showed that the hub genes were significantly enriched in collagen degradation and extracellular matrix degradation. CONCLUSIONS Our study indicated that m5C modification might play an important role in OA pathogenesis, and the present study provides worthwhile insight into identifying m5C-related therapeutic targets in OA.
Collapse
Affiliation(s)
- Yang Yu
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shitao Lu
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoming Liu
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Li
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhong Xu
- Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
13
|
Li C, Liu Z, Yuan G, Liu Y, Wang W. Abdominal Aortic Aneurysm and PET/CT: From Molecular Mechanisms to Potential Molecular Imaging Targets. Rev Cardiovasc Med 2023; 24:132. [PMID: 39076752 PMCID: PMC11273052 DOI: 10.31083/j.rcm2405132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 07/31/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is the most common and critical aortic disease. Bleeding is the most serious complication from a ruptured AAA, which often results in death. Therefore, early diagnosis and treatment are the only effective means to reduce AAA associated mortality. Positron emission tomography/computed tomography (PET/CT) combines functional and anatomical imaging. The expanded application of PET/CT in the medical field could have benefits for the diagnosis and treatment of patients with AAA. This review explores the efficiency of PET/CT in the diagnosis of AAA based on our understanding of the underlying molecular mechanisms of AAA development.
Collapse
Affiliation(s)
- Chenhao Li
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Zhiyin Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Gang Yuan
- The State Key Laboratory of Quality Research in Chinese Medicine of Macau University of Science and Technology, Avenida Wai Long, 999078 Taipa, Macau
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Weiming Wang
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
14
|
Kubik A, das Virgens IPA, Szabó A, Váradi M, Csizmarik A, Keszthelyi A, Majoros A, Fehérvári P, Hegyi P, Ács N, Nyirády P, Szarvas T. Comprehensive Analysis of the Prognostic Value of Circulating MMP-7 Levels in Urothelial Carcinoma: A Combined Cohort Analysis, Systematic Review, and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24097859. [PMID: 37175566 PMCID: PMC10178327 DOI: 10.3390/ijms24097859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023] Open
Abstract
Lymph node (LN) status is the most significant prognostic factor for invasive urothelial bladder cancer (UBC); however, the optimal extent of LN dissection (LND) is debated. We assessed circulating matrix metalloproteinase-7 (MMP-7) as a prognostic factor and decision-making marker for the extent of LND. Preoperative serum MMP-7 levels were determined in two independent UBC cohorts (n = 188; n = 68) and in one control cohort (n = 97) by using the ELISA method. A systematic review and meta-analysis on the prognostic role of circulating pretreatment MMP-7 levels were performed. Serum MMP-7 levels were higher in patients compared to controls (p < 0.001) with the highest levels in LN-positive cases. Half of LN-positive UBC patients had low MMP-7 levels, whereas the survival of LN-negative patients with high serum MMP-7 findings was poor. MMP-7 levels were independently associated with poor survival in both cohorts (p = 0.006, p < 0.001). Accordingly, our systematic review of six eligible publications revealed a 2.5-fold higher mortality risk in patients with high MMP-7 levels. In conclusion, preoperative MMP-7 level is a validated and independent prognostic factor in urothelial cancer. It cannot be used to decide between regional or extended LND but may be useful in identifying LN-negative high-risk patients with potentially undetected metastases.
Collapse
Affiliation(s)
- András Kubik
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
- Center for Translational Medicine, Semmelweis University, 1082 Budapest, Hungary
| | | | - Anett Szabó
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
- Center for Translational Medicine, Semmelweis University, 1082 Budapest, Hungary
| | - Melinda Váradi
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
| | - Attila Keszthelyi
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
| | - Attila Majoros
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
| | - Péter Fehérvári
- Center for Translational Medicine, Semmelweis University, 1082 Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, 1082 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, 1083 Budapest, Hungary
| | - Nándor Ács
- Center for Translational Medicine, Semmelweis University, 1082 Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, 1082 Budapest, Hungary
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK), 45147 Essen, Germany
| |
Collapse
|
15
|
Christopoulou ME, Papakonstantinou E, Stolz D. Matrix Metalloproteinases in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24043786. [PMID: 36835197 PMCID: PMC9966421 DOI: 10.3390/ijms24043786] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade proteins of the extracellular matrix and the basement membrane. Thus, these enzymes regulate airway remodeling, which is a major pathological feature of chronic obstructive pulmonary disease (COPD). Furthermore, proteolytic destruction in the lungs may lead to loss of elastin and the development of emphysema, which is associated with poor lung function in COPD patients. In this literature review, we describe and appraise evidence from the recent literature regarding the role of different MMPs in COPD, as well as how their activity is regulated by specific tissue inhibitors. Considering the importance of MMPs in COPD pathogenesis, we also discuss MMPs as potential targets for therapeutic intervention in COPD and present evidence from recent clinical trials in this regard.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eleni Papakonstantinou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
| | - Daiana Stolz
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +49-(0)-761-270-37050
| |
Collapse
|
16
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
17
|
Keeling G, Man F. Nuclear Imaging of Inflammation. PROGRESS IN INFLAMMATION RESEARCH 2023:23-90. [DOI: 10.1007/978-3-031-23661-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Tu Y, Ma X, Chen H, Fan Y, Jiang L, Zhang R, Cheng Z. Molecular Imaging of Matrix Metalloproteinase-2 in Atherosclerosis Using a Smart Multifunctional PET/MRI Nanoparticle. Int J Nanomedicine 2022; 17:6773-6789. [PMID: 36600879 PMCID: PMC9805955 DOI: 10.2147/ijn.s385679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background Matrix metalloproteinases from macrophages are important intraplaque components that play pivotal roles in plaque progression and regression. This study sought to develop a novel multifunctional positron emission tomography (PET) and magnetic resonance imaging (MRI) contrast agents based on MMP-2 cleavable nanoparticles to noninvasive assessment of MMP-2 activity in mouse carotid atherosclerotic plaques. Results Macrophage-rich vascular lesions were induced by carotid ligation plus high-fat diet and streptozotocin-induced diabetes in CL57/BL6 mice. To render iron oxide nanoparticles (IONP) specific for the extracellular MMP-2, the magnetic nanoparticle base material has been derivatized with 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for the nuclear tracer 64Cu labeling and the MMP-2-cleavable peptide modified with polyethylene glycol 2000, yielding a multi-modality reporter (64Cu-NOTA-IONP@MMP2c-PEG2K, MMP2cNPs) for PET/MR imaging. Small animal PET imaging and biodistribution data revealed that MMP2cNPs exhibited remarkable plaque uptake (3.06 ± 0.87% ID/g and 1.83 ± 0.28% ID/g at 4 and 12 h, respectively). And MMP2cNPs were rapidly cleared from the contralateral normal carotid artery, resulting in excellent plaque-to-normal carotid artery contrasts. Furthermore, in vivo MRI showed a preferential accumulation of MMP2cNPs in atherosclerotic lesions compared with the non-cleavable reference compound, MMP2ncNPs. In addition, histological analyses revealed iron accumulations in the carotid atherosclerotic plaque, in colocalization with MMP-2 expression and macrophages. Conclusion Using a combination of innovative imaging modalities, in this study, we demonstrate the feasibility of applying the novel smart MMP2cNPs as a PET/MR hybrid imaging contrast agent for detection of MMP-2 in atherosclerotic plaque in vivo.
Collapse
Affiliation(s)
- Yingfeng Tu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China,Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Xiaowei Ma
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hao Chen
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yuhua Fan
- College of Pharmacy, Harbin Medical University, Daqing, Heilongjiang, People’s Republic of China
| | - Lei Jiang
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA
| | - Ruiping Zhang
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA,The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, People’s Republic of China,Ruiping Zhang, Department of Radiology, the Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People’s Republic of China, Email
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Stanford, CA, USA,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China,Correspondence: Zhen Cheng, Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, 1201 Welch Road, Lucas Expansion, P095, Stanford University, Stanford, CA, 94305, USA, Tel +01-650-723-7866, Email
| |
Collapse
|
19
|
Kicman A, Niczyporuk M, Kulesza M, Motyka J, Ławicki S. Utility of Matrix Metalloproteinases in the Diagnosis, Monitoring and Prognosis of Ovarian Cancer Patients. Cancer Manag Res 2022; 14:3359-3382. [PMID: 36474934 PMCID: PMC9719685 DOI: 10.2147/cmar.s385658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 01/14/2024] Open
Abstract
Ovarian cancer is one of the most common gynecologic malignancies. It is characterized by a high mortality rate, which is mainly due to the asymptomatic course of the disease. In light of the high mortality rate and increasing morbidity, new diagnostic methods are being explored to enable earlier detection, better monitoring, and improved prognosis. Such diagnostic methods include the assessment of tumor markers in various biological samples. Among the markers currently being investigated, extracellular matrix metalloproteinases (MMPs) are of particular interest. The objective of this article was to compile the existing knowledge of MMPs in ovarian cancer patients and to describe their potential diagnostic utility. Additionally, this article provides an overview of the symptoms, complications, and risk factors associated with ovarian cancer and the role of MMPs in physiology and pathology. Preliminary results indicate that tissue expression and blood and body fluid levels of MMPs may be different in ovarian cancer patients than in healthy women. The expression and concentration of individual MMPs have been shown to be correlated with cancer stage and disease severity. In addition, the preliminary value of some of these enzymes in predicting prognosis is discussed. However, as the amount of data is limited, more studies are needed to fully evaluate the potential function of individual MMPs in ovarian cancer patients. Based on the knowledge gathered for this article, it seems that MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, are tentatively the most useful. A thorough evaluation of their utility as modern biomarkers in ovarian cancer requires further investigation.
Collapse
Affiliation(s)
- Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Guggenberger KV, Vogt ML, Rowe SP, Higuchi T, Schmalzing M, Tony HP, Buck AK, Bley TA, Fröhlich M, Werner RA. Clinical Utility of C-Reactive Protein and White Blood Cell Count for Scheduling an [18F]FDG PET/CT in Patients with Giant Cell Arteritis. Nuklearmedizin 2022; 61:425-432. [PMID: 35977673 DOI: 10.1055/a-1830-7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVES 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/CT can be utilized in patients with giant cell arteritis (GCA), but pretest probability of established laboratory marker such as C-reactive protein (CRP) and white blood cell count (WBC) has not been defined yet. We aimed to elucidate the clinical utility of CRP and WBC for scheduling an [18F]FDG scan. METHODS 18 treatment-naïve GCA patients and 14 GCA subjects with anti-inflammatory treatment (glucocorticoids or comparable drugs), who underwent [18F]FDG PET/CT and who had no other inflammatory disease at time of scan, were identified. A semi-quantitative analysis in 11 vessel segments was conducted, with averaged jugular vein, healthy liver and lung tissue (Target-to-background ratio [TBR]VJ/liver/lung) serving as background. Derived TBR were then correlated with CRP and WBC at time of PET using Spearman's correlation. RESULTS For all treatment-naïve patients, TBRVJ was 2.3±1.1 (95%CI, 2.2-2.5), TBRliver was 1.0±0.5 (95%CI, 0.9-1.0) and average TBRlung was 6.3±3.6 (95%CI, 5.8-6.8). No significant correlation was noted for either CRP (TBRVJ: R=-0.19; TBRliver: R=-0.03; TBRlung: R=-0.17; each P ≥ 0.44) or for WBC (TBRVJ: R=-0.40; TBRliver: R=-0.32; TBRlung: R=-0.37; each P ≥ 0.10). Similar results were recorded for patients under treatment at time of PET. Again, no significant correlation was reached for either CRP (TBRVJ: R=-0.17; TBRliver: R=-0.28; TBRlung: R=-0.09; each P ≥ 0.32) or WBC (TBRVJ: R=-0.06; TBRliver: R=-0.13; TBRlung: R=0.06; each P ≥ 0.65). CONCLUSIONS In GCA patients with and without anti-inflammatory treatment, CRP and WBC did not substantially correlate with TBR at time of scan. Given the rather limited pretest probability of those parameters, such laboratory values may have less diagnostic utility to order an [18F]FDG PET/CT.
Collapse
Affiliation(s)
- Konstanze V Guggenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Marius L Vogt
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, Rheumatology and Clinical Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Hans-Peter Tony
- Department of Internal Medicine II, Rheumatology and Clinical Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Fröhlich
- Department of Internal Medicine II, Rheumatology and Clinical Immunology, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A Werner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Li S, Pritchard DM, Yu LG. Regulation and Function of Matrix Metalloproteinase-13 in Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:3263. [PMID: 35805035 PMCID: PMC9265061 DOI: 10.3390/cancers14133263] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13) is a member of the Matrix metalloproteinases (MMPs) family of endopeptidases. MMP-13 is produced in low amounts and is well-regulated during normal physiological conditions. Its expression and secretion are, however, increased in various cancers, where it plays multiple roles in tumour progression and metastasis. As an interstitial collagenase, MMP-13 can proteolytically cleave not only collagens I, II and III, but also a range of extracellular matrix proteins (ECMs). Its action causes ECM remodelling and often leads to the release of various sequestered growth and angiogenetic factors that promote tumour cell growth, invasion and angiogenesis. This review summarizes our current understanding of the regulation of MMP-13 expression and secretion and discusses the actions of MMP-13 in cancer progression and metastasis.
Collapse
Affiliation(s)
- Shun Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - David Mark Pritchard
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| | - Lu-Gang Yu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
23
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
24
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
25
|
Rastogi V, Stefens SJM, Houwaart J, Verhagen HJM, de Bruin JL, van der Pluijm I, Essers J. Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne) 2022; 9:814123. [PMID: 35492343 PMCID: PMC9051391 DOI: 10.3389/fmed.2022.814123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.
Collapse
Affiliation(s)
- Vinamr Rastogi
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Houwaart
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hence J. M. Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jorg L. de Bruin
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Jeroen Essers
| |
Collapse
|
26
|
Li S, Zhao S, Wu Z, Wang F, Li W. Alteration of immune profiles is associated with pulmonary function and symptoms in patients with chronic obstructive pulmonary disease. Mol Med Rep 2021; 24:742. [PMID: 34435653 PMCID: PMC8430332 DOI: 10.3892/mmr.2021.12382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammation serves a key role in chronic obstructive pulmonary disease (COPD). However, changes in the immune profiles of patients with COPD remain unclear. The present prospective observational study aimed to determine the expression profiles of immune cells and inflammatory factors of patients with COPD and healthy controls, and to analyze the relationship between immune profiles and smoking history. A total of 140 subjects were enrolled in the present study between September 2018 and April 2019 at West China Hospital of Sichuan University (Chengdu, China). These included 87 patients with stable COPD and 24 patients with acute exacerbated COPD, as well as 29 healthy controls. Baseline characteristics were recorded during the screening period, and levels of immune cells were examined using flow cytometry. In addition, levels of inflammatory factors were measured using ELISAs. The results revealed increased expression of the CD64+/CD14+ mononuclear phagocyte system (MPS) and CD16+CD66+ neutrophils, and decreased expression of CD3+CD4+ T cells and CD3+ CD8+ T cells (all P<0.05) in the peripheral blood of patients with COPD and smokers relative to non-smoking controls. In addition, significant differences were observed in protein levels of IL-6, IL-1β, TNF-α, TGF-α, IFN-γ, IL-8, IL-17A and CRP among the three groups (all P<0.05). Furthermore, the IL-17A, TNF and NF-κB signaling pathways were found to serve a key role in the inflammatory network of COPD. Pearson's correlation analysis revealed a positive correlation between CD3+T lymphocyte counts and pulmonary function, and a negative correlation with smoking and exacerbations. Furthermore, neutrophils and MPS were negatively associated with pulmonary function, and IL-8 was positively associated with cough. There was also a negative association between CRP and IL-17A with pulmonary function but a positive correlation with symptoms and exacerbation. Club cell secretory protein was also negatively associated with emphysema parameters. In conclusion, the present findings revealed significant differences in profiles of immune factors among patients with COPD, smokers and non-smoking controls and their association with clinical characteristics. The clinical trial registration number of the present study is: ChiCTR1800015700 (registered with http://www.chictr.org.cn/index.aspx, 2018/04/16).
Collapse
Affiliation(s)
- Sixiang Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuang Zhao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhenru Wu
- Pathology Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fangfang Wang
- Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
27
|
Buchler A, Munch M, Farber G, Zhao X, Al-Haddad R, Farber E, Rotstein BH. Selective Imaging of Matrix Metalloproteinase-13 to Detect Extracellular Matrix Remodeling in Atherosclerotic Lesions. Mol Imaging Biol 2021; 24:93-103. [PMID: 34231104 DOI: 10.1007/s11307-021-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Overexpression and activation of matrix metalloproteinase-13 (MMP-13) within atheroma increases susceptibility to plaque rupture, a major cause of severe cardiovascular complications. In comparison to pan-MMP targeting [18F]BR-351, we evaluated the potential for [18F]FMBP, a selective PET radiotracer for MMP-13, to detect extracellular matrix (ECM) remodeling in vascular plaques possessing markers of inflammation. PROCEDURES [18F]FMBP and [18F]BR-351 were initially assessed in vitro by incubation with en face aortae from 8 month-old atherogenic ApoE-/- mice. Ex vivo biodistributions, plasma metabolite analyses, and ex vivo autoradiography were analogously performed 30 min after intravenous radiotracer administration in age-matched C57Bl/6 and ApoE-/- mice under baseline or homologous blocking conditions. En face aortae were subsequently stained with Oil Red O (ORO), sectioned, and subject to immunofluorescence staining for Mac-2 and MMP-13. RESULTS High-resolution autoradiographic image analysis demonstrated target specificity and regional concordance to lipid-rich lesions. Biodistribution studies revealed hepatobiliary excretion, low accumulation of radioactivity in non-excretory organs, and few differences between strains and conditions in non-target organs. Plasma metabolite analyses uncovered that [18F]FMBP exhibited excellent in vivo stability (≥74% intact) while [18F]BR-351 was extensively metabolized (≤37% intact). Ex vivo autoradiography and histology of en face aortae revealed that [18F]FMBP, relative to [18F]BR-351, exhibited 2.9-fold greater lesion uptake, substantial specific binding (68%), and improved sensitivity to atherosclerotic tissue (2.9-fold vs 2.1-fold). Immunofluorescent staining of aortic en face cross sections demonstrated elevated Mac-2 and MMP-13-positive areas within atherosclerotic lesions identified by [18F]FMBP ex vivo autoradiography. CONCLUSIONS While both radiotracers successfully identified atherosclerotic plaques, [18F]FMBP showed superior specificity and sensitivity for lesions possessing features of destructive plaque remodeling. The detection of ECM remodeling by selective targeting of MMP-13 may enable characterization of high-risk atherosclerosis featuring elevated collagenase activity.
Collapse
Affiliation(s)
- Ariel Buchler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Maxime Munch
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Gedaliah Farber
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Xiaoling Zhao
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Rami Al-Haddad
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Eadan Farber
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Benjamin H Rotstein
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada. .,University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
28
|
Polymerizable Matrix Metalloproteinases' Inhibitors with Potential Application for Dental Restorations. Biomedicines 2021; 9:biomedicines9040366. [PMID: 33807479 PMCID: PMC8065691 DOI: 10.3390/biomedicines9040366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Collagen cleavage by matrix metalloproteinase (MMP) is considered a major cause of dental resins long term failure. Most MMP inhibitors display significant toxicity and are unsuitable for dental resins’ applications. Here we report a study of a new class of inhibitors that display the unique property of being co-polymerizable with other vinyl compounds present in commercial dental resins, limiting their release and potential toxicity. Computational affinity towards the active site of different MMP-1; -2; -8; -9 and -13 of several compounds showed interesting properties and were synthesized. These free compounds were tested concerning their toxicity upon contact with two different cell types, with no substantial decrease in cell viability at high concentrations. Even so, compound’s safety can be further improved upon copolymerization with commercial dental resins, limiting their release.
Collapse
|
29
|
Lenci E, Cosottini L, Trabocchi A. Novel matrix metalloproteinase inhibitors: an updated patent review (2014 - 2020). Expert Opin Ther Pat 2021; 31:509-523. [PMID: 33487088 DOI: 10.1080/13543776.2021.1881481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Matrix MetalloProteinases (MMPs) are key enzymes in several pathophysiological processes connected to the extracellular matrix (ECM) degradation. Earlier clinical trials evaluating broad spectrum MMP inhibitors as cancer therapeutics failed to succeed, resulting in toxic side effects, such as musculoskeletal pain and inflammation, due to poor selectivity. As it is now recognized that some MMPs are essential for tumor progression and metastasis, but others play host-protective functions, selective MMP inhibitors are needed, and their interest has grown also for therapeutic applications beyond cancer, such as infectious, inflammatory and neurological diseases. Areas covered: This updated review describes patents concerning MMP inhibitors published within January 2014 and June 2020, with therapeutic applications spanning from cancer to inflammatory and neurological disorders. Expert opinion: Although the number of patents has decreased with respect to the previous decade, new applications provide selective matrix metalloproteinase inhibitors for therapeutic treatments beyond cancer. For several applications, the need of selective inhibitors resulted in the development of new non-hydroxamate compounds, paving the way towards a renewed interest towards MMPs as therapeutic targets. In particular, inhibitors able to cross the blood-brain barrier have been disclosed and proposed for the treatment of neurological conditions, infections, wound healing and cancer.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Lucrezia Cosottini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
30
|
van der Krogt JMA, van Binsbergen WH, van der Laken CJ, Tas SW. Novel positron emission tomography tracers for imaging of rheumatoid arthritis. Autoimmun Rev 2021; 20:102764. [PMID: 33476822 DOI: 10.1016/j.autrev.2021.102764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Positron emission tomography (PET) is a nuclear imaging modality that relies on visualization of molecular targets in tissues, which is nowadays combined with a structural imaging modality such as computed tomography (CT) or Magnetic Resonance Imaging (MRI) and referred to as hybrid PET imaging. This technique allows to image specific immunological targets in rheumatoid arthritis (RA). Moreover, quantification of the PET signal enables highly sensitive monitoring of therapeutic effects on the molecular target. PET may also aid in stratification of the immuno-phenotype at baseline in order to develop personalized therapy. In this systematic review we will provide an overview of novel PET tracers, investigated in the context of RA, either pre-clinically, or clinically, that specifically visualize immune cells or stromal cells, as well as other factors and processes that contribute to pathology. The potential of these tracers in RA diagnosis, disease monitoring, and prediction of treatment outcome will be discussed. In addition, novel PET tracers established within the field of oncology that may be of use in RA will also be reviewed in order to expand the future opportunities of PET imaging in RA.
Collapse
Affiliation(s)
- Jeffrey M A van der Krogt
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter H van Binsbergen
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Conny J van der Laken
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Laronha H, Carpinteiro I, Portugal J, Azul A, Polido M, Petrova KT, Salema-Oom M, Caldeira J. Challenges in Matrix Metalloproteinases Inhibition. Biomolecules 2020; 10:biom10050717. [PMID: 32380782 PMCID: PMC7277161 DOI: 10.3390/biom10050717] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases are enzymes that degrade the extracellular matrix. They have different substrates but similar structural organization. Matrix metalloproteinases are involved in many physiological and pathological processes and there is a need to develop inhibitors for these enzymes in order to modulate the degradation of the extracellular matrix (ECM). There exist two classes of inhibitors: endogenous and synthetics. The development of synthetic inhibitors remains a great challenge due to the low selectivity and specificity, side effects in clinical trials, and instability. An extensive review of currently reported synthetic inhibitors and description of their properties is presented.
Collapse
Affiliation(s)
- Helena Laronha
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Inês Carpinteiro
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Jaime Portugal
- Faculdade de Medicina Dentária Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Ana Azul
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Mário Polido
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Krasimira T. Petrova
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Jorge Caldeira
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence: ; Tel.: +351-919553592
| |
Collapse
|
32
|
Laronha H, Caldeira J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020; 9:cells9051076. [PMID: 32357580 PMCID: PMC7290392 DOI: 10.3390/cells9051076] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is a macromolecules network, in which the most abundant molecule is collagen. This protein in triple helical conformation is highly resistant to proteinases degradation, the only enzymes capable of degrading the collagen are matrix metalloproteinases (MMPs). This resistance and maintenance of collagen, and consequently of ECM, is involved in several biological processes and it must be strictly regulated by endogenous inhibitors (TIMPs). The deregulation of MMPs activity leads to development of numerous diseases. This review shows MMPs complexity.
Collapse
Affiliation(s)
- Helena Laronha
- Centro de investigação interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829 Caparica, Portugal;
- UCIBIO and LAQV Requimte Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Caldeira
- Centro de investigação interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829 Caparica, Portugal;
- UCIBIO and LAQV Requimte Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +3519-1955-35-92
| |
Collapse
|
33
|
Abstract
Most of the acute ischemic events, such as acute coronary syndromes and stroke, are attributed to vulnerable plaques. These lesions have common histological and pathophysiological features, including inflammatory cell infiltration, neo-angiogenesis, remodelling, haemorrhage predisposition, thin fibrous cap, large lipid core, and micro-calcifications. Early detection of the presence of a plaque prone to rupture could be life-saving for the patient; however, vulnerable plaques usually cause non-haemodynamically significant stenosis, and anatomical imaging techniques often underestimate, or may not even detect, these lesions. Although ultrasound techniques are currently considered as the "first-line" examinations for the diagnostic investigation and treatment monitoring in patients with atherosclerotic plaques, positron emission tomography (PET) imaging could open new horizons in the assessment of atherosclerosis, given its ability to visualize metabolic processes and provide molecular-functional evidence regarding vulnerable plaques. Moreover, modern hybrid imaging techniques, combining PET with computed tomography or magnetic resonance imaging, can evaluate simultaneously both functional and morphological parameters of the atherosclerotic plaques, and are expected to significantly expand their clinical role in the future. This review summarizes current research on the PET imaging of the vulnerable atherosclerotic plaques, outlining current and potential applications in the clinical setting.
Collapse
|
34
|
Schwegmann K, Hohn M, Hermann S, Schäfers M, Riemann B, Haufe G, Wagner S, Breyholz HJ. Optimizing the Biodistribution of Radiofluorinated Barbiturate Tracers for Matrix Metalloproteinase Imaging by Introduction of Fluorescent Dyes as Pharmacokinetic Modulators. Bioconjug Chem 2020; 31:1117-1132. [DOI: 10.1021/acs.bioconjchem.9b00817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Michael Hohn
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Burkhard Riemann
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| | - Hans-Jörg Breyholz
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| |
Collapse
|