1
|
Ali MS, Roy VC, Park JS, Haque AR, Mok JH, Zhang W, Chun BS. Protein and Polysaccharide Recovery from Shrimp Wastes by Natural Deep Eutectic Solvent Mediated Subcritical Water Hydrolysis for Biodegradable Film. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:876-890. [PMID: 38700616 DOI: 10.1007/s10126-024-10321-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 10/17/2024]
Abstract
Environmental pollution is a significant problem due to the improper disposal of plastics and shrimp shells outdoors. Therefore, the synthesis of biodegradable film from waste materials is highly important. The novelty of this research lies in the extraction of protein hydrolysates and chitosan from shrimp shells, as well as the fabrication of biodegradable film from these materials. In this study, the composite films were produced using the solution casting method. Moreover, the combined effect of ultrasound pretreatments (UPT) and natural deep eutectic solvents (NADES) was investigated as extraction media, to determine their potential impact on shrimp waste subcritical water hydrolysis (SWH). Shrimp shells were submitted to UPT in NADES solution, followed by SWH at different temperatures ranging from 150 to 230 °C under 3 MPa for 20 min. Then, the physiochemical properties and bioactivities of the hydrolysates were assessed to determine their suitability for use in biodegradable packaging films. Additionally, the physiochemical properties and bioactivities of the resulting hydrolysates were also analyzed. The highest amount of protein (391.96 ± 0.48 mg BSA/g) was obtained at 190 °C/UPT/NADES, and the average molecular size of the protein molecules was less than 1000 Da with different kinds of peptide. Overall, combined UPT and SWH treatments yielded higher antioxidant activity levels than individual treatments. Finally, the application of composite films was evaluated by wrapping fish samples and assessing their lipid oxidation. The use of higher concentrations of protein hydrolysates significantly delayed changes in the samples, thereby demonstrating the film's applicability.
Collapse
Affiliation(s)
- Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Ahmed Redwan Haque
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Grasso F, Méndez Paz D, Vázquez Sobrado R, Orlandi V, Turrini F, Agostinis L, Morandini A, Jenssen M, Lian K, Boggia R. Feasibility of Enzymatic Protein Extraction from a Dehydrated Fish Biomass Obtained from Unsorted Canned Yellowfin Tuna Side Streams: Part II. Gels 2024; 10:246. [PMID: 38667665 PMCID: PMC11049478 DOI: 10.3390/gels10040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The enzymatic extraction of proteins from fish biomasses is being widely investigated. However, little or almost no research has paid attention to the exploitation of unsorted fishery biomasses. This work is part of a larger study, Part I of which has already been published, and focuses on an extensive characterization of two collagenous samples, namely gelatin (G) and hydrolyzed gelatin peptides (HGPs), extracted from a dehydrated fish biomass coming from unsorted canned yellowfin tuna side streams. The results indicate crude protein fractions of 90-93%, pH values between 3 and 5, white-yellow colors, collagen-like FTIR spectra, and 17% in terms of total amino acid content. Viscosity and the study of dynamic viscous-elastic behavior were analyzed. Thermo-gravimetric analysis was performed to assess the residual ashes. Both samples were investigated to determine their molecular weight distribution via size-exclusion chromatography, with a higher total average molecular weight for G compared to HGPs, with values of 17,265.5 Da and 2637.5 Da, respectively. G demonstrated technological properties similar to analogous marine gelatins. HGPs demonstrated antioxidant activity as per FRAP assay. All the results open up new perspectives for the potential use of these substances in biodegradable packaging, dietary supplements, and skin care cosmetics.
Collapse
Affiliation(s)
- Federica Grasso
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Diego Méndez Paz
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (D.M.P.); (R.V.S.)
| | - Rebeca Vázquez Sobrado
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (D.M.P.); (R.V.S.)
| | - Valentina Orlandi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Federica Turrini
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy
| | - Lodovico Agostinis
- Aimplas, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain; (L.A.); (A.M.)
| | - Andrea Morandini
- Aimplas, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain; (L.A.); (A.M.)
| | - Marte Jenssen
- Nofima, Muninbakken, 9-13, 9019 Tromsø, Norway; (M.J.); (K.L.)
| | - Kjersti Lian
- Nofima, Muninbakken, 9-13, 9019 Tromsø, Norway; (M.J.); (K.L.)
| | - Raffaella Boggia
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
3
|
Chen M, Ma A, Sun Z, Xie B, Shi L, Chen S, Chen L, Xiong G, Wang L, Wu W. Enhancing activity of food protein-derived peptides: An overview of pretreatment, preparation, and modification methods. Compr Rev Food Sci Food Saf 2023; 22:4698-4733. [PMID: 37732471 DOI: 10.1111/1541-4337.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Food protein-derived peptides have garnered considerable attention due to their potential bioactivities and functional properties. However, the limited activity poses a challenge in effective utilization aspects. To overcome this hurdle, various methods have been explored to enhance the activity of these peptides. This comprehensive review offers an extensive overview of pretreatment, preparation methods, and modification strategies employed to augment the activity of food protein-derived peptides. Additionally, it encompasses a discussion on the current status and future prospects of bioactive peptide applications. The review also addresses the standardization of mass production processes and safety considerations for bioactive peptides while examining the future challenges and opportunities associated with these compounds. This comprehensive review serves as a valuable guide for researchers in the food industry, offering insights and recommendations to optimize the production process of bioactive peptides.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Sow MMG, Zhang Z, Sow CH, Lim SX. Upcycling fish scales through heating for steganography and Rhodamine B adsorption application. Nat Commun 2023; 14:6508. [PMID: 37845200 PMCID: PMC10579236 DOI: 10.1038/s41467-023-42080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
With increasing population and limited resources, a potential route for improving sustainability is increased reuse of waste materials. By re-looking at wastes, interesting properties and multifunctionalities can be discovered in materials previously explored. Despite years of research on bio-compatible fish scales, there is limited study on the fluorescence property of this abundant waste material. Controlled denaturation of collagen and introduction of defects can serve as a means to transform the fluorescence property of these fish scale wastes while providing more adsorption sites for pollutant removal, turning multifunctional fish scales into a natural steganographic material for transmitting text and images at both the macroscopic and microscopic levels and effectively removing Rhodamine B pollutants (91 % removal) within a short contact time (10 minutes). Our work offers a glimpse into the realm of engineering defects-induced fluorescence in natural material with potential as bio-compatible fluorescence probes while encouraging multidimensional applicability to be established in otherwise overlooked waste resources.
Collapse
Affiliation(s)
- Malcolm Miao Geng Sow
- NUS High School of Mathematics and Science, 20 Clementi Avenue 1, Singapore, 129957, Singapore
| | - Zheng Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Chorng Haur Sow
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore.
| | - Sharon Xiaodai Lim
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore.
| |
Collapse
|
5
|
Yuan Y, Fomich M, Dia VP, Wang T. Succinylation of zein and gelatin hydrolysates improved their ice recrystallization inhibition activity. Food Chem 2023; 424:136431. [PMID: 37244191 DOI: 10.1016/j.foodchem.2023.136431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
The goal of this research was to enhance the ice recrystallization inhibition (IRI) activity of zein and gelatin hydrolysates (ZH and GH, respectively) by succinylation modification. ZH was prepared by Alcalase treatment for 3 h and then modified by succinic anhydride (SA); whereas GH was made by Alcalase hydrolysis for 0.25 h and succinylated by n-octylsuccinic anhydride (OSA). After 0.5 h of annealing at -8 °C at 40 mg/mL, modified hydrolysates decreased the average Feret's diameter of ice crystal from 50.2 μm (polyethylene glycol, negative control) to 28.8 μm (SA modified ZH) and 29.5 μm (OSA modified GH) in comparison to the unmodified hydrolysates, which had the crystal size of 47.2 μm (ZH) and 45.4 μm (GH). Also, the two succinylated samples had altered surface hydrophobicity, which potentially contributed to their enhanced IRI activity. Our results indicate that succinylation of food-derived protein hydrolysates can improve their IRI activity.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA
| | - Madison Fomich
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA
| | - Vermont P Dia
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| | - Tong Wang
- Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN 37996, USA.
| |
Collapse
|
6
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Thongkon N, Sutthamee C. Application of PAR Modified Fish Scales for Adsorption and Colorimetric Detection of Heavy Metal Ions in Water Samples. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022. [DOI: 10.1007/s40995-022-01403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Boronat Ò, Sintes P, Celis F, Díez M, Ortiz J, Aguiló-Aguayo I, Martin-Gómez H. Development of added-value culinary ingredients from fish waste: Fish bones and fish scales. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Chukwunonso Ossai I, Shahul Hamid F, Hassan A. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:81-104. [PMID: 35933837 DOI: 10.1016/j.wasman.2022.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The valorisation of keratinous wastes involves biorefining and recovering the bioresource materials from the keratinous wastes to produce value-added keratin-based bioproducts with a broad application, distribution, and marketability potential. Valorisation of keratinous wastes increases the value of the wastes and enables more sustainable waste management towards a circular bioeconomy. The abundance of keratinous wastes as feedstock from agro-industrial processing, wool processing, and grooming industry benefits biorefinery and extraction of keratins, which could be the optimal solution for developing an ecologically and economically sustainable keratin-based economy. The transition from the current traditional linear models that are deleterious to the environment, which end energy and resources recovery through disposal by incineration and landfilling, to a more sustainable and closed-loop recycling and recovery approach that minimises pollution, disposal challenges, loss of valuable bioresources and potential revenues are required. The paper provides an overview of keratinous wastes and the compositional keratin proteins with the descriptions of the various keratin extraction methods in biorefinery and functional material synthesis, including enzymatic and microbial hydrolysis, chemical hydrolysis (acid/alkaline hydrolysis, dissolution in ionic liquids, oxidative and sulphitolysis) and chemical-free hydrolysis (steam explosion and ultrasonic). The study describes various uses and applications of keratinases and keratin-based composites fabricated through various manufacturing processes such as lyophilisation, compression moulding, solvent casting, hydrogel fabrication, sponge formation, electrospinning, and 3D printing for value-added applications.
Collapse
Affiliation(s)
- Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Auwalu Hassan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Sciences, Faculty of Science, Federal University Kashere, Gombe State, Nigeria
| |
Collapse
|
10
|
Dong Y, Yan W, Zhang YQ. Effects of Spray Drying and Freeze Drying on Physicochemical Properties, Antioxidant and ACE Inhibitory Activities of Bighead Carp (Aristichthys nobilis) Skin Hydrolysates. Foods 2022; 11:foods11142083. [PMID: 35885326 PMCID: PMC9316825 DOI: 10.3390/foods11142083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
The physicochemical, structural properties, antioxidant, and angiotensin I-converting enzyme (ACE) inhibitory activities of fish skin protein hydrolysate (SPH) that were freeze-dried (SPH-FD) and spray-dried (SPH-SD) were investigated. SPH-SD showed abundant volatile compounds, higher DPPH radical scavenging activity and ferrous iron chelating activity than SPH-FD, while the ABTS radical scavenging activity and ACE inhibitory activity were not influenced by the drying method. Amino acid compositions showed a higher proportion of proline and hydroxyproline residues in SPH-FD. The major molecular weights were both distributed below 1000 Da. SPH-SD had spherical structures, while SPH-FD had glass shard-like structures. The results indicated that the drying method could affect the physicochemical properties of hydrolysates, and SPH-SD showed potential prospects in developing functional fortified foods.
Collapse
|
11
|
Nkansah MA, Dua AB, Aryee GA, Adusei-Gyamfi J. Evaluation of Scales of Tilapia Sp. and Sciaenops ocellatus as Low Cost and Green Adsorbent for fluoride Removal From Water. Front Chem 2022; 10:813533. [PMID: 35402368 PMCID: PMC8983913 DOI: 10.3389/fchem.2022.813533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Water containing more than 1.5 mg/L of fluoride is considered toxic as it causes dental, kidney, and other health problems. With the purpose of helping alleviate these problems by exploring a treatment method for fluoride contamination, this study was to assess the suitability of scales of Tilapia Sp. and Sciaenops ocellatus as a cheaper source of adsorbent for the removal of fluoride from drinking water. The samples which were obtained from the Lapaz Market in Accra, Ghana, underwent treatment to eliminate any impurities. They were then ground into powder and treated with aluminum hydroxide [Al(OH)3]. The treated samples were used for the removal of fluoride from spiked solutions prepared in the laboratory. Batch adsorption was performed by varying parameters such as adsorbent dose (1–8 g/L), initial concentration (2 mg/L to 10 mg/L), and contact time (30–300 min) at pH of 7. A one-way ANOVA was used to validate the significance of the defluoridation process with respect to the different experimental conditions. The optimum adsorbent dose, initial concentration, and contact time were found to be 4 g/L, 10 mg/L, and 300 min, respectively. The results revealed that the maximum percentage removal of fluoride was 76% by Tilapia Sp. and 70% by Sciaenops ocellatus at the optimum conditions. This is an indication that both Tilapia Sp. And Sciaenops ocellatus scales are suitable adsorbents for the removal of fluoride from water. The fluoride adsorption kinetics followed the pseudo-second-order model, and the adsorption isotherm fitted the Freundlich Isotherm model better than the Langmuir Isotherm model. The adsorption intensity and adsorption capacity for Tilapia Sp. were 3.484 L/mg and 0.065 mg/g, and that of Sciaenops ocellatus 3.195 L/mg and 0.045 mg/g respectively.
Collapse
Affiliation(s)
| | - Asare Boateng Dua
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gabriel Adjei Aryee
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Junias Adusei-Gyamfi
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
12
|
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 2022; 21:1803-1842. [PMID: 35150206 DOI: 10.1111/1541-4337.12917] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Fish processing industries result in an ample number of protein-rich byproducts, which have been used to produce protein hydrolysate (PH) for human consumption. Chemical, microbial, and enzymatic hydrolysis processes have been implemented for the production of fish PH (FPH) from diverse types of fish processing byproducts. FPH has been reported to possess bioactive active peptides known to exhibit various biological activities such as antioxidant, antimicrobial, angiotensin-I converting enzyme inhibition, calcium-binding ability, dipeptidyl peptidase-IV inhibition, immunomodulation, and antiproliferative activity, which are discussed comprehensively in this review. Appropriate conditions for the hydrolysis process (e.g., type and concentration of enzymes, time, and temperature) play an important role in achieving the desired level of hydrolysis, thus affecting the functional and bioactive properties and stability of FPH. This review provides an in-depth and comprehensive discussion on the sources, process parameters, purification as well as functional and bioactive properties of FPHs. The most recent research findings on the impact of production parameters, bitterness of peptide, storage, and food processing conditions on functional properties and stability of FPH were also reported. More importantly, the recent studies on biological activities of FPH and in vivo health benefits were discussed with the possible mechanism of action. Furthermore, FPH-polyphenol conjugate, encapsulation, and digestive stability of FPH were discussed in terms of their potential to be utilized as a nutraceutical ingredient. Last but not the least, various industrial applications of FPH and the fate of FPH in terms of limitations, hurdles, future research directions, and challenges have been addressed.
Collapse
Affiliation(s)
| | | | - Mithun Singh Rajput
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Steam Explosion-Assisted Extraction of Protein from Fish Backbones and Effect of Enzymatic Hydrolysis on the Extracts. Foods 2021; 10:foods10081942. [PMID: 34441718 PMCID: PMC8394867 DOI: 10.3390/foods10081942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
The development of an efficient pretreatment, prior to enzymatic hydrolysis, is a good strategy for the sustainable use of refractory fish byproducts. This study compared hydrothermal pretreatments at 159 °C for 2 min, followed by water extraction (steam explosion-assisted extraction, SE) and 121 °C for 70 min (hot-pressure extraction, HPE), for the recovery of proteins from fish backbones. The effect of enzymatic hydrolysis on the properties of the obtained fish bone protein (FBP) was also evaluated. The results demonstrated that FBP had high contents of protein (81.09-84.88 g/100 g) and hydroxyproline (70-82 residues/1000 residues). After hydrolysis with Flavourzyme, for 3 h, the FBP hydrolysates that were pretreated with SE (SFBP-H) exhibited a better degree of hydrolysis (DH) and nitrogen recovery (NR), and a higher level of umami taste free amino acids (151.50 mg/100 mL), compared with the HPE-treated samples. The obtained SFBP-H mainly distributed below 3000 Da and had strong scavenging effects on 1,1-diphenyl-2-picrylhydrazy (DPPH) (IC50 = 4.24 mg/mL) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) (IC50 = 1.93 mg/mL) radicals. Steam explosion-assisted extraction is a promising route for recovering proteins from native fish bone materials, and improving the flavor and antioxidant activity of the hydrolysates.
Collapse
|
14
|
Zhang Y, Dong Y, Dai Z. Antioxidant and Cryoprotective Effects of Bone Hydrolysates from Bighead Carp ( Aristichthys nobilis) in Freeze-Thawed Fish Fillets. Foods 2021; 10:foods10061409. [PMID: 34207066 PMCID: PMC8235181 DOI: 10.3390/foods10061409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Bone hydrolysates from bighead carp (Aristichthys nobilis) were prepared using Protamex and Alcalase with degrees of hydrolysis (DH) of 5%, 10% and 15%. The antioxidant activity of bone hydrolysates was evaluated in vitro and then the hydrolysates with better antioxidant activity were used to immerse bighead carp fillets through a vacuum impregnation process at concentrations of 1% and 2%. Among the six hydrolysates, fish bone hydrolyzed with Protamex at DH 10% exhibited the highest ability to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) (88.79%), 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) (57.76%) and hydroxyl radicals (62.72%), as well as to chelate ferrous ions (91.46%). The hydrolysates effectively postponed freezing- and thawing-induced protein/lipid oxidation. Compared with the fillets without treatment, the impregnated fillets had higher sulfhydryl contents, greater Ca2+-ATPase activity, lower carbonyls and lower thiobarbituric acid-reactive substances (TBARS). Bone hydrolysates also have a positive effect on the texture and water-holding ability of freeze-thawed fish fillets. Fish bone hydrolysates of Protamex could serve as potential antioxidants to preserve fish fillets.
Collapse
Affiliation(s)
- Yiqi Zhang
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310035, China; (Y.Z.); (Y.D.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Ye Dong
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310035, China; (Y.Z.); (Y.D.)
| | - Zhiyuan Dai
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310035, China; (Y.Z.); (Y.D.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
- Correspondence:
| |
Collapse
|
15
|
Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales ( Oreochromis sp.) to obtain bioactive peptides. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00611. [PMID: 33912403 PMCID: PMC8063752 DOI: 10.1016/j.btre.2021.e00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/06/2021] [Accepted: 03/19/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to optimize the conditions of enzymatic hydrolysis (type of enzyme, pH, temperature (T), substrate (S) and enzyme concentration (E)) to increase content of soluble peptides (P), antioxidant activities and degree of hydrolysis DH (%), in hydrolysates. Also, the effect of scaling up from a 0.5 L to a 7.5 L reactor, was evaluated. Hydrolysis was carried out for 3 h in a 500 mL reactor, with Alcalase® 2.4 L and Flavourzyme® 500 L enzymes. A second experimental design was then developed with S and E as factors, where DH, P and antioxidant activity, were response variables. The Alcalase® 2.4 L was the most productive enzyme, with optimal S and E of 45 g/L and 4.4 g/L, respectively. Its hydrolysates showed antioxidant activities with IC50 of 0.76 g/L, 12 g/L and 8 g/L for ABTS, FRAP and ICA, respectively. The scale up didn't showed negative effect on the hydrolysis.
Collapse
Affiliation(s)
- Leidy Maritza Sierra-Lopera
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| | - Jose Edgar Zapata-Montoya
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| |
Collapse
|
16
|
Ho YY, Lu HK, Lim ZFS, Lim HW, Ho YS, Ng SK. Applications and analysis of hydrolysates in animal cell culture. BIORESOUR BIOPROCESS 2021; 8:93. [PMID: 34603939 PMCID: PMC8476327 DOI: 10.1186/s40643-021-00443-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses in biological research to its current importance in the biopharmaceutical industry, many types of culture media were developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of animal cells economically has become the ultimate goal in the field of biomanufacturing. Serum serves as a source of amino acids, lipids, proteins and most importantly growth factors and hormones, which are essential for many cell types. However, the use of serum is unfavorable due to its high price tag, increased lot-to-lot variations and potential risk of microbial contamination. Efforts are progressively being made to replace serum with recombinant proteins such as growth factors, cytokines and hormones, as well as supplementation with lipids, vitamins, trace elements and hydrolysates. While hydrolysates are more complex, they provide a diverse source of nutrients to animal cells, with potential beneficial effects beyond the nutritional value. In this review, we discuss the use of hydrolysates in animal cell culture and briefly cover the composition of hydrolysates, mode of action and potential contaminants with some perspectives on its potential role in animal cell culture media formulations in the future.
Collapse
Affiliation(s)
- Yin Ying Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Kim Lu
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Zhi Feng Sherman Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Wei Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Ying Swan Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Say Kong Ng
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| |
Collapse
|
17
|
Kudo S, Nakashima S. Water retention capabilities of collagen, gelatin and peptide as studied by IR/QCM/RH system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118619. [PMID: 32622049 DOI: 10.1016/j.saa.2020.118619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, water retention properties of triple helix collagen, gelatin (separated single chains) and peptide (broken peptide fragments) were studied by using IR micro-spectroscopy equipped with a relative humidity (RH) control system and quartz crystal microbalance (QCM). Adsorbed water ratios (wt%) are found to be in the order of collagen, gelatin and peptide (at about RH = 60%, 22 wt% for collagen, 14 wt% for gelatin and 9 wt% for peptide). Free water molecules with longer H bonds are the major adsorbed water species for collagen, gelatin and peptide. IR band shifts and changes in normalized band areas of functional groups are generally larger for collagen than gelatin and peptide, indicating larger interactions of water molecules with functional groups such as aliphatic CH2, CH3, amides, COO- and C-O for collagen. Relations between normalized band areas show that water molecules are interacting with aliphatic CH species and C-O bonds of collagen. Since the fibril structures of collagen triple helices are reported to be cross-linked by sugars, water molecules can be attracted to polar C-O bonds of sugars linking collagen triple helices in fibrils and they are interacting with adjacent aliphatic CH side chains on the surface of fibrils.
Collapse
Affiliation(s)
- Sachie Kudo
- Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Taki Chemical Co., Ltd., 346 Miyanishi, Harima-cho, Kako-gun, Hyogo 675-0145, Japan
| | - Satoru Nakashima
- Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Faculty of Environmental and Urban Engineering, Kansai University, Yamate-cho 3-3-35, Suita-shi, Osaka 564-8680, Japan; Research Institute for Natural Environment, Science and Technology (RINEST), Tarumi-cho 3-6-32 Maison Esaka 1F, Suita-shi, Osaka 564-0062, Japan.
| |
Collapse
|
18
|
Taghizadeh MS, Niazi A, Moghadam A, Afsharifar AR. The potential application of the protein hydrolysates of three medicinal plants: cytotoxicity and functional properties. J Food Sci 2020; 85:3160-3167. [DOI: 10.1111/1750-3841.15379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology Shiraz University Shiraz Iran
| | - Ali Moghadam
- Institute of Biotechnology Shiraz University Shiraz Iran
| | | |
Collapse
|
19
|
Ab Aziz NA, Salim N, Zarei M, Saari N, Yusoff FM. Extraction, anti-tyrosinase, and antioxidant activities of the collagen hydrolysate derived from Rhopilema hispidum. Prep Biochem Biotechnol 2020; 51:44-53. [PMID: 32701046 DOI: 10.1080/10826068.2020.1789991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study was conducted to determine anti-tyrosinase and antioxidant activities of the extracted collagen hydrolysate (CH) derived from Malaysian jellyfish, Rhopilema hispidum. Collagen was extracted using 1:1 (w:v) 0.1 M NaOH solution at temperature 25 °C for 48 hr followed by treatment of 1:2 (w:v) distilled water for another 24 hr and freeze-dried. The extracted collagen was hydrolyzed using papain at optimum temperature, pH and enzyme/substrate ratio [E/S] of 60 °C, 7.0 and 1:50, respectively. CH was found to exhibit tyrosinase inhibitory activity, DPPH radical scavenging and metal ion-chelating assays up to 64, 28, and 83%, respectively, after 8 hr of hydrolysis process. The molecular weight of CH was found <10 kDa consisting of mainly Gly (19.219%), Glu (10.428%), and Arg (8.848%). The UV-visible spectrum analysis showed a major and minor peak at 218 and 276 nm, accordingly. The FTIR spectroscopy confirmed the amide groups in CH. The SEM images demonstrated spongy and porous structure of CH. In the cytotoxicity study, CH has no cytotoxicity against mouse embryonic 3T3 fibroblast cell line with IC50 value >500 µg/ml. Results revealed that the CH generated from this study has a potential to be developed as active ingredient in cosmeceutical application.
Collapse
Affiliation(s)
- Noor Atikah Ab Aziz
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, Faculty of Applied Sciences, School of Industrial Technology, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
20
|
Al Khawli F, Martí-Quijal FJ, Ferrer E, Ruiz MJ, Berrada H, Gavahian M, Barba FJ, de la Fuente B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 92:1-33. [PMID: 32402442 DOI: 10.1016/bs.afnr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Underutilized marine resources (e.g., algae, fish, and shellfish processing by-products), as sustainable alternatives to livestock protein and interesting sources of bioactive compounds, have attracted the attention of the researchers. Aquatic products processing industries are growing globally and producing huge amounts of by-products that often discarded as waste. However, recent studies pointed out that marine waste contains several valuable components including high-quality proteins, lipids, minerals, vitamins, enzymes, and bioactive compounds that can be used against cancer and some cardiovascular disorders. Besides, previously conducted studies on algae have shown the presence of some unique biologically active compounds and valuable proteins. Hence, this chapter points out recent advances in this area of research and discusses the importance of aquaculture and fish processing by-products as alternative sources of proteins and bioactive compounds.
Collapse
Affiliation(s)
- Fadila Al Khawli
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Francisco J Martí-Quijal
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain.
| | - Emilia Ferrer
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - María-José Ruiz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Houda Berrada
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Beatriz de la Fuente
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
21
|
Simple method to obtaining a prolonged-release system of urea based on wheat gluten: development and characterization. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-03074-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|