1
|
Dupouy B, Karpstein T, Häberli C, Cal M, Rottmann M, Mäser P, Keiser J, Elhabiri M, Davioud‐Charvet E. Synthesis of 1,2,3-Triazole-Methyl-Menadione Derivatives: Evaluation of Electrochemical and Antiparasitic Properties against two Blood-Dwelling Parasites. ChemMedChem 2025; 20:e202400731. [PMID: 39676716 PMCID: PMC11911304 DOI: 10.1002/cmdc.202400731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
This study explores the synthesis and evaluation of novel 1,2,3-triazole-methyl-1,4-naphthoquinone hybrids, focusing on their electrochemical properties and antiparasitic efficacies against two human blood-dwelling parasites Plasmodium falciparum and Schistosoma mansoni. Using copper-catalyzed azide-alkyne cycloaddition (CuAAC), a well-established tool in click chemistry, two synthetic routes were assessed to develop α- and β-[triazole-methyl]-menadione derivatives. By optimizing the CuAAC reaction conditions, yields were significantly improved, reaching up to 94 % for key intermediates and resulting in the formation of a library of approximately 30 compounds. Biological evaluation of the compounds in antiparasitic drug assays demonstrated notable antischistosomal potencies, while no significant activity was observed for the same series against P. falciparum parasites. Electrochemical and 'benzylic' oxidation studies confirmed that the active 'benzoyl' metabolite responsible for the antiplasmodial activity of plasmodione cannot be generated. These findings highlight the potential of triazole-linked menadione hybrids as promising early candidates for antischistosomal drug development, and provides insights into structure-activity relationships crucial for future therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| | - Tanja Karpstein
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Cécile Häberli
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Monica Cal
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health InstituteKreuzstrasse 2CH-4123AllschwilSwitzerland
- University of BaselPetersgraben 1CH-4001BaselSwitzerland
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| | - Elisabeth Davioud‐Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA)Team Bio(IN)organic & Medicinal ChemistryUMR7042 CNRS-Université de Strasbourg-Université Haute-AlsaceEuropean School of Chemistry, Polymers and Materials (ECPM)25, rue BecquerelF-67087StrasbourgFrance
| |
Collapse
|
2
|
Dash A, Panda J, Samanta B, Mohapatra S. Advancements in synthetic methodologies and biological applications of lawsone derivatives. Org Biomol Chem 2025; 23:2302-2322. [PMID: 39912761 DOI: 10.1039/d5ob00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
2-Hydroxy-1,4-naphthoquinone, widely recognized as lawsone, is a natural dye obtained from the henna plant (Lawsonia inermis), known for its biological activity and diverse applications in biochemistry and analytical chemistry. As a versatile precursor, it plays a crucial role in synthesizing a wide range of structurally diverse and bioactive molecular scaffolds. This review highlights recent progress in the development of lawsone derivatives, emphasizing their extensive biological activities, such as anticancer, antimicrobial, antioxidant, antimalarial, and metabolic enzyme-targeting activities, as well as their structure-activity relationships. Remarkably, this is the first detailed exploration covering both the biological activities and chemical synthesis of significant lawsone derivatives from 2016 to the present.
Collapse
Affiliation(s)
- Ananya Dash
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Jasmine Panda
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Barsha Samanta
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry, Ravenshaw University, Cuttack-753003, Odisha, India.
| |
Collapse
|
3
|
do Nascimento Martinez L, da Silva MA, Fialho SN, Almeida ML, Dos Santos Ferreira A, de Jesus Gouveia A, do Nascimento WDSP, Dos Santos APDA, Rossi NRDLP, de Medeiros JF, Araújo NF, de Santana QLO, Kaiser CR, Ferreira SB, da Silva Araujo M, Teles CBG. In vitro and in silico evaluation of synthetic compounds derived from bi-triazoles against asexual and sexual forms of Plasmodium falciparum. Malar J 2025; 24:74. [PMID: 40038735 DOI: 10.1186/s12936-025-05297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/15/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Despite advances in malaria chemotherapy, the disease continues to claim thousands of lives annually. Addressing this issue requires the discovery of new compounds to counteract resistance threatening the current therapeutic arsenal. In this context, bi-triazoles are substances with diverse biological activities, showing promise as lead compound to fight malaria. Triazoles are heterocyclic structures composed of five members, including three nitrogen atoms and two double bonds. Bi-triazoles, the focus of this study, are derivatives of triazoles consisting of two triazole rings (nitrogen heterocyclic) with isolated nuclei lacking a spacer and two substituents at each end. The goal of the present study was to assess the in vitro and in silico, antimalarial activity of bi-triazole compounds 14c, 14d, 13c, and 13d against asexual and sexual forms of Plasmodium falciparum. METHODS For in silico predictions, the software OSIRIS, Molinspiration, and ADMETlab were employed. To determine the 50% inhibitory concentration (IC50) on the asexual forms, the W2 clone was used, while the strain NF54 was used to assess inhibition of sexual forms. Cytotoxicity was evaluated using the HepG2 cell line, and haemolysis tests were conducted. Additionally, the selectivity index (SI) of each compound was calculated. RESULTS In silico analyses of physicochemical properties revealed that all compounds have favorable potential for drug development. Pharmacokinetics predictions also provided important, novel insights into this chemical class. Antimalarial activity tests showed that compounds 14d and 13d exhibited promising activity, with IC50 values of 3.1 and 4.4 µM, respectively. Antimalarial activity of compounds 14d and 13d may be related to the presence of methyl acetate in substituent R2 conjugated to the bi-triazole. None of the compounds demonstrated cytotoxic or haemolytic activity, with SI values above 51 for the three most active compounds, highlighting their selectivity. For the sexual forms, compounds 14c and 14d were classified as having a high potential to block malaria transmission. CONCLUSION Overall, the in vitro and in silico results showed that bi-triazole compounds may guide new biological investigation for malaria, enabling the identification and development of more active and selective antimalarial agents.
Collapse
Affiliation(s)
- Leandro do Nascimento Martinez
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil.
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil.
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil.
| | - Minelly Azevedo da Silva
- Instituto Federal de Educação, Ciência e Tecnologia de Rondônia - IFRO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Saara Neri Fialho
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Marcinete Latorre Almeida
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Amália Dos Santos Ferreira
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Aurileya de Jesus Gouveia
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
| | - Welington da Silva Paula do Nascimento
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | | | | | - Jansen Fernandes de Medeiros
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Plataforma de Infecção de Vetores da Malária (PIVEM/ Laboratório de Entomologia, Fundação Oswaldo Cruz, FIOCRUZ, UnidadeRondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| | - Natalie Ferreira Araújo
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Quelli Larissa Oliveira de Santana
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Carlos Roland Kaiser
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB - Laboratório de Síntese Orgânica e Prospecção Biológica, InstitutodeQuímica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Maisa da Silva Araujo
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
- Plataforma de Infecção de Vetores da Malária (PIVEM/ Laboratório de Entomologia, Fundação Oswaldo Cruz, FIOCRUZ, UnidadeRondônia, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| | - Carolina Bioni Garcia Teles
- Plataforma de Bioensaios de Malária E Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil
- Programa de Pós-Graduação Em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Centro Universitário São Lucas -PVH/Afya, Porto Velho, RO, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Porto Velho, RO, Brazil
| |
Collapse
|
4
|
Sharma M, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 2: Non-DSM compounds. Bioorg Chem 2024; 153:107754. [PMID: 39241585 DOI: 10.1016/j.bioorg.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Malaria remains a severe global health concern, with 249 million cases reported in 2022, according to the World Health Organization (WHO) [1]. PfDHODH is an essential enzyme in malaria parasites that helps to synthesize certain building blocks for their growth and development. It has been confirmed that targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme could lead to new and effective antimalarial drugs. Inhibitors of PfDHODH have shown potential for slowing down parasite growth during both the blood and liver stages. Over the last two decades, many species selective PfDHODH inhibitors have been designed, including DSM compounds and other non-DSM compounds. In the first chapter [2] of this review, we have reviewed all synthetic schemes and structure-activity relationship (SAR) studies of DSM compounds. In this second chapter, we have compiled all the other non-DSM PfDHODH inhibitors based on dihydrothiophenones, thiazoles, hydroxyazoles, and N-alkyl-thiophene-2-carboxamides. The review not only offers an insightful overview of the synthetic methods employed but also explores into alternative routes and innovative strategies involving different catalysts and chemical reagents. A critical aspect covered in the review is the SAR studies, which provide a comprehensive understanding of how structural modifications impact the efficacy of PfDHODH inhibitors and challenges related to the discovery of PfDHODH inhibitors. This information is invaluable for scientists engaged in the development of new antimalarial drugs, offering insights into the most promising scaffolds and their synthetic techniques.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
5
|
Arafa FM, Hezema NN, Aljuhani A, Aouad MR, Hagar M, Zakaria A, Rezki N, Shaaban MM, Salam SAA. Isatin-1,2,3-triazole derivatives: Synthesis, molecular docking and evaluation against acute experimental toxoplasmosis. Acta Trop 2024; 260:107471. [PMID: 39542154 DOI: 10.1016/j.actatropica.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Toxoplasmosis remains a challenge for both public health and animal husbandry which created a constant demand to develop novel compounds using innovative methods. To join this relentless quest for an ideal chemotherapeutic agent, herein, we developed newly synthesized isatin-1,2,3-triazole derivatives. Three compounds (5a, 5b and 5c) were synthesized, characterized, loaded on chitosan nanoparticles (CNPs) and then evaluated accordingly. Initially, a molecular docking study was carried out which revealed the effective interaction with the target enzymes; purine nucleoside phosphorylase (PNPase) and T. gondii calcium-dependent protein kinase-1 (TgCDPK1). This was further substantiated by in vivo evaluation of the three compounds (5a-c) and their nanoformulae (5a-CNPs, 5b-CNPs, and 5c-CNPs) against acute Toxoplasma gondii infection in murine model. It is worthy of note that all tested compounds and their nanoformulae produced a statistically significant reduction of parasite burden in both peritoneal fluid and liver impression smear and profound ultrastructural alterations, detected by scanning electron microscopy, compared to the infected non-treated control. The nanoformula 5c-CNPs yielded the most outstanding results with the highest tachyzoite reduction percentage in both peritoneal fluid (98.1%) and liver impression smear (95.3%). Furthermore, the serum levels of liver enzymes (aspartate transaminase (AST) and alanine transaminase (ALT), and renal function tests (urea and creatinine) in mice were within normal limits which makes them more appealing candidates with proven safety. To the best of our knowledge, the present work is the first in silico and in vivo study proving the anti-Toxoplasma effect of isatin-1,2,3- triazoles which paves the way for further development of isatin and triazole-based leads for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Fadwa M Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt.
| | - Nehal N Hezema
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt
| | - Ateyatallah Aljuhani
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed R Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt; Department of Chemistry, Faculty of Advanced Basic Sciences, Alamein International University, Alamein City, Matrouh, Egypt
| | - Ahmed Zakaria
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Sara A Abdel Salam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt
| |
Collapse
|
6
|
Shekhar, Chowdhary S, Mosnier J, Fonta I, Pradines B, Kumar V. Design, synthesis and mechanistic insights into triclosan derived dimers as potential anti-plasmodials. RSC Med Chem 2024:d4md00494a. [PMID: 39464649 PMCID: PMC11503656 DOI: 10.1039/d4md00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
In pursuit of novel anti-plasmodial agents, a library of triclosan-based dimers both with and without a 1H-1,2,3 triazole core were designed and synthesized in order to achieve a multitargeted approach. In vitro assessment against chloroquine-susceptible (3D7) and resistant (W2) P. falciparum strains identified that two of the synthesized dimers containing triazole were the most potent in the series. The most potent of the synthesized compounds exhibited IC50 values of 9.27 and 12.09 μM against the CQ-resistant (W2) and CQ-susceptible (3D7) strains of P. falciparum, with an RI of 0.77, suggesting little or no cross-resistance with CQ. Heme binding and molecular modelling studies revealed the most promising scaffold as a dual inhibitor for hemozoin formation and a P. falciparum chloroquine resistance transporter (PfCRT), respectively. In silico studies of the most potent compound revealed that it shows better binding affinity with PfACP and PfCRT compared to TCS. To the best of our knowledge, this is the first report of triclosan-based compounds demonstrating promising heme-inhibition behaviour, with binding values comparable to those of chloroquine (CQ).
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| |
Collapse
|
7
|
Mhetre UV, Haval NB, Bondle GM, Rathod SS, Choudhari PB, Kumari J, Sriram D, Haval KP. Design, synthesis and molecular docking study of novel triazole-quinazolinone hybrids as antimalarial and antitubercular agents. Bioorg Med Chem Lett 2024; 108:129800. [PMID: 38763480 DOI: 10.1016/j.bmcl.2024.129800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
In a quest to discover new antimalarial and antitubercular drugs, we have designed and synthesized a series of novel triazole-quinazolinone hybrids. The in vitro screening of the triazole-quinazolinone hybrid entities against the plasmodium species P. falciparum offered potent antimalarial molecules 6c, 6d, 6f, 6g, 6j & 6k owing comparable activity to the reference drugs. Furthermore, the target compounds were evaluated in vitro against Mycobacterium tuberculosis (MTB) H37Rv strain. Among the screened compounds, 6c, 6d and 6l were found to be the most active molecules with a MIC values of 19.57-40.68 μM. The cytotoxicity of the most active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed. The computational study including drug likeness and ADMET profiling, DFT, and molecular docking study was done to explore the features of target molecules. The compounds 6a, 6g, and 6k exhibited highest binding affinity of -10.3 kcal/mol with docked molecular targets from M. tuberculosis. Molecular docking study indicates that all the molecules are binding to the falcipain 2 protease (PDB: 6SSZ) of the P. falciparum. Our findings indicated that these new triazole-quinazolinone hybrids may be considered hit molecules for further optimization studies.
Collapse
Affiliation(s)
- Udhav V Mhetre
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Nitin B Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| | - Giribala M Bondle
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| | - Sanket S Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Prafulla B Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur 416013, MS, India
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Kishan P Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India.
| |
Collapse
|
8
|
Haidar S, Amesty Á, Oramas-Royo S, Götz C, El-Awaad E, Kaiser J, Bödecker S, Arnold A, Aichele D, Amaro-Luis JM, Estévez-Braun A, Jose J. 1,2,3-Triazole-totarol conjugates as potent PIP5K1α lipid kinase inhibitors. Bioorg Med Chem 2024; 105:117727. [PMID: 38669736 DOI: 10.1016/j.bmc.2024.117727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The human phosphatidylinositol 4-phosphate 5-kinase type I α (hPIP5K1α) plays a key role in the development of prostate cancer. In this work, seventeen derivatives of the natural diterpene totarol were prepared by copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reaction of the correspondingO-propargylated totarol with aryl or alkyl azides and screened for their inhibitory activities toward hPIP5K1α. Five compounds, 3a, 3e, 3f, 3i, and 3r, strongly inhibited the enzyme activity with IC50 values of 1.44, 0.46, 1.02, 0.79, and 3.65 µM, respectively, with the most potent inhibitor 3e 13-[(1-(3-nitrophenyl)triazol-4yl)methoxy]-totara-8,11,13-triene). These compounds were evaluated on their antiproliferative effects in a panel of prostate cancer cell lines. Compound 3r inhibited the proliferation of LNCaP, PC3 and DU145 cells at 20 µM, strongly, but also has strong cytotoxic effects on all tested cells.
Collapse
Affiliation(s)
- Samer Haidar
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany; Faculty of Pharmacy, 17 April Street, Damascus University, Damascus 9411, Syria
| | - Ángel Amesty
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain
| | - Sandra Oramas-Royo
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain
| | - Claudia Götz
- Universität des Saarlandes - Campus Homburg, Medizinische Biochemie und Molekularbiologie, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany
| | - Ehab El-Awaad
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany; Department of Pharmacology, Faculty of Medicine, Assiut University, 71515 Egypt
| | - Jana Kaiser
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Sarah Bödecker
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Amelie Arnold
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Dagmar Aichele
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany
| | - Juan M Amaro-Luis
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain; Departamento de Química, Universidad de los Andes (Mérida), 5101, Venezuela
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez N° 2, 38206, La Laguna, Tenerife, Spain.
| | - Joachim Jose
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstr. 48, 48149 Münster, Germany.
| |
Collapse
|
9
|
Irfan I, Uddin A, Jain R, Gupta A, Gupta S, Napoleon JV, Hussain A, Alajmi MF, Joshi MC, Hasan P, Kumar P, Abid M, Singh S. Biological evaluation of novel side chain containing CQTrICh-analogs as antimalarials and their development as PfCDPK1 kinase inhibitors. Heliyon 2024; 10:e25077. [PMID: 38327451 PMCID: PMC10847618 DOI: 10.1016/j.heliyon.2024.e25077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The rapid emergence of resistance to existing frontline antimalarial drugs emphasizes a need for the development of target-oriented molecules with novel modes of action. Given the importance of a plant-like Calcium-Dependent Protein Kinase 1 (PfCDPK1) as a stand-alone multistage signalling regulator of P. falciparum, we designed and synthesized 7-chloroquinoline-indole-chalcones tethered with a triazole (CQTrICh-analogs 7 (a-s) and 9) directed towards PfCDPK1. This was accomplished by reacting substituted 1-phenyl-3-(1-(prop-2-yn-1-yl)-1H-indol-3-yl) prop-2-en-1-one and 1-(prop-2-yn-1-yl)-1H-indole-3-carbaldehyde with 4-azido-7-chloroquinoline, respectively via a 'click' reaction. The selected CQTrICh-analogs: 7l and 7r inhibited the growth of chloroquine-sensitive 3D7 strain and -resistant RKL-9 isolate of Plasmodium falciparum, with IC50 values of 2.4 μM & 1.8 μM (7l), and 3.5 μM & 2.7 μM (7r), respectively, and showed no apparent hemolytic activity and cytotoxicity in mammalian cells. Intra-erythrocytic progression studies revealed that the active hybrids: 7l and 7r are effective against the mature stages of the parasite. 7l and 7r were found to stably interact with the catalytically active ATP-binding pocket of PfCDPK1 via energetically favourable H-bonds. The interaction was confirmed in vitro by microscale thermophoresis and kinase assays, which demonstrated that the active hybrids interact with PfCDPK1 and inhibit its kinase activity which is presumably responsible for the parasite growth inhibition. Interestingly, 7l and 7r showed no inhibitory effect on the human kinases, indicating their selectivity for the parasite kinase. We report the antiplasmodial potential of novel kinase-targeting bio-conjugates, a step towards developing pan-kinase inhibitors which is a prerequisite for multistage anti-malarial protection.
Collapse
Affiliation(s)
- Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mukesh C. Joshi
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Phool Hasan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Triazole hybrid compounds: A new frontier in malaria treatment. Eur J Med Chem 2023; 259:115694. [PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
11
|
Abdul Rahman SM, Bhatti JS, Thareja S, Monga V. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds. Eur J Med Chem 2023; 259:115699. [PMID: 37542987 DOI: 10.1016/j.ejmech.2023.115699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Malaria is among one of the most devastating and deadliest parasitic disease in the world claiming millions of lives every year around the globe. It is a mosquito-borne infectious disease caused by various species of the parasitic protozoan of the genus Plasmodium. The indiscriminate exploitation of the clinically used antimalarial drugs led to the development of various drug-resistant and multidrug-resistant strains of plasmodium which severely reduces the therapeutic effectiveness of most frontline medicines. Therefore, there is urgent need to develop novel structural classes of antimalarial agents acting with unique mechanism of action(s). In this context, design and development of hybrid molecules containing pharmacophoric features of different lead molecules in a single entity represents a unique strategy for the development of next-generation antimalarial drugs. Research efforts by the scientific community over the past few years has led to the identification and development of several heterocyclic small molecules as antimalarial agents with high potency, less toxicity and desired efficacy. Triazole derivatives have become indispensable units in the medicinal chemistry due to their diverse spectrum of biological profiles and many triazole based hybrids and conjugates have demonstrated potential in vitro and in vivo antimalarial activities. The manuscript compiled recent developments in the medicinal chemistry of triazole based small heterocyclic molecules as antimalarial agents and discusses various reported biologically active compounds to lay the groundwork for the rationale design and discovery of triazole based antimalarial compounds. The article emphasised on biological activities, structure activity relationships, and molecular docking studies of various triazole based hybrids with heterocycles such as quinoline, artemisinins, naphthyl, naphthoquinone, etc. as potential antimalarial agents which could act on the dual stage and multi stage of the parasitic life cycle.
Collapse
Affiliation(s)
- S Maheen Abdul Rahman
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
12
|
Costa Souza RM, Montenegro Pimentel LML, Ferreira LKM, Pereira VRA, Santos ACDS, Dantas WM, Silva CJO, De Medeiros Brito RM, Andrade JL, De Andrade-Neto VF, Fujiwara RT, Bueno LL, Silva Junior VA, Pena L, Camara CA, Rathi B, De Oliveira RN. Biological activity of 1,2,3-triazole-2-amino-1,4-naphthoquinone derivatives and their evaluation as therapeutic strategy for malaria control. Eur J Med Chem 2023; 255:115400. [PMID: 37130472 DOI: 10.1016/j.ejmech.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Malaria can be caused by several Plasmodium species and the development of an effective vaccine is challenging. Currently, the most effective tool to control the disease is the administration of specific chemotherapy; however, resistance to the frontline antimalarials is one of the major problems in malaria control and thus the development of new drugs becomes urgent. The study presented here sought to evaluate the antimalarial activities of compounds derived from 2-amino-1,4-naphthoquinones containing 1,2,3-triazole using in vivo and in vitro models. 1H-1,2,3-Triazole 2-amino-1,4-naphthoquinone derivatives were synthesized and evaluated for antimalarial activity in vitro, using P. falciparum W2 chloroquine (CQ) resistant strain and in vivo using the murine-P. berghei ANKA strain. Acute toxicity was determined as established by the OECD (2001). Cytotoxicity was evaluated against HepG2 and Vero mammalian cell lines. Transmission electron microscopy of the Plasmodium falciparum trophozoite (early and late stages) was used to evaluate the action of compounds derived at ultra-structural level. The compounds displayed low cytotoxicity CC50 > 100 μM, neither did they cause hemolysis at the tested doses and nor the signs of toxicity in the in vivo acute toxicity test. Among the five compounds tested, one showed IC50 values in submicromolar range of 0.8 μM. Compounds 7, 8 and 11 showed IC50 values < 5 μM, and selectivity index (SI) ranging from 6.8 to 343 for HepG2, and from 13.7 to 494.8 for Vero cells. Compounds 8 and 11 were partially active against P. berghei induced parasitemia in vivo. Analysis of the ultrastructural changes associated with the treatment of these two compounds, showed trophozoites with completely degraded cytoplasm, loss of membrane integrity, organelles in the decomposition stage and possible food vacuole deterioration. Our results indicated that compounds 8 and 11 may be considered hit molecules for antimalarial drug discovery platform and deserve further optimization studies.
Collapse
Affiliation(s)
- Renata Maria Costa Souza
- Department of Immunology, Laboratory of Immunoepidemiology of Aggeu Magalhães Institute, Fiocruz-PE, Recife, Pernambuco, Brazil; Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Valéria Rêgo Alves Pereira
- Department of Immunology, Laboratory of Immunoparasitology, Aggeu Magalhães Institute, Fiocruz-PE, Recife, Pernambuco, Brazil
| | - Aline Caroline Da Silva Santos
- Department of Immunology, Laboratory of Immunoparasitology, Aggeu Magalhães Institute, Fiocruz-PE, Recife, Pernambuco, Brazil
| | - Willyenne Marília Dantas
- Department of Virology and Experimental Therapy Aggeu Magalhães Institute - Fiocruz-PE, Recife, Pernambuco, Brazil; Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Carla Jasmine Oliveira Silva
- Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ramayana Morais De Medeiros Brito
- Department of Microbiology and Parasitology, Laboratory of Malaria and Toxoplasmosis Biology, LaBMAT/DMP/CB, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Department of Parasitology, Laboratory of Immunobiology and Parasites Control, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Lucas Andrade
- Department of Microbiology and Parasitology, Laboratory of Malaria and Toxoplasmosis Biology, LaBMAT/DMP/CB, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Valter Ferreira De Andrade-Neto
- Department of Microbiology and Parasitology, Laboratory of Malaria and Toxoplasmosis Biology, LaBMAT/DMP/CB, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Laboratory of Immunobiology and Parasites Control, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Department of Parasitology, Laboratory of Immunobiology and Parasites Control, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lindomar Pena
- Department of Virology and Experimental Therapy Aggeu Magalhães Institute - Fiocruz-PE, Recife, Pernambuco, Brazil
| | - Celso Amorim Camara
- Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Ronaldo Nascimento De Oliveira
- Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
13
|
Navarro-Tovar G, Vega-Rodríguez S, Leyva E, Loredo-Carrillo S, de Loera D, López-López LI. The Relevance and Insights on 1,4-Naphthoquinones as Antimicrobial and Antitumoral Molecules: A Systematic Review. Pharmaceuticals (Basel) 2023; 16:ph16040496. [PMID: 37111253 PMCID: PMC10144089 DOI: 10.3390/ph16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Natural product derivatives are essential in searching for compounds with important chemical, biological, and medical applications. Naphthoquinones are secondary metabolites found in plants and are used in traditional medicine to treat diverse human diseases. Considering this, the synthesis of naphthoquinone derivatives has been explored to contain compounds with potential biological activity. It has been reported that the chemical modification of naphthoquinones improves their pharmacological properties by introducing amines, amino acids, furan, pyran, pyrazole, triazole, indole, among other chemical groups. In this systematic review, we summarized the preparation of nitrogen naphthoquinones derivatives and discussed their biological effect associated with redox properties and other mechanisms. Preclinical evaluation of antibacterial and/or antitumoral naphthoquinones derivatives is included because cancer is a worldwide health problem, and there is a lack of effective drugs against multidrug-resistant bacteria. The information presented herein indicates that naphthoquinone derivatives could be considered for further studies to provide drugs efficient in treating cancer and multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Gabriela Navarro-Tovar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico City 03940, Mexico
| | - Sarai Vega-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Silvia Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78210, Mexico; (G.N.-T.); (S.V.-R.); (E.L.); (S.L.-C.)
- Correspondence: (D.d.L.); (L.I.L.-L.)
| | - Lluvia Itzel López-López
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luís Potosí 78377, Mexico
- Correspondence: (D.d.L.); (L.I.L.-L.)
| |
Collapse
|
14
|
The Use of Zidovudine Pharmacophore in Multi-Target-Directed Ligands for AIDS Therapy. Molecules 2022; 27:molecules27238502. [PMID: 36500608 PMCID: PMC9738661 DOI: 10.3390/molecules27238502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
The concept of polypharmacology embraces multiple drugs combined in a therapeutic regimen (drug combination or cocktail), fixed dose combinations (FDCs), and a single drug that binds to different targets (multi-target drug). A polypharmacology approach is widely applied in the treatment of acquired immunodeficiency syndrome (AIDS), providing life-saving therapies for millions of people living with HIV. Despite the success in viral load suppression and patient survival of combined antiretroviral therapy (cART), the development of new drugs has become imperative, owing to the emergence of resistant strains and poor adherence to cART. 3'-azido-2',3'-dideoxythymidine, also known as azidothymidine or zidovudine (AZT), is a widely applied starting scaffold in the search for new compounds, due to its good antiretroviral activity. Through the medicinal chemistry tool of molecular hybridization, AZT has been included in the structure of several compounds allowing for the development of multi-target-directed ligands (MTDLs) as antiretrovirals. This review aims to systematically explore and critically discuss AZT-based compounds as potential MTDLs for the treatment of AIDS. The review findings allowed us to conclude that: (i) AZT hybrids are still worth exploring, as they may provide highly active compounds targeting different steps of the HIV-1 replication cycle; (ii) AZT is a good starting point for the preparation of co-drugs with enhanced cell permeability.
Collapse
|
15
|
Şahin İ. SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASES CONTAINING 1,2,3-TRIAZOLE UNIT: PHOTOPHYSICAL AND ACETYL CHOLINE (AChE) INHIBITORY PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Koumpoura C, Nguyen M, Bijani C, Vendier L, Salina EG, Buroni S, Degiacomi G, Cojean S, Loiseau PM, Benoit-Vical F, García-Sosa AT, Baltas M. Design of Anti-infectious Agents from Lawsone in a Three-Component Reaction with Aldehydes and Isocyanides. ACS OMEGA 2022; 7:35635-35655. [PMID: 36249398 PMCID: PMC9558256 DOI: 10.1021/acsomega.2c03421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The first effective synthetic approach to naphthofuroquinones via a reaction involving lawsone, various aldehydes, and three isocyanides under microwave irradiation afforded derivatives in moderate to good yields. In addition, for less-reactive aldehydes, two naphtho-enaminodione quinones were obtained for the first time, as result of condensation between lawsone and isocyanides. X-ray structure determination for 9 and 2D-NMR spectra of 28 confirmed the obtained structures. All compounds were evaluated for their anti-infectious activities against Plasmodium falciparum, Leishmania donovani, and Mycobacterium tuberculosis. Among the naphthofuroquinone series, 17 exhibited comparatively the best activity against P. falciparum (IC50 = 2.5 μM) and M. tuberculosis (MIC = 9 μM) with better (P. falciparum) or equivalent (M. tuberculosis) values to already-known naphthofuroquinone compounds. Among the two naphtho-enaminodione quinones, 28 exhibited a moderate activity against P. falciparum with a good selectivity index (SI > 36) while also a very high potency against L. donovani (IC50 = 3.5 μM and SI > 28), rendering it very competitive to the reference drug miltefosine. All compounds were studied through molecular modeling on their potential targets for P. falciparum, Pfbc1, and PfDHODH, where 17 showed the most favorable interactions.
Collapse
Affiliation(s)
- Christina
L. Koumpoura
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Michel Nguyen
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Christian Bijani
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Laure Vendier
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Elena G. Salina
- Bach
Institute of Biochemistry, Research Center
of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Silvia Buroni
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Giulia Degiacomi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Sandrine Cojean
- Antiparasite
Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University
Paris-Saclay, Châtenay-Malabry 92290, France
| | - Philippe M. Loiseau
- Antiparasite
Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University
Paris-Saclay, Châtenay-Malabry 92290, France
| | - Françoise Benoit-Vical
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Alfonso T. García-Sosa
- Department
of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Michel Baltas
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| |
Collapse
|
17
|
Scheiber N, Blaser G, Pferschy-Wenzig EM, Kaiser M, Mäser P, Presser A. Efficient Oxidative Dearomatisations of Substituted Phenols Using Hypervalent Iodine (III) Reagents and Antiprotozoal Evaluation of the Resulting Cyclohexadienones against T. b. rhodesiense and P. falciparum Strain NF54. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196559. [PMID: 36235096 PMCID: PMC9573667 DOI: 10.3390/molecules27196559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Quinones and quinols are secondary metabolites of higher plants that are associated with many biological activities. The oxidative dearomatization of phenols induced by hypervalent iodine(III) reagents has proven to be a very useful synthetic approach for the preparation of these compounds, which are also widely used in organic synthesis and medicinal chemistry. Starting from several substituted phenols and naphthols, a series of cyclohexadienone and naphthoquinone derivatives were synthesized using different hypervalent iodine(III) reagents and evaluated for their in vitro antiprotozoal activity. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. We found that benzyl naphthoquinone 5c was the most active and selective molecule against T. brucei rhodesiense (IC50 = 0.08 μM, SI = 275). Furthermore, the antiprotozoal assays revealed no specific effects. In addition, some key physicochemical parameters of the synthesised compounds were calculated.
Collapse
Affiliation(s)
- Nina Scheiber
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Gregor Blaser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Swiss Tropical and Public Health Institute, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Armin Presser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-380-5369
| |
Collapse
|
18
|
Oguike OE, Ugwuishiwu CH, Asogwa CN, Nnadi CO, Obonga WO, Attama AA. Systematic review on the application of machine learning to quantitative structure-activity relationship modeling against Plasmodium falciparum. Mol Divers 2022; 26:3447-3462. [PMID: 35064444 PMCID: PMC8782692 DOI: 10.1007/s11030-022-10380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Malaria accounts for over two million deaths globally. To flatten this curve, there is a need to develop new and high potent drugs against Plasmodium falciparum. Some major challenges include the dearth of suitable animal models for anti-P. falciparum assays, resistance to first-line drugs, lack of vaccines and the complex life cycle of Plasmodium. Gladly, newer approaches to antimalarial drug discovery have emerged due to the release of large datasets by pharmaceutical companies. This review provides insights into these new approaches to drug discovery covering different machine learning tools, which enhance the development of new compounds. It provides a systematic review on the use and prospects of machine learning in predicting, classifying and clustering IC50 values of bioactive compounds against P. falciparum. The authors identified many machine learning tools yet to be applied for this purpose. However, Random Forest and Support Vector Machines have been extensively applied though on a limited dataset of compounds.
Collapse
Affiliation(s)
- Osondu Everestus Oguike
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chikodili Helen Ugwuishiwu
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Caroline Ngozi Asogwa
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Computer Science, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Okeke Nnadi
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria. .,Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Wilfred Ofem Obonga
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Machine Learning Research Group, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.,Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
19
|
Valério Lopes F, Fazza Stroppa PH, Marinho JA, Reis Soares R, de Azevedo Alves L, Capriles Goliatt PVZ, Abramo C, David da Silva A. 1,2,3-Triazole derivatives: synthesis, docking, cytotoxicity analysis and in vivo antimalarial activity. Chem Biol Interact 2021; 350:109688. [PMID: 34627786 DOI: 10.1016/j.cbi.2021.109688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Malaria remains one of the most important parasitic diseases in the world. The multidrug-resistant Plasmodium strains make the treatment currently available for malaria less effective. Therefore, the development of new drugs is necessary to overcome therapy resistance. Triazole derivatives exhibit several biological activities and provide a moiety that is promising from the biological perspective. Due to the structural similarity to NADH, it is believed that triazoles can bind to the active site of the Plasmodium lactate dehydrogenase (pLDH) enzyme. The present work evaluates the antimalarial activity of 1,2,3-triazole derivatives by in silico, in vitro, and in vivo studies. Preliminary in silico ADMET studies of the compounds demonstrated good pharmacokinetic properties. In silico docking analysis against LDH of Plasmodium berghei (PbLDH) showed that all compounds presented interactions with the catalytic residue in the active site and affinity similar to that presented by chloroquine; the most common antimalarial drug. Cytotoxicity and hemolysis by these derivatives were evaluated in vitro. The compounds 1, 2, 5, 8, and 9 proved to be non-cytotoxic in the performed tests. In vivo antimalarial activity was evaluated using mice infected with Plasmodium berghei NK65. The five compounds tested exhibited antimalarial activity until nine days post-infection. The compound 5 showed promising activities, with about 70% parasitemia suppression. Considering the in vitro and in vivo studies, we believe the compound 5 to be the most promising molecule for further studies in antimalarial chemotherapy.
Collapse
Affiliation(s)
- Fernanda Valério Lopes
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Pedro Henrique Fazza Stroppa
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Juliane Aparecida Marinho
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Roberta Reis Soares
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Lara de Azevedo Alves
- Department of Computer Science, Institute of Exact Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila Vanessa Zabala Capriles Goliatt
- Department of Computer Science, Institute of Exact Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Clarice Abramo
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| | - Adilson David da Silva
- Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora - Campus Universitário, CEP, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
20
|
Demidoff FC, de Carvalho LL, Rodrigues Filho EJP, de Souza ALF, Netto CD. Cross-Coupling Reactions with 2-Amino-/Acetylamino-Substituted 3-Iodo-1,4-naphthoquinones: Convenient Synthesis of Novel Alkenyl- and Alkynylnaphthoquinones and Derivatives. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractFunctionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free CuI-mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.
Collapse
|
21
|
Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021; 26:molecules26185711. [PMID: 34577183 PMCID: PMC8467436 DOI: 10.3390/molecules26185711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Despite many efforts, malaria remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by P. falciparum. Over the past decade, new essential pathways have been emerged to fight against malaria. Among them, epigenetic processes and mitochondrial metabolism appear to be important targets. This review will focus on recent evolutions concerning worldwide efforts to conceive, synthesize and evaluate new drug candidates interfering selectively and efficiently with these two targets and pathways. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties on DNA methyltransferases and HDAC’s for epigenetics, and on cytochrome bc1 and dihydroorotate dehydrogenase for mitochondrion.
Collapse
Affiliation(s)
- Christina L. Koumpoura
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | - Anne Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | | | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
- Correspondence:
| |
Collapse
|
22
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
23
|
Kumar S, Khokra SL, Yadav A. Triazole analogues as potential pharmacological agents: a brief review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:106. [PMID: 34056014 PMCID: PMC8148872 DOI: 10.1186/s43094-021-00241-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background A large number of studies have recently reported that, because of their significant biological and pharmacological properties, heterocyclic compounds and their derivatives have attracted a strong interest in medicinal chemistry. The triazole nucleus is one of the most important heterocycles which has a feature of natural products as well as medicinal agents. Heterocyclic nitrogen is abundantly present in most medicinal compounds. The derivatization of triazole ring is based on the phenomenon of bio-isosteres in which substituted the oxygen atom of oxadiazole nucleus with nitrogen triazole analogue. Main text This review focuses on recent synthetic procedure of triazole moiety, which comprises of various pharmacological activities such as antimicrobial, anticonvulsant, anti-inflammatory, analgesic, antitubercular, anthelmintic, antioxidant, antimalarial, antiviral, etc.. Conclusion This review highlights the current status of triazole compounds as different multi-target pharmacological activities. From the literature survey, triazole is the most widely used compound in different potential activities.
Collapse
Affiliation(s)
- Sachin Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| | - Akash Yadav
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana 136119 India
| |
Collapse
|
24
|
Patel OPS, Beteck RM, Legoabe LJ. Antimalarial application of quinones: A recent update. Eur J Med Chem 2020; 210:113084. [PMID: 33333397 DOI: 10.1016/j.ejmech.2020.113084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Atovaquone belongs to a naphthoquinone class of drugs and is used in combination with proguanil (Malarone) for the treatment of acute, uncomplicated malaria caused by Plasmodium falciparum (including chloroquine-resistant P. falciparum/P. vivax). Numerous quinone-derived compounds have attracted considerable attention in the last few decades due to their potential in antimalarial drug discovery. Several semi-synthetic derivatives of natural quinones, synthetic quinones (naphtho-/benzo-quinone, anthraquinones, thiazinoquinones), and quinone-based hybrids were explored for their in vitro and in vivo antimalarial activities. A careful literature survey revealed that this topic has not been compiled as a review article so far. Therefore, we herein summarise the recent discovery (the year 2009-2020) of quinone based antimalarial compounds in chronological order. This compilation would be very useful towards the exploration of novel quinone-derived compounds against malarial parasites with promising efficacy and lesser side effects.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|