1
|
Zannini D, Monteforte M, Gargiulo L, Marino T, Gomez d’Ayala G, Santagata G, Dal Poggetto G. Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control. Polymers (Basel) 2025; 17:659. [PMID: 40076159 PMCID: PMC11902335 DOI: 10.3390/polym17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
In this paper, citrus pomace was used as a source of pectin and polyphenols extracted in one pot solution by microwave-assisted extraction (MAE) and conventional extraction (CE) methods. MAE parameters were optimized to maximize yield and adjust in situ final physicochemical properties of extracted pectins, such as the methylation degree (DM), significantly influencing pectin functionality and application. Citric acid (CA) and acetic acid (Hac) were employed as solvents to mitigate pectin degradation. Extracted pectins were structurally (GPC and FTIR-ATR), morphologically (SEM), and thermally (TGA) characterized. From the reaction batch, the bioactive compounds (AOs) were separated and recovered, and their yield and antioxidant activities were evaluated with a DPPH assay. Moreover, by strategically selecting pH and solvents, this research enabled precise control over the final properties of pectin. The various characterization techniques employed show that the extraction conditions significantly influence the physicochemical and morphological properties of the material. Molecular weight (Mw) values range from 218 kDa to 567 kDa, surface morphology varies from compact/aggregated structures to three-dimensional network-like formations, and the DM spans from 34% (low DM) to 83% (high DM). This highlights a novel approach for predicting and tailoring in situ characteristics of extracted pectin to meet specific application requirements.
Collapse
Affiliation(s)
- Domenico Zannini
- Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC), National Council of Research, Via De Marini 6, 16149 Genova, Italy;
| | - Martina Monteforte
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Luca Gargiulo
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Tiziana Marino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Giovanna Gomez d’Ayala
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials (IPCB), National Council of Research, Via C. Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (L.G.); (T.M.); (G.G.d.); (G.D.P.)
| |
Collapse
|
2
|
Teh JL, Walvekar R, Ho KC, Khalid M. Biolubricants from waste cooking oil: A review of extraction technologies, conversion techniques, and performance enhancement using natural antioxidants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124267. [PMID: 39879924 DOI: 10.1016/j.jenvman.2025.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss. Furthermore, this sustainable approach contributes to SDG 12 and SDG 13 by minimizing waste production and accumulation, thereby mitigating negative environmental impacts and climate change. This critical review addresses existing gaps in the production of biolubricants from WCO and the incorporation of natural antioxidants as versatile additives. It examines and compares various techniques for the extraction, chemical and physical modification, and characterization of WCO-derived biolubricants. Specific methods, including esterification, transesterification, and antioxidant incorporation, are evaluated for their effectiveness in converting WCO into biolubricants. The review also discusses the influence of residual bioactive compounds on oxidative stability and lubricating properties. While vegetable oils demonstrate superior friction-reducing capabilities compared to petroleum-based lubricants, their triglyceride structure often results in poor oxidative stability, limiting their practical applications. Modification strategies and antioxidant inclusion are proposed to enhance this stability. A comprehensive analysis of the physicochemical properties and tribological performance of biolubricants, both pre- and post-processing, is presented. This systematic evaluation of extraction and upgrading methodologies aims to facilitate the development and industrial adoption of sustainable biolubricants.
Collapse
Affiliation(s)
- Jia Leang Teh
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Rashmi Walvekar
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| | - Kah Chun Ho
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
3
|
Zolqadri R, Akbarbaglu Z, Sarabandi K, Peighambardoust SH, Jafari SM, Mousavi Khaneghah A. Techno-functional, antioxidant, and amino acid characterization of hydrolyzed bioactive peptides from coconut ( Cocos nucifera L.) meal protein. Food Funct 2024; 15:11266-11279. [PMID: 39473359 DOI: 10.1039/d4fo02741h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
In this study, the techno-functional characteristics and nutritional value of coconut meal protein (CMP) and the obtained polypeptides by alcalase (H-Alc), trypsin (H-Try), pancreatin (H-Pan), and pepsin (H-pep) were investigated. The degree of hydrolysis was influenced by the enzyme type, where an order of H-Pan (37.5%) > H-Alc (33.2%) > H-Try (29.9%) > H-Pep (23.4%) was observed. Hydrolysates' solubility, emulsifying properties, foaming capacity, water-holding capacity (WHC), and oil-binding capacity (OHC) were substantially improved after hydrolysis. The techno-functional properties of CMP were affected by pH and the enzyme type. H-Pan and H-Pep samples exhibited the highest WHC (6.5 g water per g) and oil-holding capacity (OHC, 7.1 g oil per g). Different groups of functional amino acids, including essential (EAAs), antioxidant (AAAs), hydrophobic (HAAs), negatively-charged (NCAAs), and positively-charged (PCAAs), and the protein efficiency ratio (PER) in hydrolysates were influenced by the type of protease. H-Pan showed the highest antioxidant amino acids (AAAs = 125.3 mg g-1; NCAAs = 261.0 mg g-1) and nutritional value (with EAAs of 295.1 mg g-1; an EAA to total amino acid (TAA) ratio of 35.3% and a PER value of 2.4). Enzymatic hydrolysis, in general, led to a considerable enhancement in the antioxidant activity of hydrolysates compared to that of the primary proteins. Regardless of the type of antioxidant assay, the most enhanced antioxidant capacity was attributed to H-Pan hydrolysates with DPPH, hydroxyl (OH), ABTS+, and nitric oxide (NO) radical scavenging activities of 82.0%, 71.8%, 82.9%, and 49.8%, respectively. However, other hydrolysates did not show significantly different antioxidant activities (P > 0.05).
Collapse
Affiliation(s)
- Roshanak Zolqadri
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran.
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | | | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia
| |
Collapse
|
4
|
Hoyos BE, Johnson JB, Mani JS, Batley RJ, Trotter T, Bhattarai SP, Naiker M. The Effect of Water Stress on Bioactive Compounds in Australian-Grown Black Sesame. PLANTS (BASEL, SWITZERLAND) 2024; 13:793. [PMID: 38592794 PMCID: PMC10974145 DOI: 10.3390/plants13060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Sesame is an emerging crop of interest in Australia and has attracted widespread interest due to the health-benefitting properties of its bioactive compounds, including fatty acids, lignans, and polyphenols. This study aimed to investigate the impact of drought stress on these bioactive compounds, using eleven cultivars of black sesame seeds grown in Australia. Specific varieties responded positively to water deficit (WD) conditions, showing increased levels of TPC, FRAP, CUPRAC, and lignans. Varieties 1, 4, 7, and 12 showed significantly increased FRAP values ranging from 158.02 ± 10.43 to 195.22 ± 9.63 mg TE/100 g DW in the WD treatment compared to the well-watered (WW) treatment, whereas varieties 7, 10, 12, 13, and 18 demonstrated the highest CUPRAC values of all varieties (2584.86 ± 99.68-2969.56 ± 159.72 mg TE/100 g) across both WW and WD conditions, with no significant variations between irrigation regimes. Moreover, lignan contents (sesamin and sesamolin) were higher in varieties 1, 2, 5, and 8 grown in WD conditions. Compared to the optimal unsaturated to saturated fatty acid ratio (Σ UFA/Σ SFA ratio) of 0.45, all sesame genotypes showed superior ratios (ranging between 1.86 and 2.34). Moreover, the ω-6/ω-3 PUFA ratio varied from 33.7-65.5, with lower ratios in varieties 2, 4, 5, 8, and 18 under WD conditions. The high levels of phenolic compounds and healthy fats suggest the potential of black sesame to be incorporated into diets as a functional food. Furthermore, the enhanced phytochemistry of these cultivars in WD conditions is promising for widespread adoption. However, larger trial studies to confirm these findings across different geographic locations and seasons are warranted.
Collapse
Affiliation(s)
- Beatriz E. Hoyos
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Joel B. Johnson
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4067, Australia
| | - Janice S. Mani
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Ryan J. Batley
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
| | - Tieneke Trotter
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| | - Surya P. Bhattarai
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| | - Mani Naiker
- School of Health, Medical & Applied Sciences, CQUniversity Australia, Bruce Hwy, Rockhampton, QLD 4702, Australia; (B.E.H.); (J.S.M.); (R.J.B.); (T.T.); (S.P.B.)
- Institute for Future Farming Systems, CQUniversity Australia, Bundaberg Campus, Bundaberg Central, QLD 4670, Australia
| |
Collapse
|
5
|
Gokulkumar S, Suyambulingam I, Divakaran D, Priyadharshini GS, Aravindh M, Iyyadurai J, Edwards MS, Siengchin S. Facile exfoliation and physicochemical characterization of biomass-based cellulose derived from Lantana aculeata leaves for sustainable environment. Macromol Res 2023; 31:1163-1178. [DOI: 10.1007/s13233-023-00197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 01/06/2025]
|
6
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Ciftcioglu-Gozuacik B, Sen G, Goze S, Ozbey-Unal B, Balcik C, Karagunduz A, Keskinler B. Evaluation of volatile fatty acids and ammonia recovery approach from landfill leachate using pilot-scale mechanical vapor recompression. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118720. [PMID: 37536140 DOI: 10.1016/j.jenvman.2023.118720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Treatment of landfill leachate is still a current problem due to the high treatment costs in addition to the difficulty of meeting the discharge criteria. However, there is a more important issue that should be underlined; it is also valuable compounds that leachate contains. Conventional methods used for treatment of leachate such as membrane filtration, advanced oxidation processes, biological processes and their combinations have largely focused on treatment. However, the recovery of ammonia and volatile organic acids (VFA) in leachate is a promising approach both to overcome high treatment costs and to sustainably manage leachate. In this study, leachate treatment potential was investigated by mechanical vapor recompression (MVR) process, which offers an operational opportunity to recover high value-added products from leachate while providing an effective treatment for wastewater. Optimum operating conditions for the pilot-scale MVR process have been determined by laboratory-scale studies. VFAs were recovered as organic acid salts from the pilot-scale MVR distillate, while ammonia recovery was accomplished as ammonium sulfate from a highly contaminated concentrate stream. VFA and ammonia recovery rates were 89% and 99%, respectively. The treatment cost of leachate with MVR process was calculated according to the data obtained in pilot scale MVR studies considering the operating cost, chemical cost and economical contribution of value-added products. The results showed that the integrated MVR-crystallization process, all treatment costs are covered, with a net gain of 3.8 USD/m3. Consequently, MVR integrated crystallization process offers an economical and sustainable solution for the treatment of leachate by recovering valuable products.
Collapse
Affiliation(s)
| | - Gulisah Sen
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Siyar Goze
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Bahar Ozbey-Unal
- Institute of Earth and Marine Sciences, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Cigdem Balcik
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Bulent Keskinler
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, 41400, Turkey.
| |
Collapse
|
8
|
Sharma Y, Mishra R, Kaur A, Bharadwaj M, Bala K. Effective seed cake extract of O. sanctum inducing the p53 dependent apoptotic pathway in oral cancer cells. Drug Dev Ind Pharm 2023; 49:667-679. [PMID: 37824711 DOI: 10.1080/03639045.2023.2270063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Present study was to observe the therapeutic aspects of seed cake extracts of Ocimum sanctum against the oral cancer cell line with the activation of p53 apoptotic pathway. METHOD Seed cake extracts were characterized using GC-MS analysis. Cytotoxic activity was observed on KB cells and L929 cell through MTT assay and scratch assay. Antioxidant activity on KB cells were determined using enzymatic and non enzyme content in the treated cells. Chick chorioallantoic membrane (CAM) was established to check the presence of blood vessel formation and neuvasculature pattern in the treated fertilized eggs. DNA fragmentation and gene expression studies were also determined in the treated cells to check the upregulation of apoptotic pathways. RESULTS GC-MS analysis confirmed alkaloids, phenols, and many. The cytotoxic activity showed maximum antiproliferative potential with aqueous extract, whereas no cytotoxic effect was observed on L929 cells. The ethanolic and aqueous extract has shown a greater SI value. Scratch assay has signified that aqueous extract has a lower migration rate of KB cells. Aqueous extract showed maximum enzymatic activity and lower malondialdehyde content in cells treated with ethanolic extract. CAM model confirmed that eggs treated with aqueous extract has shown inhibition of vasculature pattern and dissolutions of blood vessels. DNA Fragmentation and Gene expression studies confirmed maximum fold in the KB cell treated with an aqueous extract of seed cake leading to activation of p53 dependent apoptotic pathway. CONCLUSION The potent therapeutic properties of seed cake extracts have been proven, and they can be used as herbal treatments to prevent oral cancer.
Collapse
Affiliation(s)
- Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rupa Mishra
- Amity Institute of Molecular Medicine and Stem cell Research, Amity University Noida, Noida, India
| | - Amritpal Kaur
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
9
|
Heydari M, Carbone K, Gervasi F, Parandi E, Rouhi M, Rostami O, Abedi-Firoozjah R, Kolahdouz-Nasiri A, Garavand F, Mohammadi R. Cold Plasma-Assisted Extraction of Phytochemicals: A Review. Foods 2023; 12:3181. [PMID: 37685115 PMCID: PMC10486403 DOI: 10.3390/foods12173181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, there has been growing interest in bioactive plant compounds for their beneficial effects on health and for their potential in reducing the risk of developing certain diseases such as cancer, cardiovascular diseases, and neurodegenerative disorders. The extraction techniques conventionally used to obtain these phytocompounds, however, due to the use of toxic solvents and high temperatures, tend to be supplanted by innovative and unconventional techniques, in line with the demand for environmental and economic sustainability of new chemical processes. Among non-thermal technologies, cold plasma (CP), which has been successfully used for some years in the food industry as a treatment to improve food shelf life, seems to be one of the most promising solutions in green extraction processes. CP is characterized by its low environmental impact, low cost, and better extraction yield of phytochemicals, saving time, energy, and solvents compared with other classical extraction processes. In light of these considerations, this review aims to provide an overview of the potential and critical issues related to the use of CP in the extraction of phytochemicals, particularly polyphenols and essential oils. To review the current knowledge status and future insights of CP in this sector, a bibliometric study, providing quantitative information on the research activity based on the available published scientific literature, was carried out by the VOSviewer software (v. 1.6.18). Scientometric analysis has seen an increase in scientific studies over the past two years, underlining the growing interest of the scientific community in this natural substance extraction technique. The literature studies analyzed have shown that, in general, the use of CP was able to increase the yield of essential oil and polyphenols. Furthermore, the composition of the phytoextract obtained with CP would appear to be influenced by process parameters such as intensity (power and voltage), treatment time, and the working gas used. In general, the studies analyzed showed that the best yields in terms of total polyphenols and the antioxidant and antimicrobial properties of the phytoextracts were obtained using mild process conditions and nitrogen as the working gas. The use of CP as a non-conventional extraction technique is very recent, and further studies are needed to better understand the optimal process conditions to be adopted, and above all, in-depth studies are needed to better understand the mechanisms of plasma-plant matrix interaction to verify the possibility of any side reactions that could generate, in a highly oxidative environment, potentially hazardous substances, which would limit the exploitation of this technique at the industrial level.
Collapse
Affiliation(s)
- Mahshid Heydari
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Fabio Gervasi
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 3158777871, Iran
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Reza Abedi-Firoozjah
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Azin Kolahdouz-Nasiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran; (M.H.)
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co., P61 C996 Cork, Ireland
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran
| |
Collapse
|
10
|
An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
11
|
Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Partitioning of Antioxidants in Edible Oil-Water Binary Systems and in Oil-in-Water Emulsions. Antioxidants (Basel) 2023; 12:828. [PMID: 37107202 PMCID: PMC10135117 DOI: 10.3390/antiox12040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, partitioning of antioxidants in oil-water two-phase systems has received great interest because of their potential in the downstream processing of biomolecules, their benefits in health, and because partition constant values between water and model organic solvents are closely related to important biological and pharmaceutical properties such as bioavailability, passive transport, membrane permeability, and metabolism. Partitioning is also of general interest in the oil industry. Edible oils such as olive oil contain a variety of bioactive components that, depending on their partition constants, end up in an aqueous phase when extracted from olive fruits. Frequently, waste waters are subsequently discarded, but their recovery would allow for obtaining extracts with antioxidant and/or biological activities, adding commercial value to the wastes and, at the same time, would allow for minimizing environmental risks. Thus, given the importance of partitioning antioxidants, in this manuscript, we review the background theory necessary to derive the relevant equations necessary to describe, quantitatively, the partitioning of antioxidants (and, in general, other drugs) and the common methods for determining their partition constants in both binary (PWOIL) and multiphasic systems composed with edible oils. We also include some discussion on the usefulness (or not) of extrapolating the widely employed octanol-water partition constant (PWOCT) values to predict PWOIL values as well as on the effects of acidity and temperature on their distributions. Finally, there is a brief section discussing the importance of partitioning in lipidic oil-in-water emulsions, where two partition constants, that between the oil-interfacial, POI, and that between aqueous-interfacial, PwI, regions, which are needed to describe the partitioning of antioxidants, and whose values cannot be predicted from the PWOIL or the PWOCT ones.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carlos Bravo-Díaz
- Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
12
|
Baroi AM, Sieniawska E, Świątek Ł, Fierascu I. Grape Waste Materials-An Attractive Source for Developing Nanomaterials with Versatile Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050836. [PMID: 36903714 PMCID: PMC10005071 DOI: 10.3390/nano13050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 05/27/2023]
Abstract
In the last decade, researchers have focused on the recycling of agro-food wastes for the production of value-added products. This eco-friendly trend is also observed in nanotechnology, where recycled raw materials may be processed into valuable nanomaterials with practical applications. Regarding environmental safety, replacing hazardous chemical substances with natural products obtained from plant wastes is an excellent opportunity for the "green synthesis" of nanomaterials. This paper aims to critically discuss plant waste, with particular emphasis on grape waste, methods of recovery of active compounds, and nanomaterials obtained from by-products, along with their versatile applications, including healthcare uses. Moreover, the challenges that may appear in this field, as well as future perspectives, are also included.
Collapse
Affiliation(s)
- Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| |
Collapse
|
13
|
Diaconeasa Z, Iuhas CI, Ayvaz H, Mortas M, Farcaş A, Mihai M, Danciu C, Stanilă A. Anthocyanins from Agro-Industrial Food Waste: Geographical Approach and Methods of Recovery-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010074. [PMID: 36616202 PMCID: PMC9823320 DOI: 10.3390/plants12010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 05/13/2023]
Abstract
Drastic growth in the amount of global food waste produced is observed every year, not only due to incessant population growth but also economic growth, lifestyle, and diet changes. As a result of their increasing health awareness, people are focusing more on healthy diets rich in fruits and vegetables. Thus, following worldwide fruit and vegetable consumption and their processing in various industries (juice, jams, wines, preserves), significant quantities of agro-industrial waste are produced (pomace, peels, seeds) that still contain high concentrations of bioactive compounds. Among bioactive compounds, anthocyanins have an important place, with their multiple beneficial effects on health; therefore, their extraction and recovery from food waste have become a topic of interest in recent years. Accordingly, this review aims to summarize the primary sources of anthocyanins from food waste and the novel eco-friendly extraction methods, such as pulsed electric field extraction, enzyme-assisted extraction, supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction. The advantages and disadvantages of these techniques will also be covered to encourage future studies and opportunities focusing on improving these extraction techniques.
Collapse
Affiliation(s)
- Zoriţa Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
| | - Cristian I. Iuhas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400372 Cluj-Napoca, Romania
| | - Huseyin Ayvaz
- Department of Food Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Mustafa Mortas
- Food Engineering Department, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55139, Turkey
| | - Anca Farcaş
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
| | - Mihaela Mihai
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Andreea Stanilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Mănă¸stur, 400372 Cluj-Napoca, Romania
- BioTech Technology Transfer Center, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-748-650-764
| |
Collapse
|
14
|
Bhatti SA, Hussain MH, Mohsin MZ, Mohsin A, Zaman WQ, Guo M, Iqbal MW, Siddiqui SA, Ibrahim SA, Ur-Rehman S, Korma SA. Evaluation of the antimicrobial effects of Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1043823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The extensive use of antibiotics and vaccines against microbial infections can result in long-term negative effects on humans and the environment. However, there are a number of plants that have antimicrobial effects against various disease-causing microbes such as bacteria, viruses, and fungi without negative side effects or harm to the environment. In this regard, four particular plants- Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta have been widely considered due to their excellent antimicrobial effect and ample availability. In this review, we discuss their antimicrobial effects due to the presence of thymoquinone, p-cymene, pinene, alkaloids, limonene, camphene, and melanin. These antimicrobial compounds disrupt the cell membrane of microbes, inhibit cellular division, and form biofilm in bacterial species, eventually reducing the number of microbes. Extraction of these compounds from the respective plants is carried out by different methods such as soxhlet, hydro-distillation, liquid-liquid extraction (LLE), pressurized liquid extraction (PLE), solid-phase extraction (SPE), supercritical fluid extraction (SFE), pulsed electric field (PEF), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), ultrasound-assisted extraction (UAE), and high-voltage electrical discharge. Suitable selection of the extraction technique highly depends upon the associated advantages and disadvantages. In order to aid future study in this field, this review paper summarizes the advantages and disadvantages of each of these approaches. Additionally, the discussion covers how antimicrobial agents destroy harmful bacteria. Thus, this review offers in-depth knowledge to researchers on the antibacterial properties of Capsicum, Nigella sativa, Musa paradisiaca L. peels, and Citrus limetta.
Collapse
|
15
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
16
|
Hassoun A, Prieto MA, Carpena M, Bouzembrak Y, Marvin HJ, Pallarés N, Barba FJ, Punia Bangar S, Chaudhary V, Ibrahim S, Bono G. Exploring the role of green and Industry 4.0 technologies in achieving sustainable development goals in food sectors. Food Res Int 2022; 162:112068. [DOI: 10.1016/j.foodres.2022.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
17
|
Morales D. Use of Strawberry Tree ( Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods 2022; 11:foods11233838. [PMID: 36496646 PMCID: PMC9736438 DOI: 10.3390/foods11233838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Arbutus unedo, commonly named 'strawberry tree' (ST), is a Mediterranean native plant that represents a relevant source of biologically active fractions and compounds. ST fruits, traditionally used with culinary and medicinal purposes, along with other components (leaves, roots, honeys, etc.), have been subjected to varied extraction procedures to obtain enriched and bioactive products. This work reviewed the scientific literature, searching for studies that evaluated the potential health implications of ST fractions and attending to the tested biological activities (antioxidant, antiproliferative, hypoglycemic, immune-modulatory, antihypertensive, antimicrobial, etc.), the part of the tree, the experimental model, the specific bioactive compounds and the selected extraction protocol. Furthermore, the strengths and weaknesses of the current state of the published evidence were critically analysed. Although in vitro results demonstrated the potential of ST fractions, further research is encouraged in order to obtain in vivo evidence (animal and clinical studies), assess additional activities (hypocholesterolemic, microbiome-modulatory), maximize the use of advanced extraction technologies, purify and isolate specific bioactive compounds and broaden the analysis investigating phenolic and non-phenolic molecules and their bioavailability.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
18
|
Cavalluzzi MM, Lamonaca A, Rotondo NP, Miniero DV, Muraglia M, Gabriele P, Corbo F, De Palma A, Budriesi R, De Angelis E, Monaci L, Lentini G. Microwave-Assisted Extraction of Bioactive Compounds from Lentil Wastes: Antioxidant Activity Evaluation and Metabolomic Characterization. Molecules 2022; 27:7471. [PMID: 36364300 PMCID: PMC9655545 DOI: 10.3390/molecules27217471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 10/15/2023] Open
Abstract
The recovery of industrial by-products is part of the zero-waste circular economy. Lentil seed coats are generally considered to be a waste by-product. However, this low-value by-product is rich in bioactive compounds and may be considered an eco-friendly source of health-promoting phytochemicals. For the first time, a sustainable microwave-assisted extraction technique was applied, and a solvent screening was carried out to enhance the bioactive compound content and the antioxidant activity of green and red lentil hull extracts. With respect to green lentil hull extracts that were obtained with different solvents, the aqueous extract of the red lentil seed coats showed the highest total phenolic and total flavonoid content (TPC = 28.3 ± 0.1 mg GAE/g dry weight, TFC = 1.89 ± 0.01 mg CE/100 mg dry weight, respectively), as well as the highest antioxidant activity, both in terms of the free radical scavenging activity (ABTS, 39.06 ± 0.73 mg TE/g dry weight; DPPH, IC50 = 0.39 μg/mL) and the protection of the neuroblastoma cell line (SH-SY5Y, IC50 = 10.1 ± 0.6 μg/mL), the latter of which has never been investigated so far. Furthermore, a metabolite discovery analysis was for the first time performed on the aqueous extracts of both cultivars using an HPLC separation which was coupled with an Orbitrap-based high-Resolution Mass Spectrometry technique.
Collapse
Affiliation(s)
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy
- Department of Soil, Plant and Food Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Natalie Paola Rotondo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Marilena Muraglia
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Paola Gabriele
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy—Drug Sciences, University Aldo Moro-Bari, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
19
|
Nguyen AT, Akanbi TO, Tawiah NA, Aryee AN. Valorization of seed and kernel marcs and evaluation of their antioxidant potential. Food Chem 2022; 390:133168. [DOI: 10.1016/j.foodchem.2022.133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
|
20
|
Polymeric Compounds of Lingonberry Waste: Characterization of Antioxidant and Hypolipidemic Polysaccharides and Polyphenol-Polysaccharide Conjugates from Vaccinium vitis-idaea Press Cake. Foods 2022; 11:foods11182801. [PMID: 36140930 PMCID: PMC9497698 DOI: 10.3390/foods11182801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Lingonberry (Vaccinium vitis-idaea L.) fruits are important Ericaceous berries to include in a healthy diet of the Northern Hemisphere as a source of bioactive phenolics. The waste generated by the V. vitis-idaea processing industry is hard-skinned press cake that can be a potential source of dietary fiber and has not been studied thus far. In this study, water-soluble polysaccharides of V. vitis-idaea press cake were isolated, separated, and purified by ion-exchange and size-exclusion chromatography. The results of elemental composition, monosaccharide analysis, ultraviolet–visible and Fourier-transform infrared spectroscopy, molecular weight determination, linkage analysis, and alkaline destruction allowed us to characterize two polyphenol–polysaccharide conjugates (PPC) as neutral arabinogalactans cross-linked with monomeric and dimeric hydroxycinnamate residues with molecular weights of 108 and 157 kDa and two non-esterified galacturonans with molecular weights of 258 and 318 kDa. A combination of in vitro and in vivo assays confirmed that expressed antioxidant activity of PPC was due to phenolic-scavenged free radicals, nitrogen oxide, hydrogen peroxide, and chelate ferrous ions. Additionally, marked hypolipidemic potential of both PPC and acidic polymers bind bile acids, cholesterol, and fat, inhibit pancreatic lipase in the in vitro study, reduce body weight, serum level of cholesterol, triglycerides, low/high-density lipoprotein–cholesterol, and malondialdehyde, and increase the enzymatic activity of superoxide dismutase, glutathione peroxidase, and catalase in the livers of hamsters with a 1% cholesterol diet. Polysaccharides and PPC of V. vitis-idaea fruit press cake can be regarded as new antioxidants and hypolipidemic agents that can be potentially used to cure hyperlipidemic metabolic disorders.
Collapse
|
21
|
Aristi Capetillo A, Bauer F, Chaminade C. Emerging Technologies Supporting the Transition to a Circular Economy in the Plastic Materials Value Chain. CIRCULAR ECONOMY AND SUSTAINABILITY 2022; 3:1-30. [PMID: 36065416 PMCID: PMC9434076 DOI: 10.1007/s43615-022-00209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
Abstract
Plastic waste has come to the forefront of academic and political debates as a global problem that demands an urgent solution. Promoted by policymakers, academia, and corporations alike, the circular economy model presents a viable path to reach more sustainable levels of development. Emerging and disruptive technologies can catalyse the transition to a circular economy, but their application to the transition of the plastic materials realm is not fully understood. Based on a systematic review of the literature, this paper aims to understand the role of key emerging technologies in the transition towards a circular economy in the plastic materials value chain, their potential impact, as well as the barriers of adoption and diffusion. Employing the ReSOLVE framework, the analysis reveals that rather than individual technologies, four technology sets associated with Industry 4.0, distributed economies, bio-based systems, and chemical recycling stand as major enablers of this transition. The complementarity of technologies and the change needed from a systemic perspective are discussed along with a proposal for governance and practical implementation pathway to overcome barriers and resistance to the transition.
Collapse
Affiliation(s)
| | - Fredric Bauer
- Environmental and Energy Systems Studies, Lund University, Lund, Sweden
- CIRCLE – Centre for Innovation Research, Lund University, Lund, Sweden
| | - Cristina Chaminade
- CIRCLE – Centre for Innovation Research, Lund University, Lund, Sweden
- Department of Economic History, Lund University, Lund, Sweden
- Department of Business and Management, Aalborg University, Aalborg, Denmark
| |
Collapse
|
22
|
Hassoun A, Bekhit AED, Jambrak AR, Regenstein JM, Chemat F, Morton JD, Gudjónsdóttir M, Carpena M, Prieto MA, Varela P, Arshad RN, Aadil RM, Bhat Z, Ueland Ø. The fourth industrial revolution in the food industry-part II: Emerging food trends. Crit Rev Food Sci Nutr 2022; 64:407-437. [PMID: 35930319 DOI: 10.1080/10408398.2022.2106472] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The food industry has recently been under unprecedented pressure due to major global challenges, such as climate change, exponential increase in world population and urbanization, and the worldwide spread of new diseases and pandemics, such as the COVID-19. The fourth industrial revolution (Industry 4.0) has been gaining momentum since 2015 and has revolutionized the way in which food is produced, transported, stored, perceived, and consumed worldwide, leading to the emergence of new food trends. After reviewing Industry 4.0 technologies (e.g. artificial intelligence, smart sensors, robotics, blockchain, and the Internet of Things) in Part I of this work (Hassoun, Aït-Kaddour, et al. 2022. The fourth industrial revolution in the food industry-Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 1-17.), this complimentary review will focus on emerging food trends (such as fortified and functional foods, additive manufacturing technologies, cultured meat, precision fermentation, and personalized food) and their connection with Industry 4.0 innovations. Implementation of new food trends has been associated with recent advances in Industry 4.0 technologies, enabling a range of new possibilities. The results show several positive food trends that reflect increased awareness of food chain actors of the food-related health and environmental impacts of food systems. Emergence of other food trends and higher consumer interest and engagement in the transition toward sustainable food development and innovative green strategies are expected in the future.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian AcademicExpertise (SAE), Gaziantep, Turkey
| | | | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Farid Chemat
- Green Extraction Team, INRAE, Avignon University, Avignon, France
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - María Gudjónsdóttir
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - María Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Paula Varela
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Zuhaib Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Øydis Ueland
- Fisheries and Aquaculture Research, Nofima - Norwegian Institute of Food, Ås, Norway
| |
Collapse
|
23
|
Esteban-Lustres R, Sanz V, Domínguez H, Torres MD. Ultrasound-Assisted Extraction of High-Value Fractions from Fruit Industrial Processing Waste. Foods 2022; 11:foods11142089. [PMID: 35885332 PMCID: PMC9325214 DOI: 10.3390/foods11142089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
This work deals with the valorization of fruit industrial processing waste pretreated with two dehydration methods, air oven and lyophilization. Ultrasound-assisted extraction using a sonication probe was selected to recover the high-value fractions. A battery of experiments following a Box−Behnken design was planned to evaluate the effect of the ultrasound amplitude, extraction duration, and temperature on the yield, protein content, phenolic content, and antiradical capacity of the soluble extracts. Operating at a fixed frequency (24 kHz) and solid:water ratio (1:15), the models predicted (significance degree >95%) the maximum extraction conditions of 69.7% amplitude, 53.43 °C, and 12 min for conventionally dehydrated fruit waste. Under these processing conditions, 52.6% extraction yield was achieved, with a protein content of 0.42 mg/g, total phenolic content of 116.42 mg GAE/g, and antioxidant capacity of 44.95 mg Trolox/g. Similar yields (53.95%) and a notably higher protein content (0.69 mg/g), total phenolic content (135.32 mg GAE/g), and antioxidant capacity (49.52 mg Trolox/g) were identified for lyophilized fruit waste. This treatment required a longer dehydration pretreatment duration (double), higher ultrasound amplitude (80%), and higher extraction temperature (70 °C), but shorter extraction time (4 min). These outcomes highlighted the important impact of the dehydration method on the valorization of the tested waste, with conventional drying saving costs, but the lyophilization procedure enhancing the bioactive features of the waste.
Collapse
|
24
|
Corrêa-Filho LC, Santos DI, Brito L, Moldão-Martins M, Alves VD. Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum L.) Pomace Extract. Bioengineering (Basel) 2022; 9:bioengineering9070311. [PMID: 35877362 PMCID: PMC9312032 DOI: 10.3390/bioengineering9070311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Tomato pomace is rich in carotenoids (mainly lycopene), which are related to important bioactive properties. In general, carotenoids are known to react easily under environmental conditions, which may create a barrier in producing stable functional components for food. This work intended to evaluate the storage stability and in vitro release of lycopene from encapsulated tomato pomace extract, and its bioaccessibility when encapsulates were incorporated in yogurt. Microencapsulation assays were carried out with tomato pomace extract as the core material and arabic gum or inulin (10 and 20 wt%) as wall materials by spray drying (160 and 200 °C). The storage stability results indicate that lycopene degradation was highly influenced by the presence of oxygen and light, even when encapsulated. In vitro release studies revealed that 63% of encapsulated lycopene was released from the arabic gum particles in simulated gastric fluid, whereas for the inulin particles, the release was only around 13%. The feed composition with 20% inulin showed the best protective ability and the one that enabled releasing the bioactives preferentially in the intestine. The bioaccessibility of the microencapsulated lycopene added to yogurt increased during simulated gastrointestinal digestion as compared to the microencapsulated lycopene alone. We anticipate a high potential for the inulin microparticles containing lycopene to be used in functional food formulations.
Collapse
|
25
|
Nepenthes mirabilis Fractionated Pitcher Fluid Use for Mixed Agro-Waste Pretreatment: Advocacy for Non-Chemical Use in Biorefineries. Catalysts 2022. [DOI: 10.3390/catal12070726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study determined whether it is feasible to pretreat mixed agro-waste of different particle sizes using the pitcher fluid of Nepenthes mirabilis (N. mirabilis), which is known to digest leaf litter due to the enzyme cocktail contained in the fluid. This is due to the need for the holocellulolysis (a source of fermentable sugars) of mixed agro-waste to produce fermentable hydrolysates. The pitcher fluid was fractionated (<3 kDa, ˃3 kDa, <10 kDa, ˃10 kDa) and slurrified with the mixed agro-waste, i.e., 25% (w/w) for each waste—orange peels, apple peels, maize cobs, grape pomace, and oak plant leaf litter of various particle sizes, i.e., >75 µm x < 106 µm and >106 µm. The process of producing a high concentration of total reducible sugars (TRSs) with the lowest production of total phenolic compounds (TPCs) was determined to be a particle size of >106 µm, pretreatment for 72 h, and an enzyme fraction of <10 kDa, whereby 97 g/L of TRSs were produced with a significantly lower TPCs load (1 g/L). Furthermore, the <10 kDa showed preferable physico-chemical properties, with the highest reduction-oxidation potential including acidity. Several enzymes, i.e., β-1,3-Glucanase, Putative peroxidase 27, Thaumatin-like protein, among others, were identified in the <10 kDa fraction, i.e., enzymes known to perform various functions in plant-based waste. Therefore, there is a need for the renewable energy industry to consider solely using pitcher fluids to pretreat mixed agro-waste for fermentable hydrolysates’ production, which can be used as liquid feedstock for the bioenergy and/or biorefinery industries for environmental pollution reduction.
Collapse
|
26
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Application and Bioavailability of Phytochemicals Derived from Waste Streams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6884-6900. [PMID: 33787251 DOI: 10.1021/acs.jafc.1c03020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytochemicals are relatively small molecular species found in edible plants that may exhibit a diverse range of techno- and biofunctional attributes. In particular, there has been great interest in the identification, isolation, and utilization of dietary phytochemicals that can be used as natural pigments, antioxidants, or antimicrobials or that may improve human health and wellbeing by preventing chronic diseases, such as cardiovascular diseases, diabetes, obesity, and cancer. Relatively high levels of these phytochemicals are often present in the waste streams produced by the food and agriculture industry, such as the peels, stems, roots, or leaves of plants, that are normally discarded or turned into animal foods. From an economic and environmental perspective, it would be advantageous to convert these waste streams into value-added functional ingredients, which is consistent with the creation of a more circular economy. Bioactive phytochemicals can be isolated from agricultural and food waste streams using green extraction methods and then incorporated into plant-based functional foods or biodegradable active packaging materials. The utilization of phytochemicals in the food industry is often challenging. They may chemically degrade in the presence of light, heat, oxygen, and some pH conditions, thereby altering their biological activity. They may have low solubility in aqueous solutions and gastrointestinal fluids, thereby making them difficult to introduce into foods and leading to a low bioavailability. These challenges can sometimes be overcome using nanoencapsulation, which involves trapping the phytochemicals inside tiny food-grade particles. These nanoparticles may be assembled from edible lipids, proteins, carbohydrates, and/or surfactants and include nanoemulsions, solid lipid nanoparticles, nanoliposomes, and biopolymer nanoparticles. In this manuscript, we review a number of important phytochemicals and nanoencapsulation methods used to improve their efficacy.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| |
Collapse
|
27
|
Sharma Y, Kaur A, Mishra R, Kulkarni S, Bharadwaj M, Bala K. Antiproliferative efficacy of the antioxidant bioactive compounds of defatted seeds of Azadirachta indica and Momordica charantia against the regulatory function of tumor suppressor gene inducing oral carcinoma. J Biomol Struct Dyn 2022:1-15. [PMID: 35674735 DOI: 10.1080/07391102.2022.2083015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study focuses on the antiproliferative activity of polyphenolic flavonoids found in defatted seeds of Azadirachta indica and Momordica charantia with the regulatory function of tumor suppressor genes inducing Oral Squamous Cell Carcinoma. Polyphenolic flavonoid in extracts was characterized using chromatographic analysis and has confirmed the presence of quercetin, rutin and tannic acid in the extracts of A. indica and M. charantia. According to DPPH assay and reducing power assays, free radical scavenging was found to be high in ethanolic extract of defatted seeds. Antiproliferative efficacies of defatted seed extracts against KB cell line (mouth) were studied by MTT assay and revealed that aqueous extract of defatted seeds of M. charantia has exhibited maximum antiproliferative activity against KB cells. Antioxidant activity of defatted seed extracts were observed on treated KB cells by determining enzymatic activity (SOD, Cat, and GST) and nonenzyme content (GSH and MDA Content). Using the AutoDock tool, quercetin, rutin and tannin acid revealed that mutant p53, TWIST related protein, TGF-β and Snail I have the best binging energy results. MD simulation was observed on best docking results between the molecule and identified flavonoid by Desmond V 5.9 package . This leads to the conclusion that bioactive extracts with antiproliferative activity, antioxidant capacity and polyphenols with binding efficacy against tumor suppressor gene regulatory function could be used as a herbal remedy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Amritpal Kaur
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rupa Mishra
- Amity Institute of Molecular Medicine and Stem cell Research, Amity University, Noida, India
| | | | | | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
28
|
Novel Zero Headspace Solid-Liquid Extraction for the Recovery of Polyphenolic Fractions from Grape Pomace. Processes (Basel) 2022. [DOI: 10.3390/pr10061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Grape pomace (GP) is a good source of high-value compounds as up to 60% of grape polyphenols remain in it after wine-making. To overcome traditional membrane technologies’ d rawbacks, such as fouling, a novel Zero Head Space extraction (ZHE) procedure was developed. The reaction vessel comprised a filtration device with a nitrocellulose membrane. The separation was performed at 50 lb/in2 and 23 °C, with no headspace during the process. Water and methanol (both acidifie d) were evaluated as solvents during two extraction stages for the recovery and fractionation of polyphenols. Aqueous extract (AE) was mainly constituted by monomeric polyphenols while Methanol extract (ME) presented less soluble compounds, as well as a higher concentration of total anthocyanin content than AE. Additional methanolic (CE) and acetone (CAE) extractions of residual GP showed CE presented a similar profile to ME (at a lower concentration), indicating ZHE efficiency at extracting polyphenols in GP. CAE presented a non-resolved hump, characteristic of high proanthocyanidins’ polydispersity. ZHE rendered a monomeric fraction in ME (mean Degree of Polymerization, mDP of 1.38). Residual GP (cake) extractions demonstrated oligomeric polyphenol retention; mDP up to 3.05 when acetone was used. Fractionation of GP polyphenols was successfully established using a Zero Head space extractor.
Collapse
|
29
|
Extraction of Antioxidants from Grape and Apple Pomace: Solvent Selection and Process Kinetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyphenols have become a research target due to their antioxidant, anti-inflammatory and antimicrobial activity. Obtention via extraction from natural sources includes the revalorization of food wastes such as grape pomace (GP) or apple pomace (AP). In this work, GP and AP were submitted to a liquid–solid extraction using different solvents of industrial interest. Process kinetics were studied measuring the total phenolic content (TPC) and antioxidant capacity (AC), while the extraction liquor composition was analyzed employing chromatographic methods. Extraction processes using water-solvent mixtures stood out as the better options, with a particular preference for water 30%–ethanol 70% (v/v) at 90 °C, a mixture that quickly extracts up to 68.46 mg GAE/gds (Gallic Acid Equivalent per gram dry solid) and 122.67 TEAC/gds (TROLOX equivalent antioxidant capacity per gram dry solid) in case of GP, while ethylene water 10%–ethylene glycol 90% (v/v) at 70 °C allows to reach 27.19 mg GAE/gds and 27.45 TEAC/gds, in the case of AP. These extraction processes can be well-described by a second-order kinetic model that includes a solubility-related parameter for the first and fast-washing and two parameters for the slow mass transfer controlled second extraction phase. AP liquors were found to be rich in quercetin with different sugar moieties and GP extracts highlighted flavonols, cinnamic acids, and anthocyanins. Therefore, using identical extraction conditions for AP and GP and a comparative kinetic analysis of TPC and AC results for the first time, we concluded that ethanol/water mixtures are adequate solvents for polyphenols extraction due to their high efficiency and environmentally benign nature.
Collapse
|
30
|
Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large amounts of food waste are produced each year. These residues require appropriate management to reduce their environmental impact and, at the same time, economic loss. However, this waste is still rich in compounds (e.g., colorants, antioxidants, polyphenols, fatty acids, vitamins, and proteins) that can find potential applications in food, pharmaceutical, and cosmetic industries. Conventional extraction techniques suffer some drawbacks when applied to the exploitation of food residues, including large amounts of polluting solvents, increased time of extraction, possible degradation of the active molecules during extraction, low yields, and reduced extraction selectivity. For these reasons, advanced extraction techniques have emerged in order to obtain efficient residue exploitation using more sustainable processes. In particular, performing extraction under high-pressure conditions, such as supercritical fluids and pressurized liquid extraction, offers several advantages for the extraction of bioactive molecules. These include the reduced use of toxic solvents, reduced extraction time, high selectivity, and the possibility of being applied in combination in a cascade of progressive extractions. In this review, an overview of high-pressure extraction techniques related to the recovery of high added value compounds from waste generated in food industries is presented and a critical discussion of the advantages and disadvantages of each process is reported. Furthermore, the possibility of combined multi-stage extractions, as well as economic and environmental aspects, are discussed in order to provide a complete overview of the topic.
Collapse
|
32
|
Samoylov A, Suraeva N, Zaytseva M, Petrov A. Bioassay of oxidative properties and toxic side effects of apple juice. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-176-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Apple juice owes its beneficial properties to various biologically active compounds, e.g. antioxidants. Therefore, food science needs effective methods that would cover all the mechanisms of their effect on human metabolism. However, fruit juice production raises certain safety issues that are associated not only with production risks, but also with some natural components in the raw material. The Allium cepa test seems to be an effective solution to the problem. This plant bioassay has a good correlation tested on mammalian cell cultures.
Study objects and methods. Onion roots (A. cepa) were treated with aqueous solutions of juices and sorbic acid to assess their antioxidant profile. The toxic effects on root tissues were described according to biomass growth, malondialdehyde (MDA) concentration, and proliferative and cytogenetic disorders.
Results and discussion. The study revealed the optimal conditions for the A. cepa assay of the antioxidant properties of apple juice. The antioxidant activity was at its highest when the juice was diluted with water 1:9 and the onion roots were treated with sorbic acid. The lipid oxidation of the A. cepa roots decreased by 43%. A comparative analysis of three different juice brands showed that the difference in their antioxidant profiles was ≤ 3%. As for toxic side effects, the chromosome aberrations increased by six times in all samples.
Conclusion. The research offers a new in vivo method for determining the antioxidant profile of apple juice. Three juice brands proved to have irreversible cytotoxic and genotoxic effects.
Collapse
Affiliation(s)
| | | | | | - Andrey Petrov
- All-Russian Research Institute of Canning Technology
| |
Collapse
|
33
|
Sousa D, Salgado JM, Cambra-López M, Dias AC, Belo I. Degradation of lignocellulosic matrix of oilseed cakes by solid-state fermentation: fungi screening for enzymes production and antioxidants release. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1550-1560. [PMID: 34402072 DOI: 10.1002/jsfa.11490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Vegetable oils are yearly produced in large amounts generating solid by-products, the oilseed cake (OC). OCs are lignocellulosic materials that have been used for animal feed with some limitations due to high fibre content from the plant cell walls. Biotechnological processes can help to overcome these limitations and contribute to up-grading such by-products, enhancing their nutritional value as feed ingredients. RESULTS All fungal species were able to decrease neutral detergent fibre and acid detergent fibre in all by-products. Additionally, relevant enzymes were produced by the three fungi studied resulting in an improved antioxidant capacity of all fermented OCs. Aspergillus niger led to the highest activity of cellulase (109 U g-1 ), xylanase (692 U g-1 ) and protease (157 U g-1 ) per dry OC matter and to the recovery of an extract rich in antioxidants, with the highest scavenging potential of free radicals and superoxide anion, iron chelation ability and reducing power. Rhyzopus oryzae produced the highest activity of β-glucosidase (503 U g-1 ) and led to the highest liberation of total phenolic content (TPC). Principal components analysis showed that extracts with high antioxidant potential were obtained in solid-state fermentation (SSF) with high enzymatic activity. A positive correlation was established between the action of β-glucosidase and TPC. CONCLUSION Within the same bioprocess it was possible to improve the nutritional value of OCs and to obtain relevant bioactive compounds such as lignocellulosic enzymes and phenolic compounds with antioxidant potential, resulting in a significant improvement of already valuable by-products with commercial interest for animal feed. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniel Sousa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - José M Salgado
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria Cambra-López
- Institute of Animal Science Technology, Universitat Politècnica de València, Valencia, Spain
| | - Alberto Cp Dias
- Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
34
|
Jeria N, Cornejo S, Prado G, Bustamante A, Garcia-Diaz DF, Jimenez P, Valenzuela R, Poblete-Aro C, Echeverria F. Beneficial Effects of Bioactive Compounds Obtained from Agro-Industrial By-Products on Obesity and Metabolic Syndrome Components. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2013498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nicolas Jeria
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Cornejo
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gabriel Prado
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andres Bustamante
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paula Jimenez
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Nutritional Science Department, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Carlos Poblete-Aro
- Laboratorio de Ciencias de la Actividad Fisica, el Deporte y la Salud, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Investigación en Rehabilitación en Salud, Universidad de las Americas, Santiago, Chile
| | - Francisca Echeverria
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago Chile
| |
Collapse
|
35
|
Theoretical and kinetic study of the singlet oxygen quenching reaction by hesperidin isolated from mandarin (Citrus reticulata) fruit peels. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
37
|
Strack K, Dini C, García M, Viña S. Effect of thermal and ultrasonic treatments on technological and physicochemical characteristics of fibrous residues from ahipa and cassava starch extraction. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
38
|
Yusree FIFM, Peter AP, Mohd Nor MZ, Show PL, Mokhtar MN. Latest Advances in Protein-Recovery Technologies from Agricultural Waste. Foods 2021; 10:2748. [PMID: 34829028 PMCID: PMC8618363 DOI: 10.3390/foods10112748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 01/28/2023] Open
Abstract
In recent years, downstream bioprocessing industries are venturing into less tedious, simple, and high-efficiency separation by implementing advanced purification and extraction methods. This review discusses the separation of proteins, with the main focus on amylase as an enzyme from agricultural waste using conventional and advanced techniques of extraction and purification via a liquid biphasic system (LBS). In comparison to other methods, such as membrane extraction, precipitation, ultrasonication, and chromatography, the LBS stands out as an efficient, cost-effective, and adaptable developing method for protein recovery. The two-phase separation method can be water-soluble polymers, or polymer and salt, or alcohol and salt, which is a simpler and lower-cost method that can be used at a larger purification scale. The comparison of different approaches in LBS for amylase purification from agricultural waste is also included. Current technology has evolved from a simple LBS into microwave-assisted LBS, liquid biphasic flotation (LBF), thermoseparation (TMP), three-phase partitioning (TPP), ultrasound-assisted LBS, and electrically assisted LBS. pH, time, temperature, and concentration are some of the significant research parameters considered in the review of advanced techniques.
Collapse
Affiliation(s)
- Farhana Iylia Fatinee Mohd Yusree
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (F.I.F.M.Y.); (M.N.M.)
| | - Angela Paul Peter
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43400, Malaysia;
| | - Mohd Zuhair Mohd Nor
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (F.I.F.M.Y.); (M.N.M.)
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang 43400, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih 43400, Malaysia;
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (F.I.F.M.Y.); (M.N.M.)
| |
Collapse
|
39
|
Novel α-Mangostin Derivatives from Mangosteen (Garcinia mangostana L.) Peel Extract with Antioxidant and Anticancer Potential. J CHEM-NY 2021. [DOI: 10.1155/2021/9985604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mangosteen peels contain biologically active compounds, with antioxidant and anticancer properties. Among these isolated phytochemicals, α-mangostin is one of the most powerful natural antioxidants and anticancer compounds. This study focused on synthesizing novel α-mangostin (α-MG) derivatives at positions of C-3 and C-6 from extracted α-MG of mangosteen peels and investigating antioxidant and anticancer activities. The structures of the synthesized compounds were determined by using MS, 1H-NMR, 13C-NMR, and HPLC. The analysis of the interaction between structure and bioactivity showed that phenol groups on C-3 and C-6 positions play a crucial role in antiproliferative activity to boost both anticancer efficacy and drug-like properties. The antioxidant activity of α-MG and its derivatives were investigated by the DPPH method. Among α-MG derivatives, 1-hydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9-oxo-9H-xanthene-3,6-diyl bis(2-bromobenzoate) (compound 4) exhibited significant antioxidant property. The in vitro cytotoxicity against various cancer cell lines (HeLa, MCF-7, NCI–H460, and HepG2) was evaluated by the standard sulforhodamine B assay. The anticancer activities (HeLa, MCF-7, NCI–H460, and HepG2) of compound 4 are five to six times higher than those of α-MG and other derivatives. The acetylation at C-3 and C-6 of α-MG by halogen of benzoyl greatly improved cancer cell toxicity. Our results provide new opportunities for further explorations of α-MG derivatives for antioxidant property and promise as drugs in cancer therapy.
Collapse
|
40
|
Castro-Vázquez L, Lozano MV, Rodríguez-Robledo V, González-Fuentes J, Marcos P, Villaseca N, Arroyo-Jiménez MM, Santander-Ortega MJ. Pressurized Extraction as an Opportunity to Recover Antioxidants from Orange Peels: Heat treatment and Nanoemulsion Design for Modulating Oxidative Stress. Molecules 2021; 26:molecules26195928. [PMID: 34641471 PMCID: PMC8512928 DOI: 10.3390/molecules26195928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.
Collapse
Affiliation(s)
- Lucía Castro-Vázquez
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
- Correspondence: (L.C.-V.); (M.J.S.-O.)
| | - María Victoria Lozano
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Virginia Rodríguez-Robledo
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Joaquín González-Fuentes
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Pilar Marcos
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Noemí Villaseca
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Maria Mar Arroyo-Jiménez
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Manuel J. Santander-Ortega
- Pharmaceutical Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain
- Correspondence: (L.C.-V.); (M.J.S.-O.)
| |
Collapse
|
41
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
42
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
43
|
de Mello RFA, de Souza Pinheiro WB, Benjamim JKF, de Siqueira FC, Chisté RC, Santos AS. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
44
|
Valorization of Bilberry ( Vaccinium myrtillus L.) Pomace by Enzyme-Assisted Extraction: Process Optimization and Comparison with Conventional Solid-Liquid Extraction. Antioxidants (Basel) 2021; 10:antiox10050773. [PMID: 34068178 PMCID: PMC8152979 DOI: 10.3390/antiox10050773] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Bilberry (Vaccinium myrtillus L.) pomace contains a significant amount of polyphenols and can serve as a basis for food additives, nutraceuticals, and functional foods. Although various techniques can be employed to recover bioactive fractions from berry pomaces, data on enzyme-assisted extraction (EAE) of bilberry pomace are rather scarce. This study aimed to optimize critical EAE parameters using Viscozyme L to obtain a high-yield extract with enhanced antioxidant capacity. Central composite design and response surface methodology evaluating the effect of four independent variables, namely, pH, temperature, extraction time, and enzyme concentration on three responses, were employed to define optimal EAE conditions. Under the optimal conditions (pH: 4.5, temperature 46 °C, 1 h of extraction, and 2 active units (AU) of Viscozyme L/g of pomace), EAE yielded 56.15 g/100 g DW of the water-soluble fraction. Comparison with conventional maceration indicated that EAE, besides the yield, significantly increased the in vitro antioxidant capacity measured by the total phenolic content, ABTS, ORAC, and CUPRAC assays. Moreover, an increase was observed for the measured mono- and disaccharide as well as anthocyanin content. Overall, this study demonstrates the improved efficiency of EAE over conventional solid–liquid extraction to recover fractions with a higher yield and enhanced functional properties in a fast and sustainable manner.
Collapse
|
45
|
Sepúlveda L, Contreras E, Cerro D, Quintulén L. Technical feasibility of natural antioxidant recovery from the mixture of the inedible fractions of vegetables produced in a wholesale market. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1915878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Luisa Sepúlveda
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Elsa Contreras
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Daniela Cerro
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Leonardo Quintulén
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
46
|
Orejuela-Escobar LM, Landázuri AC, Goodell B. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
47
|
Ungureanu C, Fierascu I, Fierascu RC, Costea T, Avramescu SM, Călinescu MF, Somoghi R, Pirvu C. In Vitro and In Vivo Evaluation of Silver Nanoparticles Phytosynthesized Using Raphanus sativus L. Waste Extracts. MATERIALS 2021; 14:ma14081845. [PMID: 33917755 PMCID: PMC8068147 DOI: 10.3390/ma14081845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
The aim of the current paper is the development of phytosynthesized silver nanoparticles mediated by Raphanus sativus L. extracts obtained through two extraction methods (temperature and microwave) and to test their potential application for controlling apple crops pathogens. The phytosynthesized materials were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. All the materials were evaluated in terms of antioxidant and in vitro antimicrobial activity (against bacteria, molds, and yeast: Escherichia coli ATCC 8738, Staphylococcus aureus ATTC 25923, Pseudomonas aeruginosa ATCC 9027, Salmonella typhimurium ATCC 14028, Candida albicans ATCC 10231, Venturia inaequalis, Podosphaera leucotricha, Fusarium oxysporum ATCC 48112, Penicillium hirsutum ATCC 52323, and Aspergillus niger ATCC 15475). Considering the results obtained in the in vitro assays, formulations based on nanoparticles phytosynthesized using Raphanus sativus L. waste extracts (RS1N) were evaluated as potential antifungal agents for horticultural crops protection, against Venturia inaequalis and Podosphaera leucotricha through in vivo assays. For the DPPH assay, the inhibition (%) varied between 37.06% (for RS1N at 0.8 mg/mL concentration) and 83.72% (for RS1N at 7.2 mg/mL concentration) compared to 19.97% (for RS2N at 0.8 mg/mL) and only 28.91% (for RS2N at 7.2 mg/mL). Similar results were obtained for RS3N (85.42% inhibition at 7.2 mg/mL) compared with RS4N (21.76% inhibition at 7.2 mg/mL). Regarding the ABTS assay, the highest scavenger activity values were recorded for samples RS1N (91.43% at 1.6 mg/mL) and RS3N (96.62% at 1.6 mg/mL).
Collapse
Affiliation(s)
- Camelia Ungureanu
- Department of General Chemistry, University “Politehnica” of Bucharest, 011061 Bucharest, Romania;
- Correspondence: (C.U.); (R.C.F.)
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (I.F.); (R.S.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (I.F.); (R.S.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
- Correspondence: (C.U.); (R.C.F.)
| | - Teodora Costea
- Phytotherapy Department, Faculty of Pharmacy, Pharmacognosy, Phytochemistry, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania;
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 050107 Bucharest, Romania;
| | | | - Raluca Somoghi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (I.F.); (R.S.)
| | - Cristian Pirvu
- Department of General Chemistry, University “Politehnica” of Bucharest, 011061 Bucharest, Romania;
| |
Collapse
|
48
|
Fierascu I, Ditu LM, Sutan AN, Drăghiceanu OA, Fierascu RC, Avramescu SM, Lungulescu EM, Nicula N, Soare LC. Influence of gamma irradiation on the biological properties of Asplenium scolopendrium L. hydroalcoholic extracts. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Recovery of Biomolecules from Agroindustry by Solid-Liquid Enzyme-Assisted Extraction: a Review. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Zayed A, Badawy MT, Farag MA. Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem 2021; 355:129609. [PMID: 33799261 DOI: 10.1016/j.foodchem.2021.129609] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Valorization of food byproducts has attracted recently considerable attention. Citrus fruits provide considerable non-edible residues reach 80% in juice production. They are considered agri-wastes to comprise peel, pulp and seeds. Previous investigations have focused on peel and pulp to recover value-added products. The review presents for the first-time phytochemical composition of Citrus seeds' products, i.e., oil and extracts. Fatty acids, phytosterols and tocopherols amounted as the major bioactives in Citrus seeds, in addition to limonoids, dietary fibers and flavonoids. Besides their nutritional values, these chemicals have promising applications including production of biodiesel, food enhancers and antioxidants, especially from mandarin and grapefruit seeds. Optimum conditions of the different Citrus seeds' valorization are discussed to improve extraction yield and lessen environmental hazards of solvent extraction. This review presents the best utilization practices for one of the largest cultivated fruit seeds worldwide and its different applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, El-guish Street, 31527 Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Marwa T Badawy
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|