1
|
Liu Y, Wu Y, Li Z, Wan D, Pan J. Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma. Molecules 2024; 29:4405. [PMID: 39339402 PMCID: PMC11434448 DOI: 10.3390/molecules29184405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors, exhibiting a high incidence rate that presents a substantial threat to human health. The use of sorafenib and lenvatinib, commonly employed as single-agent targeted inhibitors, complicates the treatment process due to the absence of definitive targeting. Nevertheless, the advent of nanotechnology has injected new optimism into the domain of liver cancer therapy. Nanocarriers equipped with active targeting or passive targeting mechanisms have demonstrated the capability to deliver drugs to tumor cells with high efficiency. This approach not only facilitates precise delivery to the affected site but also enables targeted drug release, thereby enhancing therapeutic efficacy. As medical technology progresses, there is an increasing call for innovative treatment modalities, including novel chemotherapeutic agents, gene therapy, phototherapy, immunotherapy, and combinatorial treatments for HCC. These emerging therapies are anticipated to yield improved clinical outcomes for patients, while minimizing systemic toxicity and adverse effects. Consequently, the application of nanotechnology is poised to significantly improve HCC treatment. This review focused on targeted strategies for HCC and the application of nanotechnology in this area.
Collapse
Affiliation(s)
- Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Zijian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| |
Collapse
|
2
|
Lu Z, Yuan Y, Han Q, Wang Y, Liang Q. Lab-on-a-chip: an advanced technology for the modernization of traditional Chinese medicine. Chin Med 2024; 19:80. [PMID: 38853247 PMCID: PMC11163804 DOI: 10.1186/s13020-024-00956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Benefiting from the complex system composed of various constituents, medicament portions, species, and places of origin, traditional Chinese medicine (TCM) possesses numerous customizable and adaptable efficacies in clinical practice guided by its theories. However, these unique features are also present challenges in areas such as quality control, screening active ingredients, studying cell and organ pharmacology, and characterizing the compatibility between different Chinese medicines. Drawing inspiration from the holistic concept, an integrated strategy and pattern more aligned with TCM research emerges, necessitating the integration of novel technology into TCM modernization. The microfluidic chip serves as a powerful platform for integrating technologies in chemistry, biology, and biophysics. Microfluidics has given rise to innovative patterns like lab-on-a-chip and organoids-on-a-chip, effectively challenging the conventional research paradigms of TCM. This review provides a systematic summary of the nature and advanced utilization of microfluidic chips in TCM, focusing on quality control, active ingredient screening/separation, pharmaceutical analysis, and pharmacological/toxicological assays. Drawing on these remarkable references, the challenges, opportunities, and future trends of microfluidic chips in TCM are also comprehensively discussed, providing valuable insights into the development of TCM.
Collapse
Affiliation(s)
- Zenghui Lu
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Yue Yuan
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100730, China
| | - Qiang Han
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- Institute of Traditional Chinese Medicine-X, State Administration of Traditional Chinese Medicine Third-Level Laboratory of Traditional Chinese Medicine Chemistry, Modern Research Center for Traditional Chinese Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Li X, Zhou M, Chen W, Sun J, Zhao Y, Wang G, Wang B, Pan Y, Zhang J, Xu J. Integrating network pharmacology, bioinformatics, and experimental validation to unveil the molecular targets and mechanisms of galangin for treating hepatocellular carcinoma. BMC Complement Med Ther 2024; 24:208. [PMID: 38816744 PMCID: PMC11137903 DOI: 10.1186/s12906-024-04518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Galangin, a flavonoid compound, is derived from Alpinia officinarum Hance. Previous studies have shown that galangin can inhibit the proliferation of hepatocellular carcinoma (HCC), but its mechanism is still unclear. This study aims to investigate the potential targets and molecular mechanisms of galangin on HCC through network pharmacology, bioinformatics, molecular docking, and experimental in vitro validation. METHODS In this study, network pharmacology was used to investigate the targets and mechanisms of galangin in the treatment of HCC. AutoDockTools software was used to simulate and calculate the binding of galangin to its core targets. GO and KEGG enrichment analyses were conducted in the DAVID database to explore the main biological functions and signaling pathways impacted by galangin intervention. In addition, bioinformatics was applied to examine the correlation between the differential expressions of the anti-HCC core targets of galangin and the survival of patients with HCC. Finally, the findings obtained from network pharmacology and bioinformatics were verified in cell experiments. RESULTS A total of 67 overlapping target genes of galangin and HCC were identified. Through the analysis of the protein-protein interaction (PPI) network, 10 hub genes with the highest degree of freedom were identified, including SRC, ESR1, MMP9, CDK4, CCNB1, MMP2, CDK2, CDK1, CHK1, and PLK1. These genes were found to be closely related to the degradation of the extracellular matrix, signal transduction, and the cell cycle. GO and KEGG enrichment analyses revealed that galangin exerts an anti-HCC role by affecting various signaling pathways, including the cell cycle, pathways in cancer, and the PI3K-Akt signaling pathway. The results of molecular docking indicated a significant interaction between galangin and CCNB1, CDK4, CDK1, and PLK1. Bioinformatics analysis revealed that CCNB1, CDK4, CDK1, and PLK1 were upregulated in the liver of patients with HCC at both the mRNA and protein levels. Flow cytometry analysis showed that galangin induced G0/G1 phase arrest and cell apoptosis in HepG2 and Huh7 cells. Additionally, galangin suppressed the expression of key proteins and mRNAs involved in the cell cycle pathway. CONCLUSIONS These results suggest that galangin inhibits the growth of HCC cells by arresting the cell cycle at the G0/G1 phase.
Collapse
Affiliation(s)
- Xiaoliang Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs & Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou, 571199, Hainan Province, China
| | - Mingyan Zhou
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China
| | - Weijia Chen
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China
| | - Jiangbo Sun
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China
| | - Yihang Zhao
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China
| | - Gaoan Wang
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China
| | - Bingshu Wang
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China
| | - Yipeng Pan
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China.
| | - Junqing Zhang
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China.
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs & Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou, 571199, Hainan Province, China.
| | - Jian Xu
- Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 368 Yehai Road, Haikou, Hainan Province, 570311, China.
| |
Collapse
|
4
|
Ge C, Chen Z, Sun H, Sun P, Zhao J, Wu Y, Xu J, Zhou M, Luan M. Visually evaluating drug efficacy in living cells using COF-based fluorescent nanoprobe via CHA amplified detection of miRNA and simultaneous apoptosis imaging. Anal Chim Acta 2024; 1302:342502. [PMID: 38580409 DOI: 10.1016/j.aca.2024.342502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUNDS Cancer is a highly fatal disease which is close relative of miRNA aberrant expression and apoptosis disorders. Elucidation of the therapeutic efficacy through investigating the changes in miRNA and apoptosis holds immense importance in advancing the development of miRNA-based precision therapy. However, it remains a challenge as how to visually evaluate the efficacy during protocol optimization of miRNA-based anticancer drugs at the cellular level. Therefore, exploring effective and noninvasive methods for real-time monitoring of therapeutic efficacy in living cells is of great significance. RESULTS Herein, we reported a novel fluorescent nanoprobe COF-H1/H2-Peptide for visually evaluating drug efficacy in living cells through amplified imaging of low-abundant miRNA-221 with catalytic hairpin assembly (CHA) circle amplification, as well as simultaneous caspase-3 imaging. With strong stability and good biocompatibility, this newly fabricated amplified nanoprobe showed high sensitivity and specificity for the detection of miRNA-221 and caspase-3, and the limit of detection (LOD) of miRNA-221 was as low as 2.79 pM. The fluorescent imaging results showed that this amplified nanoprobe could not only detect caspase-3 in living cells, but also effectively detect low levels of miRNA-221 with increasing anticancer drug concentration and treatment time. The smart nanoprobe had effective performance for optimizing miRNA-based drug treatment schedules by dual-color fluorescence imaging. SIGNIFICANCE This nanoprobe combined CHA amplified detection of intracellular miRNA-221 and synchronous apoptosis imaging, with excellent sensitivity for the detection of cellular low-level miRNA, enabling the realization of real-time assessment of the efficacy of miRNA-based therapy in living cells. This work presents a promising approach for revealing the regulatory mechanisms between miRNAs and apoptosis in cancer occurrence, development, and treatment.
Collapse
Affiliation(s)
- Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Heming Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jiayin Zhao
- Textile Industrial Products Testing Center of Nanjing Customs District, Wuxi, 214101, PR China
| | - Yanjuan Wu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jing Xu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| |
Collapse
|
5
|
Li D, Liu Y, Li Y, Xiang Y, Yuan R. Simultaneous and Sensitive Sensing of Intracellular MicroRNA and mRNA for the Detection of the PI3K/AKT Signaling Pathway in Live Cells. Anal Chem 2024; 96:3329-3334. [PMID: 38366976 DOI: 10.1021/acs.analchem.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Simultaneous detection of the concentration variations of microRNA-221 (miRNA-221) and PTEN mRNA molecules in the PI3K/AKT signaling pathway is of significance to elucidate cancer cell migration and invasion, which is useful for cancer diagnosis and therapy. In this work, we show the biodegradable MnO2 nanosheet-assisted and target-triggered DNAzyme recycling signal amplification cascaded approach for the specific detection of the PI3K/AKT signaling pathway in live cells via simultaneous and sensitive monitoring of the variation of intracellular miRNA-221 and PTEN mRNA. Our nanoprobes enable highly sensitive and multiplexed sensing of miRNA-221 and PTEN mRNA with low detection limits of 23.6 and 0.59 pM in vitro, respectively, due to the signal amplification cascades. Importantly, the nanoprobes can be readily delivered into cancer cells and the MnO2 nanosheets can be degraded by intracellular glutathione to release the Mn2+ cofactors to trigger multiple DNAzyme recycling cycles to show highly enhanced fluorescence at different wavelengths to realize sensitive and multiplexed imaging of PTEN mRNA and miRNA-221 for detecting the PI3K/AKT signaling pathway. Moreover, the regulation of PTEN mRNA expression by miRNA-221 upon stimulation by various drugs can also be verified by our method, indicating its promising potentials for both disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Daxiu Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yinghan Liu
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yuhao Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
6
|
Yoo JS, Kang MK. Clinical significance of exosomal noncoding RNAs in hepatocellular carcinoma: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:4. [PMID: 38325815 PMCID: PMC11812098 DOI: 10.12701/jyms.2023.01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide, with poor prognosis owing to its high frequency of recurrence and metastasis. Moreover, most patients are diagnosed at an advanced stage owing to a lack of early detection markers. Exosomes, which are characterized by their cargos of stable intracellular messengers, such as DNA, RNA, proteins, and lipids, play a crucial role in regulating cell differentiation and HCC development. Recently, exosomal noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, and circular RNAs, have become increasingly important diagnostic, prognostic, and predictive markers of HCC. Herein, we discuss the clinical implications of exosomal ncRNAs, specifically those within the HCC regulatory network.
Collapse
Affiliation(s)
- Jae Sung Yoo
- Department of Gastroenterology and Hepatology, The Catholic University of Korea, Seoul St Mary’s Hospital, Seoul, Korea
| | - Min Kyu Kang
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
7
|
Tang Z, Li X, Zheng Y, Liu J, Liu C, Li X. The role of competing endogenous RNA network in the development of hepatocellular carcinoma: potential therapeutic targets. Front Cell Dev Biol 2024; 12:1341999. [PMID: 38357004 PMCID: PMC10864455 DOI: 10.3389/fcell.2024.1341999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The current situation of hepatocellular carcinoma (HCC) management is challenging due to its high incidence, mortality, recurrence and metastasis. Recent advances in gene genetic and expression regulation have unveiled the significant role of non-coding RNA (ncRNA) in various cancers. This led to the formulation of the competing endogenous RNA (ceRNA) hypothesis, which posits that both coding RNA and ncRNA, containing miRNA response elements (MRE), can share the same miRNA sequence. This results in a competitive network between ncRNAs, such as lncRNA and mRNA, allowing them to regulate each other. Extensive research has highlighted the crucial role of the ceRNA network in HCC development, impacting various cellular processes including proliferation, metastasis, cell death, angiogenesis, tumor microenvironment, organismal immunity, and chemotherapy resistance. Additionally, the ceRNA network, mediated by lncRNA or circRNA, offers potential in early diagnosis and prevention of HCC. Consequently, ceRNAs are emerging as therapeutic targets for HCC. The complexity of these gene networks aligns with the multi-target approach of traditional Chinese medicine (TCM), presenting a novel perspective for TCM in combating HCC. Research is beginning to show that TCM compounds and prescriptions can affect HCC progression through the ceRNA network, inhibiting proliferation and metastasis, and inducing apoptosis. Currently, the lncRNAs TUG1, NEAT1, and CCAT1, along with their associated ceRNA networks, are among the most promising ncRNAs for HCC research. However, this field is still in its infancy, necessitating advanced technology and extensive basic research to fully understand the ceRNA network mechanisms of TCM in HCC treatment.
Collapse
Affiliation(s)
- Ziwei Tang
- The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Xue Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfeng Zheng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Asoudeh-Fard A, Salehi M, Ilghari D, Parsaei A, Heydarian P, Piri H. Isolated Lactobacillus fermentum Ab.RS22 from traditional dairy products inhibits HeLa cervical cancer cell proliferation and modulates apoptosis by the PTEN-Akt pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:447-452. [PMID: 38419886 PMCID: PMC10897561 DOI: 10.22038/ijbms.2023.72825.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/01/2023] [Indexed: 03/02/2024]
Abstract
Objectives It is worthwhile to note that, some probiotics such as Lactobacilli and Bifidobacteria isolated from dairy products have significant therapeutic effects against cancer cells. Here, we evaluated anti-proliferation and the apoptotic effects of isolated Lactobacillus fermentum Ab.RS22 from traditional dairy products on the HeLa cervical cancer cells in vitro. Materials and Methods The viability of treated HeLa cells with supernatant of Lactobacillus in 0.5, 0.75, 1, 1.5, and 2 ng/ml concentrations, and IC50 values were detected by tetrazolium bromide. The L. fermentum Ab.RS22-induced cell death by flow cytometry was confirmed through evaluation of the expression of caspase-3, P53, PTEN, and AKT genes by quantitative reverse transcription-polymerase chain reactions (qRT-PCR). Results Most cytotoxicity effects of Lactobacillus on HeLa cells were detected in 2 ng/ml at 24 hr (P<0.01); also, the IC50 value was measured as 1.5 ng/ml. The findings of the flow cytometry assay showed that L. fermentum Ab.RS22 in 1.5 ng/ml concentration at 24 hr increased the percentage of both apoptosis and necrosis cells. Lactobacillus-induced cell death was verified through results of Real-time PCR; where expression of caspase-3, P53, and PTEN genes was increased (P<0.01), and also expression of AKT gene (anti-apoptotic) was decreased (P<0.05). Conclusion Our findings showed that L. fermentum Ab.RS22 could dose-dependently inhibit the proliferation of the HeLa cells. Its apoptotic effect was confirmed via modulating PTEN/p53/Akt gene expression and activation of the caspase-3 mediated apoptosis pathway. Therefore, L. fermentum Ab.RS22 can be considered a valuable anticancer candidate against cervical cancer progression in subsequent studies.
Collapse
Affiliation(s)
- Abbas Asoudeh-Fard
- INSERM U1148, Laboratory for Vascular Translation Science (LVTS), Cardiovascular Bioengineering, University Sorbonne Paris North, Paris, France
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Salehi
- Clinical Research Development Unit, Booalisina Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Dariush Ilghari
- Clinical Pharmacist, Baylor Scott & White Medical Center – Lakeway 100 Medical Pkwy, Lakeway, TX 78738
| | - Asghar Parsaei
- Rayan Novin Pajoohan Pras, Biotechnology Company, Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Heydarian
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
9
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
10
|
Huang Y, Wang C, Wang M, Xiong T, Song X, Sun W, Li J. Oroxin B improves metabolic-associated fatty liver disease by alleviating gut microbiota dysbiosis in a high-fat diet-induced rat model. Eur J Pharmacol 2023; 951:175788. [PMID: 37179040 DOI: 10.1016/j.ejphar.2023.175788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become a common chronic liver disease, but there is no FDA-approved drug for MAFLD treatment. Numerous studies have revealed that gut microbiota dysbiosis exerts a crucial effect on MAFLD progression. Oroxin B is a constituent of the traditional Chinese medicine Oroxylum indicum (L.) Kurz. (O. indicum), which has the characteristics of low oral bioavailability but high bioactivity. However, the mechanism through which oroxin B improves MAFLD by restoring the gut microbiota balance remains unclear. To this end, we assessed the anti-MAFLD effect of oroxin B in HFD-fed rats and investigated the underlying mechanism. Our results indicated that oroxin B administration reduced the lipid levels in the plasma and liver and lowered the lipopolysaccharide (LPS), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels in the plasma. Moreover, oroxin B alleviated hepatic inflammation and fibrosis. Mechanistically, oroxin B modulated the gut microbiota structure in HFD-fed rats by increasing the levels of Lactobacillus, Staphylococcus, and Eubacterium and decreasing the levels of Tomitella, Bilophila, Acetanaerobacterium, and Faecalibaculum. Furthermore, oroxin B not only suppressed Toll-like receptor 4-inhibitor kappa B-nuclear factor kappa-B-interleukin 6/tumor necrosis factor-α (TLR4-IκB-NF-κB-IL-6/TNF-α) signal transduction but also strengthened the intestinal barrier by elevating the expression of zonula occludens 1 (ZO-1) and zonula occludens 2 (ZO-2). In summary, these results demonstrate that oroxin B could alleviate hepatic inflammation and MAFLD progression by regulating the gut microbiota balance and strengthening the intestinal barrier. Hence, our study suggests that oroxin B is a promising effective compound for MAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Thilagavathi R, Priyankha S, Kannan M, Prakash M, Selvam C. Compounds from diverse natural origin against triple-negative breast cancer: A comprehensive review. Chem Biol Drug Des 2023; 101:218-243. [PMID: 36323650 DOI: 10.1111/cbdd.14172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Triple-negative breast cancer (TNBC) is caused due to the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor 2 (HER2) expression. Triple-negative breast cancer is the most aggressive heterogeneous disease that is capable of producing different clones and mutations. Tumorigenesis in TNBC is caused due to the mutation or overexpression of tumor suppressor genes. It is also associated with mutations in the BRCA gene which is linked to hereditary breast cancer. In addition, PARP proteins and checkpoint proteins also play a crucial function in causing TNBC. Many cell signaling pathways are dysregulated in TNBC. Even though chemotherapy and immunotherapy are good options for TNBC treatment, the response rates are still low in general. Many phytochemicals that are derived from natural compounds have shown very good inhibitions for TNBC. Natural compounds have the great advantage of being less toxic, having lesser side effects, and being easily available. The secondary metabolites such as alkaloids, terpenoids, steroids, and flavonoids in natural products make them promising inhibitors of TNBC. Their compositions also offer vital insights into inhibitory action, which could lead to new cancer-fighting strategies. This review can help in understanding how naturally occurring substances and medicinal herbs decrease specific tumors and pave the way for the development of novel and extremely efficient antitumor therapies.
Collapse
Affiliation(s)
- Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sridhar Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Manivel Kannan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
12
|
Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022; 13:985815. [PMID: 36300115 PMCID: PMC9590653 DOI: 10.3389/fimmu.2022.985815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
Collapse
Affiliation(s)
- Qin Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wei
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
13
|
Zhou H, Du Y, Wei X, Song C, Song J, Xu N, Huang W, Chen L, Yao F, Du D, Qiu C, Zhong L, Liu Y, Gu D, Wang J, Xu Y. DDX56 transcriptionally activates MIST1 to facilitate tumorigenesis of HCC through PTEN-AKT signaling. Theranostics 2022; 12:6069-6087. [PMID: 36168636 PMCID: PMC9475456 DOI: 10.7150/thno.72471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver that is the leading cause of cancer-related mortality worldwide. However, genetic alterations and mechanisms underlying HCC development remain unclear. Methods: Tissue specimens were used to evaluate the expression of DEAD-Box 56 (DDX56) to determine its prognostic value. Colony formation, CCK8, and EdU-labelling assays were performed to assess the effects of DDX56 on HCC proliferation. The in vivo role of DDX56 was evaluated using mouse orthotopic liver xenograft and subcutaneous xenograft tumor models. Dual-luciferase reporter, chromatin immunoprecipitation, and electrophoretic mobility shift assays were performed to examine the effect of DDX56 on the MIST1 promoter. Results: DDX56 expression in HCC tissues was elevated and this increase was strongly correlated with poor prognoses for HCC patients. Functionally, DDX56 promoted HCC cell proliferation both in vitro and in vivo, while mechanistically interacting with MECOM to promote HCC proliferation by mono-methylating H3K9 (H3K9me1) on the MIST1 promoter, leading to enhanced MIST1 transcription and subsequent regulation of the PTEN/AKT signaling pathway, which promotes HCC proliferation. More importantly, the PTEN agonist, Oroxin B (OB), blocked the DDX56-mediated PTEN-AKT signaling pathway, suggesting that treating HCC patients with OB may be beneficial as a therapeutic intervention. Furthermore, we observed that ZEB1 bound to DDX56 and transcriptionally activated DDX56, leading to HCC tumorigenesis. Conclusions: Our results indicated that the ZEB1-DDX56-MIST1 axis played a vital role in sustaining the malignant progression of HCC and identified DDX56 as a potential therapeutic target in HCC tumorigenesis.
Collapse
Affiliation(s)
- Hongzhong Zhou
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yiqun Du
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Chunli Song
- Clinical Laboratory Medicine Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianning Song
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Guangzhou Medical University, Guangzhou, China
| | - Nanson Xu
- Sun Yat -sen University Cancer Center, State key laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
| | - Weihong Huang
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences
| | - Lichan Chen
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- Guangzhou Medical University, Guangzhou, China
| | - Fuwen Yao
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Duanming Du
- Department of Interventional Therapy, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chuanghua Qiu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Lihong Zhong
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Jin Wang
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Yong Xu
- Department of Laboratory Medicine , Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Huang JM, Wang CZ, Lu SY, Wang Z, Yan ZQ. Oroxin B Attenuates Ovariectomy-Induced Bone Loss by Suppressing Osteoclast Formation and Activity. Drug Des Devel Ther 2021; 15:4811-4825. [PMID: 34876805 PMCID: PMC8643139 DOI: 10.2147/dddt.s328238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Osteoclasts are the major players in bone resorption and have always been studied in the prevention and treatment of osteoporosis. Previous studies have confirmed that a variety of flavonoids inhibit osteoporosis and improve bone health mainly through inhibiting osteoclastogenesis. Oroxin B (OB) is a flavonoid compound extracted from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent, exerts potent antitumor and anti-inflammation effect, but its effect on osteoclastogensis remains unknown. METHODS We comprehensively evaluated the effect of OB on the formation and function of osteoclasts and the underling mechanism by bone marrow-derived macrophage in vitro. In vivo, we used mice ovariectomized model to verify the protective effect of OB. RESULTS OB was found to inhibit osteoclast formation and bone resorption function in vitro, in a dose-dependent manner and the increased osteoclastic-related genes induced by RANKL (NFATc1, c-fos, cathepsin K, RANK, MMP9 and TRAP) were also attenuated following OB treatment. Mechanistical investigation showed OB abrogated the increased phosphorylation level of MAPK and NF-κB pathway, and diminished the expression of the vital transcription factors for osteoclastogenesis. OB also prevented ovariectomy (OVX)-induced bone loss by inhibiting osteoclast formation and activity in mice. CONCLUSION Our study demonstrated that OB may act as an anti-osteoporosis agent by inhibiting osteoclast maturation and attenuating bone resorption.
Collapse
Affiliation(s)
- Jun-ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Chen-zhong Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Shun-yi Lu
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Zhe Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Zuo-qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
15
|
Anti-Hepatocellular Carcinoma Biomolecules: Molecular Targets Insights. Int J Mol Sci 2021; 22:ijms221910774. [PMID: 34639131 PMCID: PMC8509806 DOI: 10.3390/ijms221910774] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This report explores the available curative molecules directed against hepatocellular carcinoma (HCC). Limited efficiency as well as other drawbacks of existing molecules led to the search for promising potential alternatives. Understanding of the cell signaling mechanisms propelling carcinogenesis and driven by cell proliferation, invasion, and angiogenesis can offer valuable information for the investigation of efficient treatment strategies. The complexity of the mechanisms behind carcinogenesis inspires researchers to explore the ability of various biomolecules to target specific pathways. Natural components occurring mainly in food and medicinal plants, are considered an essential resource for discovering new and promising therapeutic molecules. Novel biomolecules normally have an advantage in terms of biosafety. They are also widely diverse and often possess potent antioxidant, anti-inflammatory, and anti-cancer properties. Based on quantitative structure-activity relationship studies, biomolecules can be used as templates for chemical modifications that improve efficiency, safety, and bioavailability. In this review, we focus on anti-HCC biomolecules that have their molecular targets partially or completely characterized as well as having anti-cancer molecular mechanisms that are fairly described.
Collapse
|
16
|
Mechanism of Fei-Xian Formula in the Treatment of Pulmonary Fibrosis on the Basis of Network Pharmacology Analysis Combined with Molecular Docking Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6658395. [PMID: 34394391 PMCID: PMC8357467 DOI: 10.1155/2021/6658395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 01/05/2023]
Abstract
Objective This study aimed to clarify the mechanism of Fei-Xian formula (FXF) in the treatment of pulmonary fibrosis based on network pharmacology analysis combined with molecular docking validation. Methods Firstly, ingredients in FXF with pharmacological activities, together with specific targets, were identified based on the BATMA-TCM and TCMSP databases. Then, targets associated with pulmonary fibrosis, which included pathogenic targets as well as those known therapeutic targets, were screened against the CTD, TTD, GeneCards, and DisGeNet databases. Later, Cytoscape was employed to construct a candidate component-target network of FXF for treating pulmonary fibrosis. In addition, for nodes within the as-constructed network, topological parameters were calculated using CytoHubba plug-in, and the degree value (twice as high as the median degree value for all the nodes) was adopted to select core components as well as core targets of FXF for treating pulmonary fibrosis, which were subsequently utilized for constructing the core network. Furthermore, molecular docking study was carried out on those core active ingredients together with the core targets using AutoDock Vina for verifying results of network pharmacology analysis. At last, OmicShare was employed for enrichment analysis of the core targets. Results Altogether 12 active ingredients along with 13 core targets were identified from our constructed core component-target network of FXF for the treatment of pulmonary fibrosis. As revealed by enrichment analysis, the 13 core targets mostly concentrated in regulating biological functions, like response to external stimulus (from oxidative stress, radiation, UV, chemical substances, and virus infection), apoptosis, cell cycle, aging, immune process, and protein metabolism. In addition, several pathways, like IL-17, AGE-RAGE, TNF, HIF-1, PI3K-AKT, NOD-like receptor, T/B cell receptor, and virus infection-related pathways, exerted vital parts in FXF in the treatment of pulmonary fibrosis. Conclusions FXF can treat pulmonary fibrosis through a “multicomponent, multitarget, and multipathway” mean. Findings in this work lay foundation for further exploration of the FXF mechanism in the treatment of pulmonary fibrosis.
Collapse
|
17
|
Lenin S, Ponthier E, Scheer KG, Yeo ECF, Tea MN, Ebert LM, Oksdath Mansilla M, Poonnoose S, Baumgartner U, Day BW, Ormsby RJ, Pitson SM, Gomez GA. A Drug Screening Pipeline Using 2D and 3D Patient-Derived In Vitro Models for Pre-Clinical Analysis of Therapy Response in Glioblastoma. Int J Mol Sci 2021; 22:4322. [PMID: 33919246 PMCID: PMC8122466 DOI: 10.3390/ijms22094322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6-9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required. In this study, we performed a systematic review of the molecular mechanisms that drive glioblastoma progression, which led to the identification of 65 drugs/inhibitors that we screened for their efficacy to kill patient-derived glioma stem cells in two dimensional (2D) cultures and patient-derived three dimensional (3D) glioblastoma explant organoids (GBOs). From the screening, we found a group of drugs that presented different selectivity on different patient-derived in vitro models. Moreover, we found that Costunolide, a TERT inhibitor, was effective in reducing the cell viability in vitro of both primary tumor models as well as tumor models pre-treated with chemotherapy and radiotherapy. These results present a novel workflow for screening a relatively large groups of drugs, whose results could lead to the identification of more personalized and effective treatment for recurrent glioblastoma.
Collapse
Affiliation(s)
- Sakthi Lenin
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Elise Ponthier
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Kaitlin G. Scheer
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Erica C. F. Yeo
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Melinda N. Tea
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Lisa M. Ebert
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Mariana Oksdath Mansilla
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| | - Santosh Poonnoose
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia; (S.P.); (R.J.O.)
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia
| | - Ulrich Baumgartner
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (U.B.); (B.W.D.)
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan W. Day
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (U.B.); (B.W.D.)
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4006, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca J. Ormsby
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia; (S.P.); (R.J.O.)
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, SA Pathology and the University of South of Australia, Adelaide, SA 5000, Australia; (S.L.); (E.P.); (K.G.S.); (E.C.F.Y.); (M.N.T.); (L.M.E.); (M.O.M.); (S.M.P.)
| |
Collapse
|
18
|
Sithisarn P, Rojsanga P, Sithisarn P. Flavone-Rich Fractions and Extracts from Oroxylum indicum and Their Antibacterial Activities against Clinically Isolated Zoonotic Bacteria and Free Radical Scavenging Effects. Molecules 2021; 26:1773. [PMID: 33809943 PMCID: PMC8004265 DOI: 10.3390/molecules26061773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/01/2022] Open
Abstract
Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.
Collapse
Affiliation(s)
- Patchima Sithisarn
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Piyanuch Rojsanga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Pongtip Sithisarn
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
19
|
Feng R, Zhang X, Yin J, Zhang Y, Ma Y, Zhang X, Zhang L, Li D. A comprehensive study of the metabolism of flavonoid oroxin B in vivo and in vitro by UHPLC-Q-TOF-MS/MS. J Pharm Biomed Anal 2021; 197:113905. [PMID: 33636644 DOI: 10.1016/j.jpba.2021.113905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 01/14/2021] [Indexed: 01/26/2023]
Abstract
Oroxin B, a flavonoid, is a major bioactive component form Oroxylum indicum (L.) Vent. with enormous anti-hepatoma effects. To data, the oroxin B metabolism studies remain underexplored. This study was designed to characterize oroxin B metabolism in vivo and in vitro by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Consequently, 30 metabolites in rats, 8 metabolites in liver microsomes and 18 metabolites in intestinal bacteria were identified, and 9 metabolites were recognized by comparison with standards. The biotransformation processes involved ketone, acetylation, loss of C12H20O10, and loss of C6H10O5. And baicalein and oroxin A were generated after loss of C12H20O10, and loss of C6H10O5, respectively, and further went through some other reactions, such as oxidation, methylation, internal hydrolysis, hydrogenation, loss of O, ketone, glycine conjugation, glucuronide conjugation and their composite reactions. The results provide valuable evidence for elucidation the potential mechanism of oroxin B pharmacological action, and offer reasonable guidelines for further investigations of oroxin B safety and efficacy.
Collapse
Affiliation(s)
- Rui Feng
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China
| | - Xiaowei Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Jintuo Yin
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yuqian Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Yinling Ma
- Hebei General Hospital, Shijiazhuang, Hebei, 050051, PR China
| | - Xia Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Deqiang Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
| |
Collapse
|
20
|
Li G, Ding K, Qiao Y, Zhang L, Zheng L, Pan T, Zhang L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules 2020; 25:E5628. [PMID: 33265939 PMCID: PMC7729519 DOI: 10.3390/molecules25235628] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death globally. Millions of persons die due to cancer each year. In the last two decades, the anticancer effects of natural flavonoids have become a hot topic in many laboratories. Meanwhile, flavonoids, of which over 8000 molecules are known to date, are potential candidates for the discovery of anticancer drugs. The current review summarizes the major flavonoid classes of anticancer efficacy and discusses the potential anti-cancer mechanisms through inflammation and oxidative stress action, which were based on database and clinical studies within the past years. The results showed that flavonoids could regulate the inflammatory response and oxidative stress of tumor through some anti-inflammatory mechanisms such as NF-κB, so as to realize the anti-tumor effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China; (G.L.); (K.D.); (Y.Q.); (L.Z.); (L.Z.); (T.P.)
| |
Collapse
|
21
|
Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma-A Review. Int J Mol Sci 2020; 21:ijms21218362. [PMID: 33171811 PMCID: PMC7664704 DOI: 10.3390/ijms21218362] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer deaths globally, of which hepatocellular carcinoma (HCC) is the major subtype. Viral hepatitis B and C infections, alcohol abuse, and metabolic disorders are multiple risk factors for liver cirrhosis and HCC development. Although great therapeutic advances have been made in recent decades, the prognosis for HCC patients remains poor due to late diagnosis, chemotherapy failure, and frequent recurrence. MicroRNAs (miRNAs) are endogenous, non-coding RNAs that regulate various molecular biological phenomena by suppressing the translation of target messenger RNAs (mRNAs). miRNAs, which often become dysregulated in malignancy, control cell proliferation, migration, invasion, and development in HCC by promoting or suppressing tumors. Exploring the detailed mechanisms underlying miRNA-mediated HCC development and progression can likely improve the outcomes of patients with HCC. This review summarizes the molecular and functional roles of miRNAs in the pathogenesis of HCC. Further, it elucidates the utility of miRNAs as novel biomarkers and therapeutic targets.
Collapse
|
22
|
Qiu W, Wang Z, Chen R, Shi H, Ma Y, Zhou H, Li M, Li W, Chen H, Zhou H. Xiaoai Jiedu Recipe suppresses hepatocellular carcinogenesis through the miR-200b-3p /Notch1 axis. Cancer Manag Res 2020; 12:11121-11131. [PMID: 33173345 PMCID: PMC7646463 DOI: 10.2147/cmar.s269991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Xiaoai Jiedu recipe (XJR), a formula long used by Chinese National Medical Professor Zhou Zhongying, has potent antitumor properties, but the molecular mechanism is still unclear. The aim of the study was to investigate the antitumor mechanism of XJR on hepatocellular carcinoma (HCC) by focusing on miRNA. Methods Three concentrations of XJR (low, middle, and high) were used to treat tumor xenograft mice models. Microarray technology was used to identify the differential expressed genes after XJR treatment, and bioinformatic tools and luciferase reporter assay to predict the potential pathways. HepG2 cells were transfected with inhibitor of miR-200b-3p to detect the effect of miR-200b-3p and Notch1 on tumor growth. Results XJR effectively exerted anti-HCC effect both in vitro and in vivo. MiRNA chip analysis results showed that the expression of 75 miRNAs was upregulated and 158 miRNAs was downregulated in blood from XJR-treated mice. Further validation by using real-time polymerase chain reaction (RT-PCR) assay showed that the expression of five miRNAs (miR-453, miR-200b-3p, miR-135a-1-3p, miR-1960, miR-378a-5p, and miR-466f) was consistent with the results of miRNA chip analysis. Among them, miR-200b-3p was selected as candidate for further research. Results of the MTT, migration, and wound healing assays showed that down-expression of miR-200b-3p abrogated the effect of XJR on cell growth and metastasis. Luciferase reporter assay confirmed that Notch1 was the direct target of miR-200b-3p. XJR significantly decreased Notch1 expression in HepG2 cells, whereas miR-200B-3p inhibitor abrogated the XJR-induced decrease in Notch1 expression. Conclusion This study indicated that XJR could effectively inhibit HCC and might exert its antitumor effect through the miR‐200b-3p/Notch1 axis. These findings provided new avenues for the use of XJR for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haibo Shi
- Department of Oncology, Wuxi Xishan Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, Republic of China
| | - Yanxia Ma
- Institute of Oncology, The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Hongli Zhou
- The First Clinical Medical College, Liaoning University of Chinese Medicine, Shenyang, Liaoning, Republic of China
| | - Muhan Li
- Institute of Oncology, The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Wenting Li
- Institute of Oncology, The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| |
Collapse
|