1
|
Su M, Jin R, Zhu J, Pei J, Wang Y, Chai X, Jiang M. Composition and antioxidant activity of flavonoids from two different species of Amomi Fructus extracted using natural deep eutectic solvents. Food Chem 2025; 472:142984. [PMID: 39848052 DOI: 10.1016/j.foodchem.2025.142984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Amomi Fructus, a mature fruit from a ginger family plant, has various species, resulting in inconsistent sourcing and quality. Most studies distinguish species by volatile compounds, yet research shows it also contains flavonoids with notable pharmacological effects. Solely focusing on volatile compounds could lead to considerable resource waste. This study aims to establish flavonoid markers in Amomi Fructus to distinguish its species, assess quality, and promote efficient resource use. Utilizing natural deep eutectic solvents (NADES) and response surface methodology (RSM), an optimal extraction system (choline chloride-ethylene glycol) yielded 41.38 mg RE/g total flavonoids. LC-MS analysis of 18 Amomi Fructus batches identified 26 flavonoids, quantified 19, and highlighted three key markers-epicatechin, procyanidin B2, and procyanidin B4-that effectively differentiate Amomum villosum Lour. (AMV) from Amomum villosum Lour. var. xanthioides T.L. Wu et Senjen (AMVX). Finally, flow cytometry confirmed these markers' antioxidant activity, effectively reducing H₂O₂-induced oxidative damage in GES-1 cells.
Collapse
Affiliation(s)
- Mei Su
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruyi Jin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Zhu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jierong Pei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Miaomiao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
3
|
Tzanova MT, Yaneva Z, Ivanova D, Toneva M, Grozeva N, Memdueva N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024; 13:605. [PMID: 38397582 PMCID: PMC10887973 DOI: 10.3390/foods13040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Consumers associate the color of food with its freshness and quality. More and more attention is being paid to natural colorants that bring additional health benefits to humans. Such natural substances are the carotenoids (yellow to orange), the anthocyanins (red to blue), and the betalains (red and yellow), which are very sensitive to exposure to light, air, high temperatures, and chemicals. Stability and diversity in terms of color can be optimized by using environmentally friendly and selective extraction processes that provide a balance between efficacy, safety, and stability of the resulting extracts. Green solvents like water, supercritical fluids, natural deep eutectic solvents, and ionic liquids are the most proper green solvents when combined with different extraction techniques like maceration, supercritical extraction, and ultrasound-assisted or microwave-assisted extraction. The choice of the right extracting agent is crucial for the selectivity of the extraction method and the stability of the prepared colorant. The present work reviews the green solvents used for the extraction of natural food colorants from plants and focuses on the issues related to the selectivity and stability of the products extracted.
Collapse
Affiliation(s)
- Milena Tankova Tzanova
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Zvezdelina Yaneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Donika Ivanova
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
- Medical Faculty, Department of Medicinal Chemistry and Biochemistry, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Monika Toneva
- Faculty of Veterinary Medicine, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.Y.); (D.I.); (M.T.)
| | - Neli Grozeva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Neli Memdueva
- Faculty of Agriculture, Department of Biological Sciences, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
4
|
Zhou M, Fakayode OA, Li H. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Molecules 2023; 28:6852. [PMID: 37836694 PMCID: PMC10574355 DOI: 10.3390/molecules28196852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| |
Collapse
|
5
|
Xue H, Sang Y, Gao Y, Zeng Y, Liao J, Tan J. Research Progress on Absorption, Metabolism, and Biological Activities of Anthocyanins in Berries: A Review. Antioxidants (Basel) 2022; 12:antiox12010003. [PMID: 36670865 PMCID: PMC9855064 DOI: 10.3390/antiox12010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Berries, as the best dietary sources for human health, are rich in anthocyanins, vitamins, fiber, polyphenols, essential amino acids, and other ingredients. Anthocyanins are one of the most important bioactive components in berries. The attractive color of berries is attributed to the fact that berries contain different kinds of anthocyanins. Increasing research activity has indicated that anthocyanins in berries show various biological activities, including protecting vision; antioxidant, anti-inflammatory and anti-tumor qualities; inhibition of lipid peroxidation; anti-cardiovascular disease properties; control of hypoglycemic conditions; and other activities. Hence, berries have high nutritional and medicinal values. The recognized absorption, metabolism, and biological activities of anthocyanins have promoted their research in different directions. Hence, it is necessary to systematically review the research progress and future prospects of anthocyanins to promote a better understanding of anthocyanins. The absorption, metabolism, and biological activities of anthocyanins from berries were reviewed in this paper. The findings of this study provide an important reference for basic research, product development and utilization of berries' anthocyanins in food, cosmetics, and drugs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuan Zeng
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, No. 576 Xuefu Road, Yichun 336000, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| |
Collapse
|
6
|
Optimization of anthocyanin extraction from Oxalis tuberosa peel by ultrasound, enzymatic treatment and their combination. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Mounika A, Ilangovan B, Mandal S, Shraddha Yashwant W, Priya Gali S, Shanmugam A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications - A review. ULTRASONICS SONOCHEMISTRY 2022; 89:106121. [PMID: 35987106 PMCID: PMC9403563 DOI: 10.1016/j.ultsonch.2022.106121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
Foods incorporated with bioactive compounds, called nutraceuticals, can fight or prevent or alleviate diseases. The contribution of nutraceuticals or phytochemicals to non-invasive biomedical applications is increasing. Although there are many traditional methods for extracting bioactive compounds or secondary metabolites, these processes come with many disadvantages like lower yield, longer process time, high energy consumption, more usage of solvent, yielding low active principles with low efficacy against diseases, poor quality, poor mass transfer, higher extraction temperature, etc. However, nullifying all these disadvantages of a non-thermal technology, ultrasound has played a significant role in delivering them with higher yield and improved bio-efficacy. The physical and chemical effects of acoustic cavitation are the crux of the output. This review paper primarily discusses the ultrasound-assisted extraction (USAE) of bioactives in providing non-invasive prevention and cure to diseases and bodily dysfunctions in human and animal models. The outputs of non-invasive bioactive components in terms of yield and the clinical efficacy in either in vitro or in vitro conditions are discussed in detail. The non-invasive biomedical applications of USAE bioactives providing anticancer, antioxidant, cardiovascular health, antidiabetic, and antimicrobial benefits are analyzed in-depth and appraised. This review additionally highlights the improved performance of USAE compounds against conventionally extracted compounds. In addition, an exhaustive analysis is performed on the role and application of the food bioactives in vivo and in vitro systems, mainly for promoting these efficient USAE bioactives in non-invasive biomedical applications. Also, the review explores the recovery of bioactives from the less explored food sources like cactus pear fruit, ash gourd, sweet granadilla, basil, kokum, baobab, and the food processing industrial wastes like peel, pomace, propolis, wine residues, bran, etc., which is rare in literature.
Collapse
Affiliation(s)
- Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Bhaargavi Ilangovan
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Sushmita Mandal
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Waghaye Shraddha Yashwant
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Swetha Priya Gali
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India.
| |
Collapse
|
8
|
Tang L, Liu H, Fu M, Xu Y, Wen J, Wu J, Yu Y, Lin X, Li L, Bu Z, Yang W. Yellow pigment from gardenia fruit: structural identification and evaluation of cytotoxic activity in HepG2 cells by induction of apoptosis. Food Sci Biotechnol 2022; 31:1389-1399. [PMID: 36060565 PMCID: PMC9433637 DOI: 10.1007/s10068-022-01133-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/11/2022] [Accepted: 07/03/2022] [Indexed: 11/25/2022] Open
Abstract
The preparation process of yellow pigment (YP) from gardenia (Gardenia jasminoides) fruit was investigated, and the main components of YP were characterized by liquid chromatography-time of flight-mass spectrometer/mass spectrometer (LC-TOF-MS/MS). Furthermore, cytotoxic activity in HepG2 cells by induction of apoptosis was also evaluated. The preparation results indicated that the color value of YP was 498.34, which was 8.6 times higher than crude YP. Fifteen compounds in YP were identified, and crocins were the predominant compounds. The cell experiment results showed that YP inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner. Moreover, YP also inhibited HepG2 cells in G2/M stage, increased the level of intracellular reactive oxygen species (ROS), and enhanced cell apoptosis. Real-time quantitative polymerase chain reaction (RT-PCR) analysis revealed the up-regulation of caspase-3, 8, 9, and bax and down-regulation of bcl-2 in HepG2 cells. Overall, these findings suggested that YP had potential cytotoxic activity in HepG2 cells by induction of apoptosis, which might be beneficial to human health. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01133-9.
Collapse
|
9
|
Pan X, Xu L, Meng J, Chang M, Cheng Y, Geng X, Guo D, Liu R. Ultrasound-Assisted Deep Eutectic Solvents Extraction of Polysaccharides From Morchella importuna: Optimization, Physicochemical Properties, and Bioactivities. Front Nutr 2022; 9:912014. [PMID: 35757264 PMCID: PMC9218490 DOI: 10.3389/fnut.2022.912014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
In this study, a high-efficiency and non-pollution extraction procedure, ultrasound-assisted technique with deep eutectic solvents (DESs), was applied for extraction of polysaccharides from Morchella importuna (MIP-D). The results exhibited that the system of DES was: mole ratio between choline chloride and oxalic acid of 2:1, water content of 90% (v/v), and the optimal extraction parameters were as follows: extraction time of 31.2 min, extraction temperature of 62.1°C, and the liquid–solid ratio of 32.5:1 (v/w). Under these extraction parameters, the extraction yield of MIP-D was 4.5 times higher than hot water extraction (HWE) method and had higher carbohydrate (85.27%) and sulfate contents (34.16%). Moreover, high-performance liquid chromatography (HPLC) and Fourier-transform IR (FTIR) spectrum analysis indicated that MIP-D was comprised of glucosamine, galactose, glucose, and mannose, with molar ratios of 0.39:1.88:3.82:3.91, which contained the pyranose ring skeleton. High-performance gel permeation chromatography (HPGPC) analysis revealed that MIP-D showed three fractions with molecular weights of 2.6 × 106, 7.3 × 104, and 3.7 × 103 Da, which were lower than those of polysaccharides extracted by HWE. In-vitro tests proved that MIP-D possessed excellent antioxidant and inhibited α-amylase and α-glucosidase inhibitory activities. Therefore, DESs (choline chloride-oxalic acid) as a high-efficiency and non-pollution solvent alternative can be applied to the separation of bioactive polysaccharides from Morchella importuna (M. importuna).
Collapse
Affiliation(s)
- Xu Pan
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China.,Shanxi Engineering Research Center of Edible Fungi, Taigu, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China.,Shanxi Engineering Research Center of Edible Fungi, Taigu, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, China
| | - Dongdong Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Rongzhu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
10
|
Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from black carrots: Optimization, cytotoxicity, in-vitro bioavailability and stability. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Optimization the extraction of anthocyanins from blueberry residue by dual-aqueous phase method and cell damage protection study. Food Sci Biotechnol 2021; 30:1709-1719. [PMID: 34925945 DOI: 10.1007/s10068-021-00994-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Blueberry residue is usually discarded as waste, but has a high anthocyanins content. The extraction method of anthocyanins from blueberry residue with ultrasonic assisted dual-aqueous phase system was optimized. In terms of the principle of central group and design (CCD) experimental design, three-factor and five-level response surface analysis was adopted to optimize the extraction conditions with the extraction rate of anthocyanins. The optimum extraction rate of anthocyanin was 12.372 ± 0.078 mg/g. Anthocyanin extract could protect the pBR322 DNA oxidative damage induced by Fenton reagent, increase the superoxide dismutase(SOD) and glutathione peroxidase (GSH-Px) enzyme activities, and decrease the H2O2-induced cell apoptosis of human normal liver cell (LO2 cell). The study indicates that the extraction rate of anthocyanin was increased by optimized ultrasonic assisted dual-aqueous phase system. The anthocyanin extract could protect DNA and LO2 cell from oxidative damage.
Collapse
|
12
|
Li Q, Qiu Z, Wang Y, Guo C, Cai X, Zhang Y, Liu L, Xue H, Tang J. Tea polyphenols alleviate hydrogen peroxide-induced oxidative stress damage through the Mst/Nrf2 axis and the Keap1/Nrf2/HO-1 pathway in murine RAW264.7 cells. Exp Ther Med 2021; 22:1473. [PMID: 34737813 PMCID: PMC8561765 DOI: 10.3892/etm.2021.10908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Tea polyphenols (TPs) are the major bioactive extract from green tea that have been extensively reported to prevent and treat oxidative stress damage. In previous studies, TPs have been demonstrated to protect cells against oxidative injury induced by hydrogen peroxide (H2O2). However, the underlying mechanism remains unclear. The aim of the current study was to investigate whether the protective and regulatory effects of TPs on oxidative stress damage were dependent on the mammalian STE20-like protein kinase (Mst)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis and the Kelch-like ECH-associated protein 1 (Keap1)/Nrf2/heme oxygenase 1 (HO-1) pathway in RAW264.7 cells, a murine macrophage cell line. Maintaining a certain range of intracellular reactive oxygen species (ROS) levels is critical to basic cellular activities, while excessive ROS generation can override the antioxidant capacity of the cell and result in oxidative stress damage. The inhibition of ROS generation offers an effective target for preventing oxidative damage. The results of the present study revealed that pretreatment with TPs inhibited the production of intracellular ROS and protected RAW264.7 cells from H2O2-induced oxidative damage. TPs was also demonstrated to attenuate the production of nitric oxide and malondialdehyde and increase the levels of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase). In addition, following TPs treatment, alterations in Mst1/2 at the mRNA and protein level inhibited the production of ROS and promoted the self-regulation of antioxidation. TPs-induced Keap1 gene downregulation also increased the expression of Nrf2 and HO-1. Collectively, the results of the present study demonstrated that TPs provided protection against H2O2-induced oxidative injury in RAW264.7 cells.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Zhaoyan Qiu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, P.R. China
| | - Chunyan Guo
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Xu Cai
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Yandong Zhang
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, P.R. China
| | - Hongkun Xue
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Jintian Tang
- Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
13
|
Hernández-Aguirre OA, Muro C, Hernández-Acosta E, Alvarado Y, Díaz-Nava MDC. Extraction and Stabilization of Betalains from Beetroot ( Beta vulgaris) Wastes Using Deep Eutectic Solvents. Molecules 2021; 26:molecules26216342. [PMID: 34770751 PMCID: PMC8587432 DOI: 10.3390/molecules26216342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Deep eutectic solvents (DES) using magnesium chloride hexahydrate [MgCl2·6H2O] and urea [U] proportions (1:1) and (2:1), were prepared for their use as extracting and stabilizer agents for red and violet betalains from beetroot (Beta vulgaris) waste. The synthetized DES [MgCl2·6H2O] [U] showed similar properties to eutectic mixtures, such as, liquid phase, low melting points and conductivity, thermal stability, and variable viscosity. In turn, betalain DES extracts (2:1) exhibited compatibility in the extraction and recovery of betalains from beetroot wastes, showing a betalain content comparable to that of betalain extracts. Betalain stability was determined by degradation tests; the exposure conditions were visible light (12 h), molecular oxygen from atmospheric air and environmental temperature (20–27 °C) for 40 days. The kinetic curves of the betalain degradation of water samples depicted a first-order model, indicating the alteration of a violet colouration of betalains from beetroot waste for 5–7 days. However, betalains from DES extracts were kept under visible light for 150 days, and for 340 days in storage (amber vessels), achieving a stability of 75% in comparison with initial beet extracts.
Collapse
|