1
|
Bashir B, Sethi P, Panda S, Manikyam HK, Vishwas S, Singh SK, Singh K, Jain D, Chaitanya MVNL, Coutinho HDM. Unravelling the epigenetic based mechanism in discovery of anticancer phytomedicine: Evidence based studies. Cell Signal 2025; 131:111743. [PMID: 40107479 DOI: 10.1016/j.cellsig.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic mechanisms play a crucial role in the normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of these processes can result in changes to gene function and the transformation of cells into a malignant state. Cancer is characterized by widespread alterations in the epigenetic landscape, revealing that it involves not only genetic mutations but also epigenetic abnormalities. Recent progress in the field of cancer epigenetics has demonstrated significant reprogramming of various components of the epigenetic machinery in cancer, such as DNA methylation, modifications to histones, positioning of nucleosomes, and the expression of non-coding RNAs, particularly microRNAs. The ability to reverse epigenetic abnormalities has given rise to the hopeful field of epigenetic therapy, which has shown advancement with the recent approval by the FDA of three drugs targeting epigenetic mechanisms for the treatment of cancer. In the present manuscript, a comprehensive review has been presented about the role of understanding the epigenetic link between cancer and mechanisms by which phytomedicine offers treatment avenues. Further, this review deciphers the significance of natural products in the identification of epigenetic therapeutics, the diversity of their molecular targets, the use of nanotechnology, and the creation of new strategies for overcoming the inherent clinical challenges associated with developing these drug leads.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India
| | - Hemanth Kumar Manikyam
- Department of Chemistry, Faculty of science, North East Frontier Technical University, Arunachal Pradesh 791001, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India.
| | | |
Collapse
|
2
|
Calabrò A, Aiello A, Silva P, Caruso C, Candore G, Accardi G. Geroprotective applications of oleuropein and hydroxytyrosol through the hallmarks of ageing. GeroScience 2025:10.1007/s11357-025-01697-4. [PMID: 40425998 DOI: 10.1007/s11357-025-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Geroprotectors are compounds that target the underlying mechanisms of ageing to delay the onset of age-related diseases and extend both lifespan and health span. As ageing is driven by the accumulation of cellular damage, DNA instability, epigenetic changes, mitochondrial dysfunction, and chronic inflammation, the concept of geroprotection focuses on compounds that can mitigate these processes. Oleuropein (OLE) and its derivative hydroxytyrosol (HT), both phenolic molecules derived from Olea europaea (olive tree), have gained significant attention as potential geroprotectors due to their potent antioxidant and anti-inflammatory properties. These phytochemicals, central to the Mediterranean diet, activate key molecular pathways such as nuclear factor erythroid 2-related factor 2, reducing oxidative stress and modulating inflammatory responses. Through these mechanisms, OLE and HT help counteract inflammageing, a critical factor in age-related dysfunction. This review highlights the role of OLE and HT as geroprotective agents, emphasising their ability to target the hallmarks of ageing and their potential to improve health span by slowing the progression of age-related conditions. With proven efficacy in various biological models, these compounds represent promising tools in the ongoing search for strategies to enhance the quality of life in ageing populations.
Collapse
Affiliation(s)
- Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134, Palermo, Italy.
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061, Lisbon, Portugal
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134, Palermo, Italy
| |
Collapse
|
3
|
Uher I, Bergendyová E, Poráčová J, Bernasovská J. The Potential Role of Bio Extra Virgin Olive Oil (BEVOO) in Recovery from HPV 16-Induced Tonsil Cancer: An Exploratory Case Study. Healthcare (Basel) 2025; 13:944. [PMID: 40281893 PMCID: PMC12026560 DOI: 10.3390/healthcare13080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
The human papillomavirus type 16 (HPV 16) is a high-risk human papillomavirus strain commonly associated with oropharyngeal cancers, including lymph node involvement. The treatment for HPV 16-related tonsil cancer, commonly involving surgery, radiation, and chemotherapy, presents significant challenges. Complications such as oral mucositis, xerostomia, dysphagia, dysgeusia, hypogeusia, impaired gustatory function, and significant weight loss frequently arise, leading to reduced nutritional intake, impaired healing, and recovery progression. These challenges underscore the need for supportive interventions to enhance rehabilitation and the post-recovery period, improve treatment tolerance, and maintain quality of life. Objective: This single-subject study examines a 67-year-old male patient diagnosed with a T1N3b (small primary tumor with advanced lump node involvement) associated with HPV 16 positivity, indicating a virus-associated oncogenesis. Methods: The patient underwent radiation therapy and chemotherapy, leading to treatment-associated side effects. After having dietary drinks for daily nourishment, the patient routinely incorporated oral bio extra virgin olive oil (BEVOO) to cope with indicated challenges. Results: Body composition and metabolic parameters showed treatment-induced declines, followed by substantial but not complete recovery during follow-up examination. Visual Analog Scale (VAS) scores reflected gradual improvements in dysphagia, xerostomia, mucositis, and subtle but ongoing enhancement of the dysgeusia, gustatory perception, and oral palatability. The BEVOO supplementation and mindfulness were associated with positive recovery trends. Additional variables could have impacted the outcomes, preceding and throughout treatment, including the patient's cognitive and somatic health, environmental conditions, dietary habits, individual attitudes toward recovery, physical activity, and patient way of life. Conclusions: These results emphasize the need for additional research employing a comprehensive, multi-factorial framework that accounts for the complex interplay of physiological, psycho-social, and environmental contributors. More extensive, more diverse studies are essential to confirm these observations and substantiate the role of BEVOO as a supportive intervention in cancer recovery.
Collapse
Affiliation(s)
- Ivan Uher
- Institute of Physical Education and Sport, Pavol Jozef Šafárik University, 04180 Kosice, Slovakia
| | - Eva Bergendyová
- Clinic of Radiation and Clinical Oncology, FNsP J.A. Reiman, Hollého 14, 08001 Presov, Slovakia;
| | - Janka Poráčová
- Faculty of Humanities and Natural Sciences, University of Prešov, 08001 Presov, Slovakia; (J.P.); (J.B.)
| | - Jarmila Bernasovská
- Faculty of Humanities and Natural Sciences, University of Prešov, 08001 Presov, Slovakia; (J.P.); (J.B.)
| |
Collapse
|
4
|
Morkovin E, Litvinov R, Koushner A, Babkov D. Resveratrol and Extra Virgin Olive Oil: Protective Agents Against Age-Related Disease. Nutrients 2024; 16:4258. [PMID: 39770880 PMCID: PMC11677889 DOI: 10.3390/nu16244258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Resveratrol and extra virgin olive oil are both recognized for their potential protective effects against age-related diseases. This overview highlights their mechanisms of action, health benefits, and the scientific evidence supporting their roles in promoting longevity and cognitive health. A literature search was conducted. Important findings related to the health benefits, mechanisms of action, and clinical implications of resveratrol and EVOO were summarized. Both resveratrol and EVOO have complementary mechanisms that may enhance their anti-aging effects. Resveratrol and EVOO are promising age-related disease-protective agents. Their antioxidant, anti-inflammatory, and neuroprotective properties contribute to improved health outcomes and longevity. Incorporating these compounds into a balanced diet may offer significant benefits for aging populations, supporting cognitive health and reducing the risk of chronic diseases. Continued research is essential to fully understand their mechanisms and optimize their use in clinical settings. Future research should focus on investigating the synergistic effects of resveratrol and EVOO when consumed together, as they may enhance each other's bioavailability and efficacy in promoting health; conducting extensive clinical trials to confirm the long-term benefits of these compounds in various populations, particularly in aging individuals; further exploring the molecular pathways through which resveratrol and EVOO exert their effects, including their interactions with gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Evgeny Morkovin
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
| | - Roman Litvinov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
- LLC «InnoVVita», Office 401, Room 2, 6 Komsomolskaya St., 400066 Volgograd, Russia
| | - Alexey Koushner
- Research Laboratory of Medical Imaging, Institute for Advanced Training of Medical Personnel, St. F. Engelsa, 58A, 394036 Voronezh, Russia
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
- LLC «InnoVVita», Office 401, Room 2, 6 Komsomolskaya St., 400066 Volgograd, Russia
| |
Collapse
|
5
|
Del Saz-Lara A, Saz-Lara A, Cavero-Redondo I, Pascual-Morena C, Mazarío-Gárgoles C, Visioli F, López de Las Hazas MC, Dávalos A. Association between olive oil consumption and all-cause, cardiovascular and cancer mortality in adult subjects: a systematic review and meta-analysis. Food Funct 2024; 15:11640-11649. [PMID: 39523824 DOI: 10.1039/d4fo04161e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Background: The Mediterranean diet is characterized by the preferential use of olive oil (OO) and has been associated with health benefits possibly mediated by its bioactive compounds. Objectives: We aimed to analyze the association between OO consumption and changes in all-cause mortality, cardiovascular mortality and cancer mortality in the adult population. Methods: A systematic review was conducted using the Pubmed, Scopus, Web of Science and Cochrane Library databases up to October 2024. DerSimonian and Laird's random effects method was used to calculate pooled estimates of hazard ratios (HRs) and their 95% confidence intervals (95% CIs) to determine the association between OO use and changes in all-cause mortality, cardiovascular mortality, and cancer mortality. Results: Fourteen studies were included in the systematic review and seven in the meta-analysis. Our results showed an association between OO consumption and reduction in all-cause mortality (HR: 0.85; 95% CI: 0.80-0.91), cardiovascular mortality (HR: 0.84; 95% CI: 0.76-0.93) and cancer mortality (HR: 0.89; 95% CI: 0.86-0.93). Conclusions: Consumption of OO particularly reduces cardiovascular mortality (16%), followed by all-cause mortality (15%) and cancer mortality (11%) in the adult population. However, further studies are needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
- CarVasCare Research Group (2023-GRIN-34459), Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain.
| | - Alicia Saz-Lara
- CarVasCare Research Group (2023-GRIN-34459), Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain.
| | - Iván Cavero-Redondo
- CarVasCare Research Group (2023-GRIN-34459), Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain.
- Universidad Autónoma de Chile, Facultad de Ciencias de la Salud, Talca, Chile
| | - Carlos Pascual-Morena
- Health and Social Research Center, University of Castilla-La Mancha, Cuenca, Spain
- Facultad de Enfermería de Albacete, Universidad de Castilla-La Mancha - Campus Albacete, Albacete, Spain
| | - Carmen Mazarío-Gárgoles
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid 28049, Spain
- Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| |
Collapse
|
6
|
Chiavarini M, Rosignoli P, Giacchetta I, Fabiani R. Health Outcomes Associated with Olive Oil Intake: An Umbrella Review of Meta-Analyses. Foods 2024; 13:2619. [PMID: 39200546 PMCID: PMC11353474 DOI: 10.3390/foods13162619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Several studies suggested a negative association between olive oil (OO) consumption and the risk of several chronic diseases. However, an attempt to systematically search, organize, and evaluate the existing evidence on all health outcomes associated with OO consumption is lacking. The objective of this review is to describe the multiple health outcomes associated with OO consumption. The Medline, Scopus, and Web of Science databases were searched through 5 April 2024. The selected studies met all of the following criteria: (1) a meta-analysis of both observational (case-control and cohort studies) and interventional studies (trials), (2) an evaluation of the association between OO consumption, mortality, and/or the incidence of non-communicable/chronic degenerative diseases, and (3) a study population ≥18 years old. Two independent reviewers extracted the relevant data and assessed the risk of bias of individual studies. The PRISMA statement and guidelines for the Integration of Evidence from Multiple Meta-Analyses were followed. The literature search identified 723 articles. After selection, 31 articles were included in this umbrella review. The primary health benefits of OO were observed in cardiovascular diseases and risk factors, cancer, mortality, diabetes, and specific biomarkers related to anthropometric status and inflammation. As a key component of the Mediterranean diet, OO can be considered a healthy dietary choice for improving positive health outcomes.
Collapse
Affiliation(s)
- Manuela Chiavarini
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy;
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Irene Giacchetta
- Local Health Unit of Bologna, Department of Hospital Network, Hospital Management of Maggiore and Bellaria, 40124 Bologna, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
7
|
Campo C, Gangemi S, Pioggia G, Allegra A. Beneficial Effect of Olive Oil and Its Derivates: Focus on Hematological Neoplasm. Life (Basel) 2024; 14:583. [PMID: 38792604 PMCID: PMC11122568 DOI: 10.3390/life14050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil (Olea europaea) is one of the major components of the Mediterranean diet and is composed of a greater percentage of monounsaturated fatty acids, such as oleic acid; polyunsaturated fatty acids, such as linoleic acid; and minor compounds, such as phenolic compounds, and particularly hydroxytyrosol. The latter, in fact, are of greater interest since they have found widespread use in popular medicine. In recent years, it has been documented that phenolic acids and in particular hydroxytyrosol have anti-inflammatory, antioxidant, and antiproliferative action and therefore interest in their possible use in clinical practice and in particular in neoplasms, both solid and hematological, has arisen. This work aims to summarize and analyze the studies present in the literature, both in vitro and in vivo, on the possible use of minor components of olive oil in some hematological neoplasms. In recent years, in fact, interest in nutraceutical science has expanded as a possible adjuvant in the treatment of neoplastic pathologies. Although it is worth underlining that, regarding the object of our study, there are still few preclinical and clinical studies, it is, however, possible to document a role of possible interest in clinical practice.
Collapse
Affiliation(s)
- Chiara Campo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98158 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 9815 Messina, Italy;
| |
Collapse
|
8
|
La Scala S, Naselli F, Quatrini P, Gallo G, Caradonna F. Drought-Adapted Mediterranean Diet Plants: A Source of Bioactive Molecules Able to Give Nutrigenomic Effects per sè or to Obtain Functional Foods. Int J Mol Sci 2024; 25:2235. [PMID: 38396910 PMCID: PMC10888686 DOI: 10.3390/ijms25042235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The Mediterranean diet features plant-based foods renowned for their health benefits derived from bioactive compounds. This review aims to provide an overview of the bioactive molecules present in some representative Mediterranean diet plants, examining their human nutrigenomic effects and health benefits as well as the environmental advantages and sustainability derived from their cultivation. Additionally, it explores the facilitation of producing fortified foods aided by soil and plant microbiota properties. Well-studied examples, such as extra virgin olive oil and citrus fruits, have demonstrated significant health advantages, including anti-cancer, anti-inflammatory, and neuroprotective effects. Other less renowned plants are presented in the scientific literature with their beneficial traits on human health highlighted. Prickly pear's indicaxanthin exhibits antioxidant properties and potential anticancer traits, while capers kaempferol and quercetin support cardiovascular health and prevent cancer. Oregano and thyme, containing terpenoids like carvacrol and γ-terpinene, exhibit antimicrobial effects. Besides their nutrigenomic effects, these plants thrive in arid environments, offering benefits associated with their cultivation. Their microbiota, particularly Plant Growth Promoting (PGP) microorganisms, enhance plant growth and stress tolerance, offering biotechnological opportunities for sustainable agriculture. In conclusion, leveraging plant microbiota could revolutionize agricultural practices and increase sustainability as climate change threatens biodiversity. These edible plant species may have crucial importance, not only as healthy products but also for increasing the sustainability of agricultural systems.
Collapse
Affiliation(s)
- Silvia La Scala
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Flores Naselli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Paola Quatrini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
| | - Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Fabio Caradonna
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Sezione di Biologia Cellulare, Università di Palermo, 90128, Palermo, Italy; (S.L.S.); (P.Q.); (G.G.); (F.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
9
|
Bergonzi MC, De Stefani C, Vasarri M, Ivanova Stojcheva E, Ramos-Pineda AM, Baldi F, Bilia AR, Degl’Innocenti D. Encapsulation of Olive Leaf Polyphenol-Rich Extract in Polymeric Micelles to Improve Its Intestinal Permeability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3147. [PMID: 38133044 PMCID: PMC10745506 DOI: 10.3390/nano13243147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
In the present study, polymeric micelles were developed to improve the intestinal permeability of an extract of Olea europaea L. leaf with a high content of total polyphenols (49% w/w), with 41% w/w corresponding to the oleuropein amount. A pre-formulation study was conducted to obtain a stable formulation with a high loading capacity for extract. The freeze-drying process was considered to improve the stability of the formulation during storage. Micelles were characterized in terms of physical and chemical properties, encapsulation efficiency, stability, and in vitro release. The optimized system consisted of 15 mg/mL of extract, 20 mg/mL of Pluronic L121, 20 mg/mL of Pluronic F68, and 10 mg/mL of D-α-tocopheryl polyethylene glycol succinate (TPGS), with dimensions of 14.21 ± 0.14 nm, a polydisersity index (PdI) of 0.19 ± 0.05 and an encapsulation efficiency of 66.21 ± 1.11%. The influence of the micelles on polyphenol permeability was evaluated using both Parallel Artificial Membrane Permeability Assay (PAMPA) and the Caco-2 cell monolayer. In both assays, the polymeric micelles improved the permeation of polyphenols, as demonstrated by the increase in Pe and Papp values.
Collapse
Affiliation(s)
- Maria Camilla Bergonzi
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (C.D.S.); (M.V.); (F.B.); (A.R.B.)
| | - Chiara De Stefani
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (C.D.S.); (M.V.); (F.B.); (A.R.B.)
| | - Marzia Vasarri
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (C.D.S.); (M.V.); (F.B.); (A.R.B.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy;
| | | | | | - Francesco Baldi
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (C.D.S.); (M.V.); (F.B.); (A.R.B.)
| | - Anna Rita Bilia
- Department of Chemistry Ugo Schiff, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (C.D.S.); (M.V.); (F.B.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
10
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
11
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
12
|
Şahin TÖ, Yılmaz B, Yeşilyurt N, Cicia D, Szymanowska A, Amero P, Ağagündüz D, Capasso R. Recent insights into the nutritional immunomodulation of cancer-related microRNAs. Phytother Res 2023; 37:4375-4397. [PMID: 37434291 DOI: 10.1002/ptr.7937] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Cancer is the most common cause of death worldwide, following cardiovascular diseases. Cancer is a multifactorial disease and many reasons such as physical, chemical, biological, and lifestyle-related factors. Nutrition, which is one of the various factors that play a role in the prevention, development, and treatment of many types of cancer, affects the immune system, which is characterized by disproportionate pro-inflammatory signaling in cancer. Studies investigating the molecular mechanisms of this effect have shown that foods rich in bioactive compounds, such as green tea, olive oil, turmeric, and soybean play a significant role in positively changing the expression of miRNAs involved in the regulation of genes associated with oncogenic/tumor-suppressing pathways. In addition to these foods, some diet models may change the expression of specific cancer-related miRNAs in different ways. While Mediterranean diet has been associated with anticancer effects, a high-fat diet, and a methyl-restricted diet are considered to have negative effects. This review aims to discuss the effects of specific foods called "immune foods," diet models, and bioactive components on cancer by changing the expression of miRNAs in the prevention and treatment of cancer.
Collapse
Affiliation(s)
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | | | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, Napoli, Italy
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
13
|
Leri M, Vasarri M, Barletta E, Schiavone N, Bergonzi MC, Bucciantini M, Degl’Innocenti D. The Protective Role of Oleuropein Aglycone against Pesticide-Induced Toxicity in a Human Keratinocytes Cell Model. Int J Mol Sci 2023; 24:14553. [PMID: 37834001 PMCID: PMC10572371 DOI: 10.3390/ijms241914553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of agricultural pesticides to improve crop quality and yield significantly increased the risk to the public of exposure to small but repeated doses of pesticides over time through various routes, including skin, by increasing the risk of disease outbreaks. Although much work was conducted to reduce the use of pesticides in agriculture, little attention was paid to prevention, which could reduce the toxicity of pesticide exposure by reducing its impact on human health. Extra virgin olive oil (EVOO), a major component of the Mediterranean diet, exerts numerous health-promoting properties, many of which are attributed to oleuropein aglycone (OleA), the deglycosylated form of oleuropein, which is the main polyphenolic component of EVOO. In this work, three pesticides with different physicochemical and biological properties, namely oxadiazon (OXA), imidacloprid (IMID), and glyphosate (GLYPHO), were compared in terms of metabolic activity, mitochondrial function and epigenetic modulation in an in vitro cellular model of human HaCaT keratinocytes to mimic the pathway of dermal exposure. The potential protective effect of OleA against pesticide-induced cellular toxicity was then evaluated in a cell pre-treatment condition. This study showed that sub-lethal doses of OXA and IMID reduced the metabolic activity and mitochondrial functionality of HaCaT cells by inducing oxidative stress and altering intracellular calcium flux and caused epigenetic modification by reducing histone acetylation H3 and H4. GLYPHO, on the other hand, showed no evidence of cellular toxicity at the doses tested. Pretreatment of cells with OleA was able to protect cells from the damaging effects of the pesticides OXA and IMID by maintaining metabolic activity and mitochondrial function at a controlled level and preventing acetylation reduction, particularly of histone H3. In conclusion, the bioactive properties of OleA reported here could be of great pharmaceutical and health interest, as they could be further studied to design new formulations for the prevention of toxicity from exposure to pesticide use.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| |
Collapse
|
14
|
Marx ÍMG. Co-Extraction Technique Improves Functional Capacity and Health-Related Benefits of Olive Oils: A Mini Review. Foods 2023; 12:foods12081667. [PMID: 37107462 PMCID: PMC10137819 DOI: 10.3390/foods12081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Olive oil, a fundamental component of the Mediterranean diet, is recognized as a functional food due to its health-promoting composition. The concentration of phenolic compounds in olive oil is influenced by various factors such as genetics, agro-climatic conditions, and technological processes. Therefore, to ensure an ideal intake of phenolics through the diet, it is recommended to produce functional enriched olive oil that contains a high concentration of bioactive compounds. The co-extraction technique is used to create innovative and differentiated products that promote the sensory and health-related composition of oils. To enrich olive oil, various natural sources of bioactive compounds can be used, including raw materials derived from the same olive tree such as olive leaves, as well as other compounds from plants and vegetables, such as herbs and spices (garlic, lemon, hot pepper, rosemary, thyme, and oregano). The development of functional enriched olive oils can contribute to the prevention of chronic diseases and improve consumers' quality of life. This mini-review compiles and discusses relevant scientific information related to the development of enriched olive oil using the co-extraction technique and its positive effects on the health-related composition of oils.
Collapse
Affiliation(s)
- Ítala M G Marx
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, 5300-253 Bragança, Portugal
- Associated Laboratory for Sustainability and Technology in Mountain Regions (SusTEC), Polytechnic Institute of Bragança, 5300-253 Bragança, Portugal
| |
Collapse
|
15
|
Cortez-Ribeiro AC, Meireles M, Ferro-Lebres V, Almeida-de-Souza J. Olive oil consumption confers protective effects on maternal-fetal outcomes: A systematic review of the evidence. Nutr Res 2023; 110:87-95. [PMID: 36696715 DOI: 10.1016/j.nutres.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Because of the maternal diet's importance, numerous studies have examined the effects of olive oil on pregnancy outcomes. This study provides a systematic review that evaluates the evidence between olive oil consumption and maternal-fetal outcomes. We hypothesized that olive oil reduced the risk of adverse pregnancy complications. We searched Web of Science, Scopus, PubMed, and Biblioteca Virtual em Saúde electronic databases (October and November 2021). The keywords used were pregnancy, olive oil, and pregnancy outcomes. This review included all the available studies in English and Portuguese. The exclusion criteria were (1) unrelated to olive oil consumption, (2) other outcomes, and (3) animal studies. The review included 9 articles (6 experimental and 3 observational). In the maternal outcome studies (n = 6), a higher olive oil consumption was associated with a lower prevalence of gestational diabetes mellitus, preeclampsia, and cardiovascular risk. In the fetal outcome studies (n = 8), olive oil consumption was associated with a lower risk for small- or large-for-gestational-age infants. Olive oil consumption confers protective effects on pregnancy outcomes; however, further studies are needed that are specifically designed for the impact of olive oil consumption on maternal-fetal outcomes.
Collapse
Affiliation(s)
| | - Manuela Meireles
- Centro de Investigação da Montanha, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Vera Ferro-Lebres
- Centro de Investigação da Montanha, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Juliana Almeida-de-Souza
- Centro de Investigação da Montanha, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório para Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| |
Collapse
|
16
|
Pessoa HR, Zago L, Chaves Curioni C, Ferraz da Costa DC. Modulation of biomarkers associated with risk of cancer in humans by olive oil intake: A systematic review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
17
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
18
|
del Saz-Lara A, López de las Hazas MC, Visioli F, Dávalos A. Nutri-Epigenetic Effects of Phenolic Compounds from Extra Virgin Olive Oil: A Systematic Review. Adv Nutr 2022; 13:2039-2060. [PMID: 35679085 PMCID: PMC9526845 DOI: 10.1093/advances/nmac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
Dietary components can induce epigenetic changes through DNA methylation, histone modification, and regulation of microRNAs (miRNAs). Studies of diet-induced epigenetic regulation can inform anticipatory trials and fine-tune public health guidelines. We systematically reviewed data on the effect of extra virgin olive oil (EVOO) and its phenolic compounds (OOPCs) on the epigenetic landscape. We conducted a literature search using PubMed, Scopus, and Web of Science databases and scrutinized published evidence. After applying selection criteria (e.g., inclusion of in vitro, animal, or human studies supplemented with EVOO or its OOPCs), we thoroughly reviewed 51 articles, and the quality assessment was performed using the revised Cochrane risk of bias tool. The results show that both EVOO and its OOPCs can promote epigenetic changes capable of regulating the expression of genes and molecular targets involved in different metabolic processes. For example, oleuropein (OL) may be an epigenetic regulator in cancer, and hydroxytyrosol (HT) modulates the expression of miRNAs involved in the development of cancer, cardiovascular, and neurodegenerative diseases. We conclude that EVOO and its OOPCs can regulate gene expression by modifying epigenetic mechanisms that impact human pathophysiology. A full elucidation of the epigenetic effects of EVOO and its OOPCs may contribute to developing different pharma-nutritional strategies that exploit them as epigenetic agents. This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) as CRD42022320316.
Collapse
Affiliation(s)
- Andrea del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain,Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain
| | | | | |
Collapse
|
19
|
Dall’Asta M, Barbato M, Rocchetti G, Rossi F, Lucini L, Marsan PA, Colli L. Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Food-Derived Bioactive Molecules from Mediterranean Diet: Nanotechnological Approaches and Waste Valorization as Strategies to Improve Human Wellness. Polymers (Basel) 2022; 14:polym14091726. [PMID: 35566894 PMCID: PMC9103748 DOI: 10.3390/polym14091726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms. This review focuses on the most recent findings regarding the encapsulation and delivery of the bioactive molecules present in the foods daily consumed in the MedDiet such as olive oil, wine, nuts, spice, and herbs. In addition, the possibility of recovering the polyphenols from food waste was also explored, taking into account the increased market demand of functional foods and the necessity to obtain valuable biomolecules at low cost and in high quantity. This circular economy strategy, therefore, represents an excellent approach to respond to both the growing demand of consumers for the maintenance of human wellness and the economic and ecological exigencies of our society.
Collapse
|
21
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
22
|
(-)-Methyl-Oleocanthal, a New Oleocanthal Metabolite Reduces LPS-Induced Inflammatory and Oxidative Response: Molecular Signaling Pathways and Histones Epigenetic Modulation. Antioxidants (Basel) 2021; 11:antiox11010056. [PMID: 35052558 PMCID: PMC8772879 DOI: 10.3390/antiox11010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The antioxidant and anti-inflammatory responses of (−)-methyl-oleocanthal (met-OLE), a new metabolite of the extra virgin olive oil (EVOO) phenolic oleocanthal (OLE), were explored in lipopolysaccharide (LPS)-induced murine peritoneal macrophages. Possible signaling pathways and epigenetic modulation of histones were studied. Met-OLE inhibited LPS-induced intracellular reactive oxygen species (ROS) and nitrite (NO) production and decreased the overexpression of the pro-inflammatory enzymes COX-2, mPGES-1 and iNOS in murine macrophages. In addition, met-OLE was able to significantly decrease the activation of p38, JNK, and ERK mitogen-activated protein kinases (MAPKs) and blocked canonical and non-canonical inflammasome signaling pathways. On the contrary, met-OLE upregulated haem oxigenase 1 (HO-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) expression in treated cells. Finally, met-OLE pretreated spleen cells counteracted LPS induction, preventing H3K18 acetylation or H3K9 and H3K27 demethylation. Overall, these results provide novel mechanistic insights into the beneficial effects of met-OLE regarding the regulation of the immune–inflammatory response through epigenetic changes in histone markers. This revealing evidence suggests that the methylated metabolite of OLE may contribute significantly to the beneficial effects that are associated with the secoiridoid-related compound and the usual consumption of EVOO.
Collapse
|
23
|
Bucciantini M, Leri M, Nardiello P, Casamenti F, Stefani M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2021; 10:antiox10071044. [PMID: 34209636 PMCID: PMC8300823 DOI: 10.3390/antiox10071044] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation triggered by increased oxidative stress are the cause of many chronic diseases. The lack of anti-inflammatory drugs without side-effects has stimulated the search for new active substances. Plant-derived compounds provide new potential anti-inflammatory and antioxidant molecules. Natural products are structurally optimized by evolution to serve particular biological functions, including the regulation of endogenous defense mechanisms and interaction with other organisms. This property explains their relevance for infectious diseases and cancer. Recently, among the various natural substances, polyphenols from extra virgin olive oil (EVOO), an important element of the Mediterranean diet, have aroused growing interest. Extensive studies have shown the potent therapeutic effects of these bioactive molecules against a series of chronic diseases, such as cardiovascular diseases, diabetes, neurodegenerative disorders and cancer. This review begins from the chemical structure, abundance and bioavailability of the main EVOO polyphenols to highlight the effects and the possible molecular mechanism(s) of action of these compounds against inflammation and oxidation, in vitro and in vivo. In addition, the mechanisms of inhibition of molecular signaling pathways activated by oxidative stress by EVOO polyphenols are discussed, together with their possible roles in inflammation-mediated chronic disorders, also taking into account meta-analysis of population studies and clinical trials.
Collapse
Affiliation(s)
- Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
- Correspondence:
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50134, Italy; (P.N.); (F.C.)
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50134, Italy; (P.N.); (F.C.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
| |
Collapse
|